Search results for: reliability mechanical coupling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6090

Search results for: reliability mechanical coupling

3570 The Development of the Website Learning the Local Wisdom in Phra Nakhon Si Ayutthaya Province

Authors: Bunthida Chunngam, Thanyanan Worasesthaphong

Abstract:

This research had objective to develop of the website learning the local wisdom in Phra Nakhon Si Ayutthaya province and studied satisfaction of system user. This research sample was multistage sample for 100 questionnaires, analyzed data to calculated reliability value with Cronbach’s alpha coefficient method α=0.82. This system had 3 functions which were system using, system feather evaluation and system accuracy evaluation which the statistics used for data analysis was descriptive statistics to explain sample feature so these statistics were frequency, percentage, mean and standard deviation. This data analysis result found that the system using performance quality had good level satisfaction (4.44 mean), system feather function analysis had good level satisfaction (4.11 mean) and system accuracy had good level satisfaction (3.74 mean).

Keywords: website, learning, local wisdom, Phra Nakhon Si Ayutthaya province

Procedia PDF Downloads 111
3569 Framework for Socio-Technical Issues in Requirements Engineering for Developing Resilient Machine Vision Systems Using Levels of Automation through the Lifecycle

Authors: Ryan Messina, Mehedi Hasan

Abstract:

This research is to examine the impacts of using data to generate performance requirements for automation in visual inspections using machine vision. These situations are intended for design and how projects can smooth the transfer of tacit knowledge to using an algorithm. We have proposed a framework when specifying machine vision systems. This framework utilizes varying levels of automation as contingency planning to reduce data processing complexity. Using data assists in extracting tacit knowledge from those who can perform the manual tasks to assist design the system; this means that real data from the system is always referenced and minimizes errors between participating parties. We propose using three indicators to know if the project has a high risk of failing to meet requirements related to accuracy and reliability. All systems tested achieved a better integration into operations after applying the framework.

Keywords: automation, contingency planning, continuous engineering, control theory, machine vision, system requirements, system thinking

Procedia PDF Downloads 191
3568 The Effect of Alkaline Treatment on Tensile Strength and Morphological Properties of Kenaf Fibres for Yarn Production

Authors: A. Khalina, K. Shaharuddin, M. S. Wahab, M. P. Saiman, H. A. Aisyah

Abstract:

This paper investigates the effect of alkali treatment and mechanical properties of kenaf (Hibiscus cannabinus) fibre for the development of yarn. Two different fibre sources are used for the yarn production. Kenaf fibres were treated with sodium hydroxide (NaOH) in the concentration of 3, 6, 9, and 12% prior to fibre opening process and tested for their tensile strength and Young’s modulus. Then, the selected fibres were introduced to fibre opener at three different opening processing parameters; namely, speed of roller feeder, small drum, and big drum. The diameter size, surface morphology, and fibre durability towards machine of the fibres were characterized. The results show that concentrations of NaOH used have greater effects on fibre mechanical properties. From this study, the tensile and modulus properties of the treated fibres for both types have improved significantly as compared to untreated fibres, especially at the optimum level of 6% NaOH. It is also interesting to highlight that 6% NaOH is the optimum concentration for the alkaline treatment. The untreated and treated fibres at 6% NaOH were then introduced to fibre opener, and it was found that the treated fibre produced higher fibre diameter with better surface morphology compared to the untreated fibre. Higher speed parameter during opening was found to produce higher yield of opened-kenaf fibres.

Keywords: alkaline treatment, kenaf fibre, tensile strength, yarn production

Procedia PDF Downloads 236
3567 Spark Plasma Sintering/Synthesis of Alumina-Graphene Composites

Authors: Nikoloz Jalabadze, Roin Chedia, Lili Nadaraia, Levan Khundadze

Abstract:

Nanocrystalline materials in powder condition can be manufactured by a number of different methods, however manufacture of composite materials product in the same nanocrystalline state is still a problem because the processes of compaction and synthesis of nanocrystalline powders go with intensive growth of particles – the process which promotes formation of pieces in an ordinary crystalline state instead of being crystallized in the desirable nanocrystalline state. To date spark plasma sintering (SPS) has been considered as the most promising and energy efficient method for producing dense bodies of composite materials. An advantage of the SPS method in comparison with other methods is mainly low temperature and short time of the sintering procedure. That finally gives an opportunity to obtain dense material with nanocrystalline structure. Graphene has recently garnered significant interest as a reinforcing phase in composite materials because of its excellent electrical, thermal and mechanical properties. Graphene nanoplatelets (GNPs) in particular have attracted much interest as reinforcements for ceramic matrix composites (mostly in Al2O3, Si3N4, TiO2, ZrB2 a. c.). SPS has been shown to fully densify a variety of ceramic systems effectively including Al2O3 and often with improvements in mechanical and functional behavior. Alumina consolidated by SPS has been shown to have superior hardness, fracture toughness, plasticity and optical translucency compared to conventionally processed alumina. Knowledge of how GNPs influence sintering behavior is important to effectively process and manufacture process. In this study, the effects of GNPs on the SPS processing of Al2O3 are investigated by systematically varying sintering temperature, holding time and pressure. Our experiments showed that SPS process is also appropriate for the synthesis of nanocrystalline powders of alumina-graphene composites. Depending on the size of the molds, it is possible to obtain different amount of nanopowders. Investigation of the structure, physical-chemical, mechanical and performance properties of the elaborated composite materials was performed. The results of this study provide a fundamental understanding of the effects of GNP on sintering behavior, thereby providing a foundation for future optimization of the processing of these promising nanocomposite systems.

Keywords: alumina oxide, ceramic matrix composites, graphene nanoplatelets, spark-plasma sintering

Procedia PDF Downloads 367
3566 On the Monitoring of Structures and Soils by Tromograph

Authors: Magarò Floriana, Zinno Raffaele

Abstract:

Since 2009, with the coming into force of the January 14, 2008 Ministerial Decree "New technical standards for construction", and the explanatory ministerial circular N°.617 of February 2, 2009, the question of seismic hazard and the design of seismic-resistant structures in Italy has acquired increasing importance. One of the most discussed aspects in recent Italian and international scientific literature concerns the dynamic interaction between land and structure, and the effects which dynamic coupling may have on individual buildings. In effect, from systems dynamics, it is well known that resonance can have catastrophic effects on a stimulated system, leading to a response that is not compatible with the previsions in the design phase. The method used in this study to estimate the frequency of oscillation of the structure is as follows: the analysis of HVSR (Horizontal to Vertical Spectral Ratio) relations. This allows for evaluation of very simple oscillation frequencies for land and structures. The tool used for data acquisition is an experimental digital tromograph. This is an engineered development of the experimental Languamply RE 4500 tromograph, equipped with an engineered amplification circuit and improved electronically using extremely small electronic components (size of each individual amplifier 16 x 26 mm). This tromograph is a modular system, completely "free" and "open", designed to interface Windows, Linux, OSX and Android with the outside world. It an amplifier designed to carry out microtremor measurements, yet which will also be useful for seismological and seismic measurements in general. The development of single amplifiers of small dimension allows for a very clean signal since being able to position it a few centimetres from the geophone eliminates cable “antenna” phenomena, which is a necessary characteristic in seeking to have signals which are clean at the very low voltages to be measured.

Keywords: microtremor, HVSR, tromograph, structural engineering

Procedia PDF Downloads 399
3565 Utility Assessment Model for Wireless Technology in Construction

Authors: Yassir AbdelRazig, Amine Ghanem

Abstract:

Construction projects are information intensive in nature and involve many activities that are related to each other. Wireless technologies can be used to improve the accuracy and timeliness of data collected from construction sites and shares it with appropriate parties. Nonetheless, the construction industry tends to be conservative and shows hesitation to adopt new technologies. A main concern for owners, contractors or any person in charge on a job site is the cost of the technology in question. Wireless technologies are not cheap. There are a lot of expenses to be taken into consideration, and a study should be completed to make sure that the importance and savings resulting from the usage of this technology is worth the expenses. This research attempts to assess the effectiveness of using the appropriate wireless technologies based on criteria such as performance, reliability, and risk. The assessment is based on a utility function model that breaks down the selection issue into alternatives attribute. Then the attributes are assigned weights and single attributes are measured. Finally, single attribute are combined to develop one single aggregate utility index for each alternative.

Keywords: analytic hierarchy process, decision theory, utility function, wireless technologies

Procedia PDF Downloads 329
3564 Safety of Built Infrastructure: Single Degree of Freedom Approach to Blast Resistant RC Wall Panels

Authors: Muizz Sanni-Anibire

Abstract:

The 21st century has witnessed growing concerns for the protection of built facilities against natural and man-made disasters. Studies in earthquake resistant buildings, fire, and explosion resistant buildings now dominate the arena. To protect people and facilities from the effects of the explosion, reinforced concrete walls have been designed to be blast resistant. Understanding the performance of these walls is a key step in ensuring the safety of built facilities. Blast walls are mostly designed using simple techniques such as single degree of freedom (SDOF) method, despite the increasing use of multi-degree of freedom techniques such as the finite element method. This study is the first stage of a continuous research into the safety and reliability of blast walls. It presents the SDOF approach applied to the analysis of a concrete wall panel under three representative bomb situations. These are motorcycle 50 kg, car 400kg and also van with the capacity of 1500 kg of TNT explosive.

Keywords: blast wall, safety, protection, explosion

Procedia PDF Downloads 257
3563 Natural Ventilation for the Sustainable Tall Office Buildings of the Future

Authors: Ayşin Sev, Görkem Aslan

Abstract:

Sustainable tall buildings that provide comfortable, healthy and efficient indoor environments are clearly desirable as the densification of living and working space for the world’s increasing population proceeds. For environmental concerns, these buildings must also be energy efficient. One component of these tasks is the provision of indoor air quality and thermal comfort, which can be enhanced with natural ventilation by the supply of fresh air. Working spaces can only be naturally ventilated with connections to the outdoors utilizing operable windows, double facades, ventilation stacks, balconies, patios, terraces and skygardens. Large amounts of fresh air can be provided to the indoor spaces without mechanical air-conditioning systems, which are widely employed in contemporary tall buildings. This paper tends to present the concept of natural ventilation for sustainable tall office buildings in order to achieve healthy and comfortable working spaces, as well as energy efficient environments. Initially the historical evolution of ventilation strategies for tall buildings is presented, beginning with natural ventilation and continuing with the introduction of mechanical air-conditioning systems. Then the emergence of natural ventilation due to the health and environmental concerns in tall buildings is handled, and the strategies for implementing this strategy are revealed. In the next section, a number of case studies that utilize this strategy are investigated. Finally, how tall office buildings can benefit from this strategy is discussed.

Keywords: tall office building, energy efficiency, double-skin façade, stack ventilation, air conditioning

Procedia PDF Downloads 503
3562 Simulation-Based Parametric Study for the Hybrid Superplastic Forming of AZ31

Authors: Fatima Ghassan Al-Abtah, Naser Al-Huniti, Elsadig Mahdi

Abstract:

As the lightest constructional metal on earth, magnesium alloys offer excellent potential for weight reduction in the transportation industry, and it was observed that some magnesium alloys exhibit superior ductility and superplastic behavior at high temperatures. The main limitation of the superplastic forming (SPF) includes the low production rate since it needs a long forming time for each part. Through this study, an SPF process that starts with a mechanical pre-forming stage is developed to promote formability and reduce forming time. A two-dimensional finite element model is used to simulate the process. The forming process consists of two steps. At the pre-forming step (deep drawing), the sheet is drawn into the die to a preselected level, using a mechanical punch, and at the second step (SPF) a pressurized gas is applied at a controlled rate. It is shown that a significant reduction in forming time and improved final thickness uniformity can be achieved when the hybrid forming technique is used, where the process achieved a fully formed part at 400°C. Investigation for the impact of different forming process parameters achieved by comparing forming time and the distribution of final thickness that were obtained from the simulation analysis. Maximum thinning decreased from over 67% to less than 55% and forming time significantly decreased by more than 6 minutes, and the required gas pressure profile was predicted for optimum forming process parameters based on the 0.001/sec target constant strain rate within the sheet.

Keywords: magnesium, plasticity, superplastic forming, finite element analysis

Procedia PDF Downloads 146
3561 Uncertainty Estimation in Neural Networks through Transfer Learning

Authors: Ashish James, Anusha James

Abstract:

The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions.

Keywords: uncertainty estimation, neural networks, transfer learning, regression

Procedia PDF Downloads 119
3560 Extracorporeal Co2 Removal (Ecco2r): An Option for Treatment for Refractory Hypercapnic Respiratory Failure

Authors: Shweh Fern Loo, Jun Yin Ong, Than Zaw Oo

Abstract:

Acute respiratory distress syndrome (ARDS) is a common serious condition of bilateral lung infiltrates that develops secondary to various underlying conditions such as diseases or injuries. ARDS with severe hypercapnia is associated with higher ICU mortality and morbidity. Venovenous Extracorporeal membrane oxygenation (VV-ECMO) support has been established to avert life-threatening hypoxemia and hypercapnic respiratory failure despite optimal conventional mechanical ventilation. However, VV-ECMO is relatively not advisable in particular groups of patients, especially in multi-organ failure, advanced age, hemorrhagic complications and irreversible central nervous system pathology. We presented a case of a 79-year-old Chinese lady without any pre-existing lung disease admitted to our hospital intensive care unit (ICU) after acute presentation of breathlessness and chest pain. After extensive workup, she was diagnosed with rapidly progressing acute interstitial pneumonia with ARDS and hypercapnia respiratory failure. The patient received lung protective strategies of mechanical ventilation and neuromuscular blockage therapy as per clinical guidelines. However, hypercapnia respiratory failure was refractory, and she was deemed not a good candidate for VV-ECMO support given her advanced age and high vasopressor requirements from shock. Alternative therapy with extracorporeal CO2 removal (ECCO2R) was considered and implemented. The patient received 12 days of ECCO2R paired with muscle paralysis, optimization of lung-protective mechanical ventilation and dialysis. Unfortunately, the patient still had refractory hypercapnic respiratory failure with dual vasopressor support despite prolonged therapy. Given failed and futile medical treatment, the family opted for withdrawal of care, a conservative approach, and comfort care, which led to her demise. The effectivity of extracorporeal CO2 removal may depend on disease burden, involvement and severity of the disease. There is insufficient data to make strong recommendations about its benefit-risk ratio for ECCO2R devices, and further studies and data would be required. Nonetheless, ECCO2R can be considered an alternative treatment for refractory hypercapnic respiratory failure patients who are unsuitable for initiating venovenous ECMO.

Keywords: extracorporeal CO2 removal (ECCO2R), acute respiratory distress syndrome (ARDS), acute interstitial pneumonia (AIP), hypercapnic respiratory failure

Procedia PDF Downloads 55
3559 Thermo-Economic Analysis of a Natural Draft Direct Cooling System for a Molten Salt Power Tower

Authors: Huiqiang Yang, Domingo Santana

Abstract:

Reducing parasitic power consumption of concentrating solar power plants is the main challenge to increase the overall efficiency, particularly for molten salt tower technology. One of the most effective approaches to reduce the parasitic power consumption is to implement a natural draft dry cooling system instead of the standard utilized mechanical draft dry cooling system. In this paper, a thermo-economic analysis of a natural draft direct cooling system was performed based on a 100MWe commercial scale molten salt power plant. In this configuration with a natural draft direct cooling system, the exhaust steam from steam turbine flows directly to the heat exchanger bundles inside the natural draft dry cooling tower, which eliminates the power consumption of circulation pumps or fans, although the cooling tower shadows a portion of the heliostat field. The simulation results also show that compared to a mechanical draft cooling system the annual solar field efficiency is decreased by about 0.2% due to the shadow, which is equal to a reduction of approximately 13% of the solar field area. As a contrast, reducing the solar field size by 13% in purpose in a molten salt power plant with a natural draft drying cooling system actually will lead to a reduction of levelized cost of electricity (LCOE) by about 4.06% without interfering the power generated.

Keywords: molten salt power tower, natural draft dry cooling, parasitic power consumption, commercial scale

Procedia PDF Downloads 155
3558 Damping Function and Dynamic Simulation of GUPFC Using IC-HS Algorithm

Authors: Galu Papy Yuma

Abstract:

This paper presents a new dynamic simulation of a power system consisting of four machines equipped with the Generalized Unified Power Flow Controller (GUPFC) to improve power system stability. The dynamic simulation of the GUPFC consists of one shunt converter and two series converters based on voltage source converter, and DC link capacitor installed in the power system. MATLAB/Simulink is used to arrange the dynamic simulation of the GUPFC, where the power system is simulated in order to investigate the impact of the controller on power system oscillation damping and to show the simulation program reliability. The Improved Chaotic- Harmony Search (IC-HS) Algorithm is used to provide the parameter controller in order to lead-lag compensation design. The results obtained by simulation show that the power system with four machines is suitable for stability analysis. The use of GUPFC and IC-HS Algorithm provides the excellent capability in fast damping of power system oscillations and improve greatly the dynamic stability of the power system.

Keywords: GUPFC, IC-HS algorithm, Matlab/Simulink, damping oscillation

Procedia PDF Downloads 439
3557 Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans

Authors: R. Ziaie Moayed, S. P. Emadoleslami Oskoei, S. D. Beladi Mousavi, A. Taleb Beydokhti

Abstract:

There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.

Keywords: cement replacement, cement slurry, environmental threat, natural pozzolan, silica fume, waste material

Procedia PDF Downloads 123
3556 A Method for Evaluating the Mechanical Stress on Mandibular Advancement Devices

Authors: Tsung-yin Lin, Yi-yu Lee, Ching-hua Hung

Abstract:

Snoring, the lay term for obstructive breathing during sleep, is one of the most prevalent of obnoxious human habits. Loud snoring usually makes others feel noisy and uncomfortable. Snoring also influences the sleep quality of snorers’ bed partners, because of the noise they do not get to sleep easily. Snoring causes the reduce of sleep quality leading to several medical problems, such as excessive daytime sleepiness, high blood pressure, increased risk for cardiovascular disease and cerebral vascular accident, and etc. There are many non-prescription devices offered for sale on the market, but very limited data are available to support a beneficial effect of these devices on snoring and use in treating obstructive sleep apnea (OSA). Mandibular advancement devices (MADs), also termed as the Mandibular reposition devices (MRDs) are removable devices which are worn at night during sleep. Most devices require dental impression, bite registration, and fabrication by a dental laboratory. Those devices are fixed to upper and lower teeth and are adjusted to advance the mandible. The amount of protrusion is adjusted to meet the therapeutic requirements, comfort, and tolerance. Many devices have a fixed degree of advancement. Some are adjustable in a limited degree. This study focuses on the stress analysis of Mandibular Advancement Devices (MADs), which are considered as a standard treatment of snoring that promoted by American Academy of Sleep Medicine (AASM). This paper proposes a new MAD design, and the finite element analysis (FEA) is introduced to precede the stress simulation for this MAD.

Keywords: finite element analysis, mandibular advancement devices, mechanical stress, snoring

Procedia PDF Downloads 352
3555 Morphological, Mechanical, and Tribological Properties Investigations of CMTed Parts of Al-5356 Alloy

Authors: Antar Bouhank, Youcef Beellal, Samir Adjel, Abdelmadjid Ababsa

Abstract:

This paper investigates the impact of 3D printing parameters using the cold metal transfer (CMT) technique on the morphological, mechanical, and tribological properties of walls and massive parts made from aluminum alloy. The parameters studied include current intensity, torch movement speed, printing increment, and the flow rate of shielding gas. The manufactured parts, using the technique mentioned above, are walls and massive parts with different filling strategies, using grid and zigzag patterns and at different current intensities. The main goal of the article is to find out the welding parameters suitable for having parts with low defects and improved properties from the previously mentioned properties point of view. It has been observed from the results thus obtained that the high current intensity causes rapid solidification, resulting in high porosity and low hardness values. However, the high current intensity can cause very rapid solidification, which increases the melting point, and the part remains in the most stable shape. Furthermore, the results show that there is an evident relationship between hardness, coefficient of friction and wear test where the high intensity is, the low hardness is. The same note is for the coefficient of friction. The micrography of the walls shows a random granular structure with fine grain boundaries with a different grain size. Some interesting results are presented in this paper.

Keywords: aluminum alloy, porosity, microstructures, hardness

Procedia PDF Downloads 24
3554 Software-Defined Networks in Utility Power Networks

Authors: Ava Salmanpour, Hanieh Saeedi, Payam Rouhi, Elahe Hamzeil, Shima Alimohammadi, Siamak Hossein Khalaj, Mohammad Asadian

Abstract:

Software-defined network (SDN) is a network architecture designed to control network using software application in a central manner. This ability enables remote control of the whole network regardless of the network technology. In fact, in this architecture network intelligence is separated from physical infrastructure, it means that required network components can be implemented virtually using software applications. Today, power networks are characterized by a high range of complexity with a large number of intelligent devices, processing both huge amounts of data and important information. Therefore, reliable and secure communication networks are required. SDNs are the best choice to meet this issue. In this paper, SDN networks capabilities and characteristics will be reviewed and different basic controllers will be compared. The importance of using SDNs to escalate efficiency and reliability in utility power networks is going to be discussed and the comparison between the SDN-based power networks and traditional networks will be explained.

Keywords: software-defined network, SDNs, utility network, open flow, communication, gas and electricity, controller

Procedia PDF Downloads 100
3553 Microstructural Characterization of Creep Damage Evolution in Welded Inconel 600 Superalloy

Authors: Lourdes Yareth Herrera-Chavez, Alberto Ruiz, Victor H. Lopez

Abstract:

Superalloys are used in components that operate at high temperatures such as pressure vessels and heat exchanger tubing. Design standards for these components must consider creep resistance among other criteria. Fusion welding processes are commonly used in the industry to join such components. Fusion processes commonly generate three distinctive zones, i.e. heat affected zone (HAZ), namely weld metal (WM) and base metal (BM). In nickel-based superalloy, the microstructure developed during fusion welding dictates the mechanical response of the welded component and it is very important to establish these effects in the mechanical response of the component. In this work, two plates of Inconel 600 superalloy were Gas Metal Arc Welded (GMAW). Creep samples were cut and milled to specifications and creep tested at a temperature (650 °C) using stress level of 350, 300, 275, 250 and 200 MPa. Microstructural analysis results showed a progressive creep damage evolution that depends on the stress levels with a preferential accumulation of creep damage at the heat affected zone where the creep rupture preferentially occurs owing to an austenitic matrix with grain boundary precipitated of the type Cr23C6. The fractured surfaces showed dimple patterns of cavity and voids. Results indicated that the damage mechanism is due to cavity growth by the combined effect of the power law and diffusion creep.

Keywords: austenitic microstructure, creep damage evolution, heat affected zone, vickers microhardness

Procedia PDF Downloads 196
3552 Electrochemical APEX for Genotyping MYH7 Gene: A Low Cost Strategy for Minisequencing of Disease Causing Mutations

Authors: Ahmed M. Debela, Mayreli Ortiz , Ciara K. O´Sullivan

Abstract:

The completion of the human genome Project (HGP) has paved the way for mapping the diversity in the overall genome sequence which helps to understand the genetic causes of inherited diseases and susceptibility to drugs or environmental toxins. Arrayed primer extension (APEX) is a microarray based minisequencing strategy for screening disease causing mutations. It is derived from Sanger DNA sequencing and uses fluorescently dideoxynucleotides (ddNTPs) for termination of a growing DNA strand from a primer with its 3´- end designed immediately upstream of a site where single nucleotide polymorphism (SNP) occurs. The use of DNA polymerase offers a very high accuracy and specificity to APEX which in turn happens to be a method of choice for multiplex SNP detection. Coupling the high specificity of this method with the high sensitivity, low cost and compatibility for miniaturization of electrochemical techniques would offer an excellent platform for detection of mutation as well as sequencing of DNA templates. We are developing an electrochemical APEX for the analysis of SNPs found in the MYH7 gene for group of cardiomyopathy patients. ddNTPs were labeled with four different redox active compounds with four distinct potentials. Thiolated oligonucleotide probes were immobilised on gold and glassy carbon substrates which are followed by hybridisation with complementary target DNA just adjacent to the base to be extended by polymerase. Electrochemical interrogation was performed after the incorporation of the redox labelled dedioxynucleotide. The work involved the synthesis and characterisation of the redox labelled ddNTPs, optimisation and characterisation of surface functionalisation strategies and the nucleotide incorporation assays.

Keywords: array based primer extension, labelled ddNTPs, electrochemical, mutations

Procedia PDF Downloads 237
3551 Wireless Based System for Continuous Electrocardiography Monitoring during Surgery

Authors: K. Bensafia, A. Mansour, G. Le Maillot, B. Clement, O. Reynet, P. Ariès, S. Haddab

Abstract:

This paper presents a system designed for wireless acquisition, the recording of electrocardiogram (ECG) signals and the monitoring of the heart’s health during surgery. This wireless recording system allows us to visualize and monitor the state of the heart’s health during a surgery, even if the patient is moved from the operating theater to post anesthesia care unit. The acquired signal is transmitted via a Bluetooth unit to a PC where the data are displayed, stored and processed. To test the reliability of our system, a comparison between ECG signals processed by a conventional ECG monitoring system (Datex-Ohmeda) and by our wireless system is made. The comparison is based on the shape of the ECG signal, the duration of the QRS complex, the P and T waves, as well as the position of the ST segments with respect to the isoelectric line. The proposed system is presented and discussed. The results have confirmed that the use of Bluetooth during surgery does not affect the devices used and vice versa. Pre- and post-processing steps are briefly discussed. Experimental results are also provided.

Keywords: electrocardiography, monitoring, surgery, wireless system

Procedia PDF Downloads 361
3550 Constructivism Learning Management in Mathematics Analysis Courses

Authors: Komon Paisal

Abstract:

The purposes of this research were (1) to create a learning activity for constructivism, (2) study the Mathematical Analysis courses learning achievement, and (3) study students’ attitude toward the learning activity for constructivism. The samples in this study were divided into 2 parts including 3 Mathematical Analysis courses instructors of Suan Sunandha Rajabhat University who provided basic information and attended the seminar and 17 Mathematical Analysis courses students who were studying in the academic and engaging in the learning activity for constructivism. The research instruments were lesson plans constructivism, subjective Mathematical Analysis courses achievement test with reliability index of 0.8119, and an attitude test concerning the students’ attitude toward the Mathematical Analysis courses learning activity for constructivism. The result of the research show that the efficiency of the Mathematical Analysis courses learning activity for constructivism is 73.05/72.16, which is more than expected criteria of 70/70. The research additionally find that the average score of learning achievement of students who engaged in the learning activities for constructivism are equal to 70% and the students’ attitude toward the learning activity for constructivism are at the medium level.

Keywords: constructivism, learning management, mathematics analysis courses, learning activity

Procedia PDF Downloads 524
3549 An Integrated Cloud Service of Application Delivery in Virtualized Environments

Authors: Shuen-Tai Wang, Yu-Ching Lin, Hsi-Ya Chang

Abstract:

Virtualization technologies are experiencing a renewed interest as a way to improve system reliability, and availability, reduce costs, and provide flexibility. This paper presents the development on leverage existing cloud infrastructure and virtualization tools. We adopted some virtualization technologies which improve portability, manageability and compatibility of applications by encapsulating them from the underlying operating system on which they are executed. Given the development of application virtualization, it allows shifting the user’s applications from the traditional PC environment to the virtualized environment, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. Users no longer need to burden the platform maintenance and drastically reduces the overall cost of hardware and software licenses. Moreover, this flexible and web-based application virtualization service represent the next significant step to the mobile workplace, and it lets user executes their applications from virtually anywhere.

Keywords: cloud service, application virtualization, virtual machine, elastic environment

Procedia PDF Downloads 275
3548 Multi-Criteria Evaluation of Integrated Renewable Energy Systems for Community-Scale Applications

Authors: Kuanrong Qiu, Sebnem Madrali, Evgueniy Entchev

Abstract:

To achieve the satisfactory objectives in deploying integrated renewable energy systems, it is crucial to consider all the related parameters affecting the design and decision-making. The multi-criteria evaluation method is a reliable and efficient tool for achieving the most appropriate solution. The approach considers the influential factors and their relative importance in prioritizing the alternatives. In this paper, a multi-criteria decision framework, based on the criteria including technical, economic, environmental and reliability, is developed to evaluate and prioritize renewable energy technologies and configurations of their integrated systems for community applications, identify their viability, and thus support the adoption of the clean energy technologies and the decision-making regarding energy transitions and transition patterns. Case studies for communities in Canada show that resource availability and the configurations of the integrated systems significantly impact the economic performance and environmental performance.

Keywords: multi-criteria, renewables, integrated energy systems, decision-making, model

Procedia PDF Downloads 80
3547 Influence of Titanium Oxide on Crystallization, Microstructure and Mechanical Behavior of Barium Fluormica Glass-Ceramics

Authors: Amit Mallik, Anil K. Barik, Biswajit Pal

Abstract:

The galloping advancement of research work on glass-ceramics stems from their wide applications in electronic industry and also to some extent in application oriented medical dentistry. TiO2, even in low concentration has been found to strongly influence the physical and mechanical properties of the glasses. Glass-ceramics is a polycrystalline ceramic material produced through controlled crystallization of glasses. Crystallization is accomplished by subjecting the suitable parent glasses to a regulated heat treatment involving the nucleation and growth of crystal phases in the glass. Mica glass-ceramics is a new kind of glass-ceramics based on the system SiO2•MgO•K2O•F. The predominant crystalline phase is synthetic fluormica, named fluorophlogopite. Mica containing glass-ceramics flaunt an exceptional feature of machinability apart from their unique thermal and chemical properties. Machinability arises from the randomly oriented mica crystals with a 'house of cards' microstructures allowing cracks to propagate readily along the mica plane but hindering crack propagation across the layers. In the present study, we have systematically investigated the crystallization, microstructure and mechanical behavior of barium fluorophlogopite mica-containing glass-ceramics of composition BaO•4MgO•Al2O3•6SiO2•2MgF2 nucleated by addition of 2, 4, 6 and 8 wt% TiO2. The glass samples were prepared by the melting technique. After annealing, different batches of glass samples for nucleation were fired at 730°C (2wt% TiO2), 720°C (4 wt% TiO2), 710°C (6 wt% TiO2) and 700°C (8 wt% TiO2) batches respectively for 2 h and ultimately heated to corresponding crystallization temperatures. The glass batches were analyzed by differential thermal analysis (DTA) and x-ray diffraction (XRD), scanning electron microscopy (SEM) and micro hardness indenter. From the DTA study, it is found that the fluorophlogopite mica crystallization exotherm appeared in the temperature range 886–903°C. Glass transition temperature (Tg) and crystallization peak temperature (Tp) increased with increasing TiO2 content up to 4 wt% beyond this weight% the glass transition temperature (Tg) and crystallization peak temperature (Tp) start to decrease with increasing TiO2 content up to 8 wt%. Scanning electron microscopy confirms the development of an interconnected ‘house of cards’ microstructure promoted by TiO2 as a nucleating agent. The increase in TiO2 content decreases the vicker’s hardness values in glass-ceramics.

Keywords: crystallization, fluormica glass, ‘house of cards’ microstructure, hardness

Procedia PDF Downloads 234
3546 Seismic Fragility Curves for Shallow Circular Tunnels under Different Soil Conditions

Authors: Siti Khadijah Che Osmi, Syed Mohd Ahmad

Abstract:

This paper presents a methodology to develop fragility curves for shallow tunnels so as to describe a relationship between seismic hazard and tunnel vulnerability. Emphasis is given to the influence of surrounding soil material properties because the dynamic behaviour of the tunnel mostly depends on it. Four ground properties of soils ranging from stiff to soft soils are selected. A 3D nonlinear time history analysis is used to evaluate the seismic response of the tunnel when subjected to five real earthquake ground intensities. The derived curves show the future probabilistic performance of the tunnels based on the predicted level of damage states corresponding to the peak ground acceleration. A comparison of the obtained results with the previous literature is provided to validate the reliability of the proposed fragility curves. Results show the significant role of soil properties and input motions in evaluating the seismic performance and response of shallow tunnels.

Keywords: fragility analysis, seismic performance, tunnel lining, vulnerability

Procedia PDF Downloads 307
3545 Optimization of Friction Stir Welding Parameters for Joining Aluminium Alloys using Response Surface Methodology and Artificial Neural Network

Authors: A. M. Khourshid, A. M. El-Kassas, I. Sabry

Abstract:

The objective of this work was to investigate the mechanical properties in order to demonstrate the feasibility of friction stir welding for joining Al 6061 aluminium alloys. Welding was performed on pipe with different thickness (2, 3 and 4 mm), five rotational speeds (485, 710, 910, 1120 and 1400 rpm) and a traverse speed of 4mm/min. This work focuses on two methods which are artificial neural networks using software and Response Surface Methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminium alloy. An Artificial Neural Network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. Tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters tool rotation speed, material thickness and axial force as a function. A comparison was made between measured and predicted data. Response Surface Methodology (RSM) was also developed and the values obtained for the response tensile strength, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameters on mechanical properties of 6061 aluminium alloy has been analysed in detail.

Keywords: friction stir welding, aluminium alloy, response surface methodology, artificial neural network

Procedia PDF Downloads 280
3544 Glutharaldyde Free Processing of Patch for Cardiovascular Repair Is Associated with Improved Outcomes on Rvot Repair, Rat Model

Authors: Parnaz Boodagh, Danila Vella, Antonio Damore, Laura Modica De Mohac, Sang-Ho Ye, Garret Coyan, Gaetano Burriesci, William Wagner, Federica Cosentino

Abstract:

The use of cardiac patches is among the main therapeutic solution for cardiovascular diseases, a leading mortality cause in the world with an increasing trend, responsible of 19 millions deaths in 2020. Several classes of biomaterials serve that purpose, both of synthetic origin and biological derivation, and many bioengineered treatment alternatives were proposed to satisfy two main requirements, providing structural support and promoting tissue remodeling. The objective of this paper is to compare the mechanical properties and the characterization of four cardiac patches: the Adeka, PhotoFix, CorPatch, and CardioCel patches. In vitro and in vivo tests included: biaxial, uniaxial, ball burst, suture retention for mechanical characterization; 2D surface topography, 3D volume and microstructure, and histology assessments for structure characterization; in vitro test to evaluate platelet deposition, calcium deposition, and macrophage polarization; rat right ventricular outflow tract (RVOT) models at 8- and 16-week time points to characterize the patch-host interaction. Lastly, the four patches were used to produce four stented aortic valve prosthesis, subjected to hydrodynamic assessment as well as durability testing to verify compliance with the standard ISO.

Keywords: cardiac patch, cardiovascular disease, cardiac repair, blood contact biomaterial

Procedia PDF Downloads 138
3543 Assessing Measures and Caregiving Experiences of Thai Caregivers of Persons with Dementia

Authors: Piyaorn Wajanatinapart, Diane R. Lauver

Abstract:

The number of persons with dementia (PWD) has increased. Informal caregivers are the major providing care. They can have perceived gains and burdens. Caregivers who reported high in perceived gains may report low in burdens and better health. Gaps of caregiving literature were: no report psychometrics in a few studies and unclear definitions of gains; most studies with no theory-guided and conducting in Western countries; not fully described relationships among caregiving variables: motivations, satisfaction with psychological needs, social support, gains, burdens, and physical and psycho-emotional health. Those gaps were filled by assessing psychometric properties of selected measures, providing clearly definitions of gains, using self-determination theory (SDT) to guide the study, and developing the study in Thailand. The study purposes were to evaluate six measures for internal consistency reliability, content validity, and construct validity. This study also examined relationships of caregiving variables: motivations (controlled and autonomous motivations), satisfaction with psychological needs (autonomy, competency, and relatedness), perceived social support, perceived gains, perceived burdens, and physical and psycho-emotional health. This study was a cross-sectional and correlational descriptive design with two convenience samples. Sample 1 was five Thai experts to assess content validity of measures. Sample 2 was 146 Thai caregivers of PWD to assess construct validity, reliability, and relationships among caregiving variables. Experts rated questionnaires and sent them back via e-mail. Caregivers answered questionnaires at clinics of four Thai hospitals. Data analysis was used descriptive statistics and bivariate and multivariate analyses using the composite indicator structural equation model to control measurement errors. For study results, most caregivers were female (82%), middle age (M =51.1, SD =11.9), and daughters (57%). They provided care for 15 hours/day with 4.6 years. The content validity indices of items and scales were .80 or higher for clarity and relevance. Experts suggested item revisions. Cronbach’s alphas were .63 to .93 of ten subscales of four measures and .26 to .57 of three subscales. The gain scale was acceptable for construct validity. With controlling covariates, controlled motivations, the satisfaction with three subscales of psychological needs, and perceived social support had positive relationships with physical and psycho-emotional health. Both satisfaction with autonomy subscale and perceived social support had negative relationship with perceived burdens. The satisfaction with three subscales of psychological needs had positive relationships among them. Physical and psycho-emotional health subscales had positive relationships with each other. Furthermore, perceived burdens had negative relationships with physical and psycho-emotional health. This study was the first use SDT to describe relationships of caregiving variables in Thailand. Caregivers’ characteristics were consistent with literature. Four measures were valid and reliable except two measures. Breadth knowledge about relationships was provided. Interpretation of study results was cautious because of using same sample to evaluate psychometric properties of measures and relationships of caregiving variables. Researchers could use four measures for further caregiving studies. Using a theory would help describe concepts, propositions, and measures used. Researchers may examine the satisfaction with psychological needs as mediators. Future studies to collect data with caregivers in communities are needed.

Keywords: caregivers, caregiving, dementia, measures

Procedia PDF Downloads 296
3542 Effects of Beeswax Coating on the Properties of Cocoa Bean Shell Based Papers

Authors: Sri Rejeki, Tamrin Tamrin, RH. F. Faradilla, Muhammad N. Ibrahim, Mariana M., Irnawati Irnawati

Abstract:

Cocoa bean shells, despite their antioxidant and antimicrobial properties, are still considered as an underutilized agricultural waste. The functional properties and their lignocelluloses content make cocoa bean shells a potential material for paper-based food packaging. In our previous research, we have successfully produced papers from cocoa bean shells that had antioxidant and antibacterial activities. However, the hydrophilic nature of the lignocelluloses of cocoa bean shells hinders the application of the paper to be used as a food packaging. In this research, we aimed to study the effects of beeswax coating on the wettability and mechanical properties of the paper. The coating was done by dipping the papers in beeswax solution several times and in three different beeswax concentrations. The number of dipping and beeswax concentration significantly (p<0.05) affected the water contact angle of the papers. Results show that the water contact angle increases dramatically due to the coating treatment. The control paper or uncoated paper had a contact angle of 40.50o, while the contact angle of the best-coated paper (D3B3: 3x dipping, 3g/10mL beeswax) reached 96.93o. Both tensile strength and percent elongation were not significantly (p>0.05) affected by the coating treatment. This showed that beeswax was a potential organic material to improve the hydrophobicity of paper from cocoa bean shells without any undesirable effects on the mechanical properties of the paper.

Keywords: cocoa bean shell, paper, beeswax, coating, contact angle

Procedia PDF Downloads 140
3541 Fabrication Characteristics and Mechanical Behaviour of Fly Ash-Alumina Reinforced Zn-27Al Alloy Matrix Hybrid Composite Using Stir-Casting Technique

Authors: Oluwagbenga B. Fatile, Felix U. Idu, Olajide T. Sanya

Abstract:

This paper reports the viability of developing Zn-27Al alloy matrix hybrid composites reinforced with alumina, graphite and fly ash (a solid waste byproduct of coal in thermal power plants). This research work was aimed at developing low cost-high performance Zn-27Al matrix composite with low density. Alumina particulates (Al2O3), graphite added with 0, 2, 3, 4, and 5 wt% fly ash were utilized to prepare 10wt% reinforcing phase with Zn-27Al alloy as matrix using two-step stir casting method. Density measurement estimated percentage porosity, tensile testing, micro hardness measurement, and optical microscopy were used to assess the performance of the composites produced. The results show that the hardness, ultimate tensile strength, and percent elongation of the hybrid composites decrease with increase in fly ash content. The maximum decrease in hardness and ultimate tensile strength of 13.72% and 15.25% respectively were observed for composite grade containing 5wt% fly ash. The percentage elongation of composite sample without fly ash is 8.9% which is comparable with that of the sample containing 2wt% fly ash with percentage elongation of 8.8%. The fracture toughness of the fly ash containing composites was, however, superior to those of composites without fly ash with 5wt% fly ash containing composite exhibiting the highest fracture toughness. The results show that fly ash can be utilized as complementary reinforcement in ZA-27 alloy matrix composite to reduce cost.

Keywords: fly ash, hybrid composite, mechanical behaviour, stir-cast

Procedia PDF Downloads 328