Search results for: lean tools and techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10467

Search results for: lean tools and techniques

7947 A Comparative Study of Medical Image Segmentation Methods for Tumor Detection

Authors: Mayssa Bensalah, Atef Boujelben, Mouna Baklouti, Mohamed Abid

Abstract:

Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images.

Keywords: features extraction, image segmentation, medical images, tumor detection

Procedia PDF Downloads 171
7946 A Comparison and Discussion of Modern Anaesthetic Techniques in Elective Lower Limb Arthroplasties

Authors: P. T. Collett, M. Kershaw

Abstract:

Introduction: The discussion regarding which method of anesthesia provides better results for lower limb arthroplasty is a continuing debate. Multiple meta-analysis has been performed with no clear consensus. The current recommendation is to use neuraxial anesthesia for lower limb arthroplasty; however, the evidence to support this decision is weak. The Enhanced Recovery After Surgery (ERAS) society has recommended, either technique can be used as part of a multimodal anesthetic regimen. A local study was performed to see if the current anesthetic practice correlates with the current recommendations and to evaluate the efficacy of the different techniques utilized. Method: 90 patients who underwent total hip or total knee replacements at Nevill Hall Hospital between February 2019 to July 2019 were reviewed. Data collected included the anesthetic technique, day one opiate use, pain score, and length of stay. The data was collected from anesthetic charts, and the pain team follows up forms. Analysis: The average of patients undergoing lower limb arthroplasty was 70. Of those 83% (n=75) received a spinal anaesthetic and 17% (n=15) received a general anaesthetic. For patients undergoing knee replacement under general anesthetic the average day, one pain score was 2.29 and 1.94 if a spinal anesthetic was performed. For hip replacements, the scores were 1.87 and 1.8, respectively. There was no statistical significance between these scores. Day 1 opiate usage was significantly higher in knee replacement patients who were given a general anesthetic (45.7mg IV morphine equivalent) vs. those who were operated on under spinal anesthetic (19.7mg). This difference was not noticeable in hip replacement patients. There was no significant difference in length of stay between the two anesthetic techniques. Discussion: There was no significant difference in the day one pain score between the patients who received a general or spinal anesthetic for either knee or hip replacements. The higher pain scores in the knee replacement group overall are consistent with this being a more painful procedure. This is a small patient population, which means any difference between the two groups is unlikely to be representative of a larger population. The pain scale has 4 points, which means it is difficult to identify a significant difference between pain scores. Conclusion: There is currently little standardization between the different anesthetic approaches utilized in Nevill Hall Hospital. This is likely due to the lack of adherence to a standardized anesthetic regimen. In accordance with ERAS recommends a standard anesthetic protocol is a core component. The results of this study and the guidance from the ERAS society will support the implementation of a new health board wide ERAS protocol.

Keywords: anaesthesia, orthopaedics, intensive care, patient centered decision making, treatment escalation

Procedia PDF Downloads 131
7945 Life Expansion: Autobiography, Ficctionalized Digital Diaries and Forged Narratives of Everyday Life on Instagram

Authors: Pablo M. S. Vallejos

Abstract:

The article aims to analyze the autobiographical practices of users on Instagram, observing the instrumentalization of image resources in the construction of visual narratives that make up that archive and digital diary. Through bibliographical review, discourse exploration and case studies, the research also aims to present a new theoretical perception about everyday records - edited with a collage of filters and aesthetic tools - that permeate that social network, understanding it as a platform fictionalizing and an expansion of life. In this way, therefore, the work reflects on possible futures in the elaboration of representations and identities in the context of digital spaces in the 21st century.

Keywords: visual culture, social media, autobiography, image

Procedia PDF Downloads 84
7944 The Composting Process from a Waste Management Method to a Remediation Procedure

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, F. Gorini, I. Rosellini, B. Pezzarossa

Abstract:

Composting is a controlled technology to enhance the natural aerobic process of organic wastes degradation. The resulting product is a humified material that is principally recyclable for agricultural purpose. The composting process is one of the most important tools for waste management, by the European Community legislation. In recent years composting has been increasingly used as a remediation technology to remove biodegradable contaminants from soil, and to modulate heavy metals bioavailability in phytoremediation strategies. An optimization in the recovery of resources from wastes through composting could enhance soil fertility and promote its use in the remediation biotechnologies of contaminated soils.

Keywords: agriculture, biopile, compost, soil clean-up, waste recycling

Procedia PDF Downloads 314
7943 Using Visualization Techniques to Support Common Clinical Tasks in Clinical Documentation

Authors: Jonah Kenei, Elisha Opiyo

Abstract:

Electronic health records, as a repository of patient information, is nowadays the most commonly used technology to record, store and review patient clinical records and perform other clinical tasks. However, the accurate identification and retrieval of relevant information from clinical records is a difficult task due to the unstructured nature of clinical documents, characterized in particular by a lack of clear structure. Therefore, medical practice is facing a challenge thanks to the rapid growth of health information in electronic health records (EHRs), mostly in narrative text form. As a result, it's becoming important to effectively manage the growing amount of data for a single patient. As a result, there is currently a requirement to visualize electronic health records (EHRs) in a way that aids physicians in clinical tasks and medical decision-making. Leveraging text visualization techniques to unstructured clinical narrative texts is a new area of research that aims to provide better information extraction and retrieval to support clinical decision support in scenarios where data generated continues to grow. Clinical datasets in electronic health records (EHR) offer a lot of potential for training accurate statistical models to classify facets of information which can then be used to improve patient care and outcomes. However, in many clinical note datasets, the unstructured nature of clinical texts is a common problem. This paper examines the very issue of getting raw clinical texts and mapping them into meaningful structures that can support healthcare professionals utilizing narrative texts. Our work is the result of a collaborative design process that was aided by empirical data collected through formal usability testing.

Keywords: classification, electronic health records, narrative texts, visualization

Procedia PDF Downloads 122
7942 Consumer Behavior and Attitudes of Green Advertising: A Collaborative Study with Three Companies to Educate Consumers

Authors: Mokhlisur Rahman

Abstract:

Consumers' understanding of the products depends on what levels of information the advertisement contains. Consumers' attitudes vary widely depending on factors such as their level of environmental awareness, their perception of the company's motives, and the perceived effectiveness of the advertising campaign. Considering the growing eco-consciousness among consumers and their concern for the environment, strategies for green advertising have become equally significant for companies to attract new consumers. It is important to understand consumers' habits of purchasing, knowledge, and attitudes regarding eco-friendly products depending on promotion because of the limitless options of the products in the market. Additionally, encouraging consumers to buy sustainable products requires a platform that can message the world that being a stakeholder in sustainability is possible if consumers show eco-friendly behavior on a larger scale. Social media platforms provide an excellent atmosphere to promote companies' sustainable efforts to be connected engagingly with their potential consumers. The unique strategies of green advertising use techniques to carry information and rewards for the consumers. This study aims to understand the consumer behavior and effectiveness of green advertising by experimenting in collaboration with three companies in promoting their eco-friendly products using green designs on the products. The experiment uses three sustainable personalized offerings, Nike shoes, H&M t-shirts, and Patagonia school bags. The experiment uses a pretest and posttest design. 300 randomly selected participants take part in this experiment and survey through Facebook, Twitter, and Instagram. Nike, H&M, and Patagonia share the post of the experiment on their social media homepages with a video advertisement for the three products. The consumers participate in a pre-experiment online survey before making a purchase decision to assess their attitudes and behavior toward eco-friendly products. The audio-only feature explains the product's information, like their use of recycled materials, their manufacturing methods, sustainable packaging, and their impact on the environment during the purchase while the consumer watches the product video. After making a purchase, consumers take a post-experiment survey to know their perception and behavior toward eco-friendly products. For the data analysis, descriptive statistical tools mean, standard deviation, and frequencies measure the pre- and post-experiment survey data. The inferential statistical tool paired sample t-test measures the difference in consumers' behavior and attitudes between pre-purchase and post-experiment survey results. This experiment provides consumers ample time to consider many aspects rather than impulses. This research provides valuable insights into how companies can adopt sustainable and eco-friendly products. The result set a target for the companies to achieve a sustainable production goal that ultimately supports companies' profit-making and promotes consumers' well-being. This empowers consumers to make informed choices about the products they purchase and support their companies of interest.

Keywords: green-advertising, sustainability, consumer-behavior, social media

Procedia PDF Downloads 91
7941 Variables, Annotation, and Metadata Schemas for Early Modern Greek

Authors: Eleni Karantzola, Athanasios Karasimos, Vasiliki Makri, Ioanna Skouvara

Abstract:

Historical linguistics unveils the historical depth of languages and traces variation and change by analyzing linguistic variables over time. This field of linguistics usually deals with a closed data set that can only be expanded by the (re)discovery of previously unknown manuscripts or editions. In some cases, it is possible to use (almost) the entire closed corpus of a language for research, as is the case with the Thesaurus Linguae Graecae digital library for Ancient Greek, which contains most of the extant ancient Greek literature. However, concerning ‘dynamic’ periods when the production and circulation of texts in printed as well as manuscript form have not been fully mapped, representative samples and corpora of texts are needed. Such material and tools are utterly lacking for Early Modern Greek (16th-18th c.). In this study, the principles of the creation of EMoGReC, a pilot representative corpus of Early Modern Greek (16th-18th c.) are presented. Its design follows the fundamental principles of historical corpora. The selection of texts aims to create a representative and balanced corpus that gives insight into diachronic, diatopic and diaphasic variation. The pilot sample includes data derived from fully machine-readable vernacular texts, which belong to 4-5 different textual genres and come from different geographical areas. We develop a hierarchical linguistic annotation scheme, further customized to fit the characteristics of our text corpus. Regarding variables and their variants, we use as a point of departure the bundle of twenty-four features (or categories of features) for prose demotic texts of the 16th c. Tags are introduced bearing the variants [+old/archaic] or [+novel/vernacular]. On the other hand, further phenomena that are underway (cf. The Cambridge Grammar of Medieval and Early Modern Greek) are selected for tagging. The annotated texts are enriched with metalinguistic and sociolinguistic metadata to provide a testbed for the development of the first comprehensive set of tools for the Greek language of that period. Based on a relational management system with interconnection of data, annotations, and their metadata, the EMoGReC database aspires to join a state-of-the-art technological ecosystem for the research of observed language variation and change using advanced computational approaches.

Keywords: early modern Greek, variation and change, representative corpus, diachronic variables.

Procedia PDF Downloads 72
7940 Assessment of Work-Related Stress and Its Predictors in Ethiopian Federal Bureau of Investigation in Addis Ababa

Authors: Zelalem Markos Borko

Abstract:

Work-related stress is a reaction that occurs when the work weight progress toward becoming excessive. Therefore, unless properly managed, stress leads to high employee turnover, decreased performance, illness and absenteeism. Yet, little has been addressed regarding work-related stress and its predictors in the study area. Therefore, the objective of this study was to assess stress prevalence and its predictors in the study area. To that effect, a cross-sectional study design was conducted on 281 employees from the Ethiopian Federal Bureau of Investigation by using stratified random sampling techniques. Survey questionnaire scales were employed to collect data. Data were analyzed by percentage, Pearson correlation coefficients, simple linear regression, multiple linear regressions, independent t-test and one-way ANOVA statistical techniques. In the present study13.9% of participants faced high stress, whereas 13.5% of participants faced low stress and the rest 72.6% of officers experienced moderate stress. There is no significant group difference among workers due to age, gender, marital status, educational level, years of service and police rank. This study concludes that factors such as role conflict, performance over-utilization, role ambiguity, and qualitative and quantitative role overload together predict 39.6% of work-related stress. This indicates that 60.4% of the variation in stress is explained by other factors, so other additional research should be done to identify additional factors predicting stress. To prevent occupational stress among police, the Ethiopian Federal Bureau of Investigation should develop strategies based on factors that will help to develop stress reduction management.

Keywords: work-related stress, Ethiopian federal bureau of investigation, predictors, Addis Ababa

Procedia PDF Downloads 77
7939 Characterization and Monitoring of the Yarn Faults Using Diametric Fault System

Authors: S. M. Ishtiaque, V. K. Yadav, S. D. Joshi, J. K. Chatterjee

Abstract:

The DIAMETRIC FAULTS system has been developed that captures a bi-directional image of yarn continuously in sequentially manner and provides the detailed classification of faults. A novel mathematical framework developed on the acquired bi-directional images forms the basis of fault classification in four broad categories, namely, Thick1, Thick2, Thin and Normal Yarn. A discretised version of Radon transformation has been used to convert the bi-directional images into one-dimensional signals. Images were divided into training and test sample sets. Karhunen–Loève Transformation (KLT) basis is computed for the signals from the images in training set for each fault class taking top six highest energy eigen vectors. The fault class of the test image is identified by taking the Euclidean distance of its signal from its projection on the KLT basis for each sample realization and fault class in the training set. Euclidean distance applied using various techniques is used for classifying an unknown fault class. An accuracy of about 90% is achieved in detecting the correct fault class using the various techniques. The four broad fault classes were further sub classified in four sub groups based on the user set boundary limits for fault length and fault volume. The fault cross-sectional area and the fault length defines the total volume of fault. A distinct distribution of faults is found in terms of their volume and physical dimensions which can be used for monitoring the yarn faults. It has been shown from the configurational based characterization and classification that the spun yarn faults arising out of mass variation, exhibit distinct characteristics in terms of their contours, sizes and shapes apart from their frequency of occurrences.

Keywords: Euclidean distance, fault classification, KLT, Radon Transform

Procedia PDF Downloads 267
7938 Anthropometric Profile and Its Influence on the Vital Signs of Baja California College Students

Authors: J. A. Lopez, J. E. Olguin, C. Camargo, G. A. Quijano, R. Martinez

Abstract:

An anthropometric study applied to 1,115 students of the Faculty of Chemical Sciences and Engineering of the Autonomous University of California. Thirteen individual measurements were taken in a sitting position. The results obtained allow forming a reliable anthropometric database for statistical studies and analysis and inferences of specific distributions, so the opinion of experts in occupational medicine recommendations may emit to reduce risks resulting in an alteration of the vital signs during the execution of their school activities. Another use of these analyses is to use them as a reliable reference for future deeper research, to the design of spaces, tools, utensils, workstations, with anthropometric dimensions and ergonomic characteristics suitable to use.

Keywords: anthropometry, vital signs, students, medicine

Procedia PDF Downloads 388
7937 Corpora in Secondary Schools Training Courses for English as a Foreign Language Teachers

Authors: Francesca Perri

Abstract:

This paper describes a proposal for a teachers’ training course, focused on the introduction of corpora in the EFL didactics (English as a foreign language) of some Italian secondary schools. The training course is conceived as a part of a TEDD participant’s five months internship. TEDD (Technologies for Education: diversity and devices) is an advanced course held by the Department of Engineering and Information Technology at the University of Trento, Italy. Its main aim is to train a selected, heterogeneous group of graduates to engage with the complex interdependence between education and technology in modern society. The educational approach draws on a plural coexistence of various theories as well as socio-constructivism, constructionism, project-based learning and connectivism. TEDD educational model stands as the main reference source to the design of a formative course for EFL teachers, drawing on the digitalization of didactics and creation of learning interactive materials for L2 intermediate students. The training course lasts ten hours, organized into five sessions. In the first part (first and second session) a series of guided and semi-guided activities drive participants to familiarize with corpora through the use of a digital tools kit. Then, during the second part, participants are specifically involved in the realization of a ML (Mistakes Laboratory) where they create, develop and share digital activities according to their teaching goals with the use of corpora, supported by the digital facilitator. The training course takes place into an ICT laboratory where the teachers work either individually or in pairs, with a computer connected to a wi-fi connection, while the digital facilitator shares inputs, materials and digital assistance simultaneously on a whiteboard and on a digital platform where participants interact and work together both synchronically and diachronically. The adoption of good ICT practices is a fundamental step to promote the introduction and use of Corpus Linguistics in EFL teaching and learning processes, in fact dealing with corpora not only promotes L2 learners’ critical thinking and orienteering versus wild browsing when they are looking for ready-made translations or language usage samples, but it also entails becoming confident with digital tools and activities. The paper will explain reasons, limits and resources of the pedagogical approach adopted to engage EFL teachers with the use of corpora in their didactics through the promotion of digital practices.

Keywords: digital didactics, education, language learning, teacher training

Procedia PDF Downloads 156
7936 Utilization of Standard Paediatric Observation Chart to Evaluate Infants under Six Months Presenting with Non-Specific Complaints

Authors: Michael Zhang, Nicholas Marriage, Valerie Astle, Marie-Louise Ratican, Jonathan Ash, Haddijatou Hughes

Abstract:

Objective: Young infants are often brought to the Emergency Department (ED) with a variety of complaints, some of them are non-specific and present as a diagnostic challenge to the attending clinician. Whilst invasive investigations such as blood tests and lumbar puncture are necessary in some cases to exclude serious infections, some basic clinical tools in additional to thorough clinical history can be useful to assess the risks of serious conditions in these young infants. This study aimed to examine the utilization of one of clinical tools in this regard. Methods: This retrospective observational study examined the medical records of infants under 6 months presenting to a mixed urban ED between January 2013 and December 2014. The infants deemed to have non-specific complaints or diagnoses by the emergency clinicians were selected for analysis. The ones with clear systemic diagnoses were excluded. Among all relevant clinical information and investigation results, utilization of Standard Paediatric Observation Chart (SPOC) was particularly scrutinized in these medical records. This specific chart was developed by the expert clinicians in local health department. It categorizes important clinical signs into some color-coded zones as a visual cue for serious implication of some abnormalities. An infant is regarded as SPOC positive when fulfills 1 red zone or 2 yellow zones criteria, and the attending clinician would be prompted to investigate and treat for potential serious conditions accordingly. Results: Eight hundred and thirty-five infants met the inclusion criteria for this project. The ones admitted to the hospital for further management were more likely to have SPOC positive criteria than the discharged infants (Odds ratio: 12.26, 95% CI: 8.04 – 18.69). Similarly, Sepsis alert criteria on SPOC were positive in a higher percentage of patients with serious infections (56.52%) in comparison to those with mild conditions (15.89%) (p < 0.001). The SPOC sepsis criteria had a sensitivity of 56.5% (95% CI: 47.0% - 65.7%) and a moderate specificity of 84.1% (95% CI: 80.8% - 87.0%) to identify serious infections. Applying to this infant population, with a 17.4% prevalence of serious infection, the positive predictive value was only 42.8% (95% CI: 36.9% - 49.0%). However, the negative predictive value was high at 90.2% (95% CI: 88.1% - 91.9%). Conclusions: Standard Paediatric Observation Chart has been applied as a useful clinical tool in the clinical practice to help identify and manage young sick infants in ED effectively.

Keywords: clinical tool, infants, non-specific complaints, Standard Paediatric Observation Chart

Procedia PDF Downloads 255
7935 The Examination of Prospective ICT Teachers’ Attitudes towards Application of Computer Assisted Instruction

Authors: Agâh Tuğrul Korucu, Ismail Fatih Yavuzaslan, Lale Toraman

Abstract:

Nowadays, thanks to development of technology, integration of technology into teaching and learning activities is spreading. Increasing technological literacy which is one of the expected competencies for individuals of 21st century is associated with the effective use of technology in education. The most important factor in effective use of technology in education institutions is ICT teachers. The concept of computer assisted instruction (CAI) refers to the utilization of information and communication technology as a tool aided teachers in order to make education more efficient and improve its quality in the process of educational. Teachers can use computers in different places and times according to owned hardware and software facilities and characteristics of the subject and student in CAI. Analyzing teachers’ use of computers in education is significant because teachers are the ones who manage the course and they are the most important element in comprehending the topic by students. To accomplish computer-assisted instruction efficiently is possible through having positive attitude of teachers. Determination the level of knowledge, attitude and behavior of teachers who get the professional knowledge from educational faculties and elimination of deficiencies if any are crucial when teachers are at the faculty. Therefore, the aim of this paper is to identify ICT teachers' attitudes toward computer-assisted instruction in terms of different variables. Research group consists of 200 prospective ICT teachers studying at Necmettin Erbakan University Ahmet Keleşoğlu Faculty of Education CEIT department. As data collection tool of the study; “personal information form” developed by the researchers and used to collect demographic data and "the attitude scale related to computer-assisted instruction" are used. The scale consists of 20 items. 10 of these items show positive feature, while 10 of them show negative feature. The Kaiser-Meyer-Olkin (KMO) coefficient of the scale is found 0.88 and Barlett test significance value is found 0.000. The Cronbach’s alpha reliability coefficient of the scale is found 0.93. In order to analyze the data collected by data collection tools computer-based statistical software package used; statistical techniques such as descriptive statistics, t-test, and analysis of variance are utilized. It is determined that the attitudes of prospective instructors towards computers do not differ according to their educational branches. On the other hand, the attitudes of prospective instructors who own computers towards computer-supported education are determined higher than those of the prospective instructors who do not own computers. It is established that the departments of students who previously received computer lessons do not affect this situation so much. The result is that; the computer experience affects the attitude point regarding the computer-supported education positively.

Keywords: computer based instruction, teacher candidate, attitude, technology based instruction, information and communication technologies

Procedia PDF Downloads 296
7934 Black-Box-Optimization Approach for High Precision Multi-Axes Forward-Feed Design

Authors: Sebastian Kehne, Alexander Epple, Werner Herfs

Abstract:

A new method for optimal selection of components for multi-axes forward-feed drive systems is proposed in which the choice of motors, gear boxes and ball screw drives is optimized. Essential is here the synchronization of electrical and mechanical frequency behavior of all axes because even advanced controls (like H∞-controls) can only control a small part of the mechanical modes – namely only those of observable and controllable states whose value can be derived from the positions of extern linear length measurement systems and/or rotary encoders on the motor or gear box shafts. Further problems are the unknown processing forces like cutting forces in machine tools during normal operation which make the estimation and control via an observer even more difficult. To start with, the open source Modelica Feed Drive Library which was developed at the Laboratory for Machine Tools, and Production Engineering (WZL) is extended from one axis design to the multi axes design. It is capable to simulate the mechanical, electrical and thermal behavior of permanent magnet synchronous machines with inverters, different gear boxes and ball screw drives in a mechanical system. To keep the calculation time down analytical equations are used for field and torque producing equivalent circuit, heat dissipation and mechanical torque at the shaft. As a first step, a small machine tool with a working area of 635 x 315 x 420 mm is taken apart, and the mechanical transfer behavior is measured with an impulse hammer and acceleration sensors. With the frequency transfer functions, a mechanical finite element model is built up which is reduced with substructure coupling to a mass-damper system which models the most important modes of the axes. The model is modelled with Modelica Feed Drive Library and validated by further relative measurements between machine table and spindle holder with a piezo actor and acceleration sensors. In a next step, the choice of possible components in motor catalogues is limited by derived analytical formulas which are based on well-known metrics to gain effective power and torque of the components. The simulation in Modelica is run with different permanent magnet synchronous motors, gear boxes and ball screw drives from different suppliers. To speed up the optimization different black-box optimization methods (Surrogate-based, gradient-based and evolutionary) are tested on the case. The objective that was chosen is to minimize the integral of the deviations if a step is given on the position controls of the different axes. Small values are good measures for a high dynamic axes. In each iteration (evaluation of one set of components) the control variables are adjusted automatically to have an overshoot less than 1%. It is obtained that the order of the components in optimization problem has a deep impact on the speed of the black-box optimization. An approach to do efficient black-box optimization for multi-axes design is presented in the last part. The authors would like to thank the German Research Foundation DFG for financial support of the project “Optimierung des mechatronischen Entwurfs von mehrachsigen Antriebssystemen (HE 5386/14-1 | 6954/4-1)” (English: Optimization of the Mechatronic Design of Multi-Axes Drive Systems).

Keywords: ball screw drive design, discrete optimization, forward feed drives, gear box design, linear drives, machine tools, motor design, multi-axes design

Procedia PDF Downloads 290
7933 Multi-Label Approach to Facilitate Test Automation Based on Historical Data

Authors: Warda Khan, Remo Lachmann, Adarsh S. Garakahally

Abstract:

The increasing complexity of software and its applicability in a wide range of industries, e.g., automotive, call for enhanced quality assurance techniques. Test automation is one option to tackle the prevailing challenges by supporting test engineers with fast, parallel, and repetitive test executions. A high degree of test automation allows for a shift from mundane (manual) testing tasks to a more analytical assessment of the software under test. However, a high initial investment of test resources is required to establish test automation, which is, in most cases, a limitation to the time constraints provided for quality assurance of complex software systems. Hence, a computer-aided creation of automated test cases is crucial to increase the benefit of test automation. This paper proposes the application of machine learning for the generation of automated test cases. It is based on supervised learning to analyze test specifications and existing test implementations. The analysis facilitates the identification of patterns between test steps and their implementation with test automation components. For the test case generation, this approach exploits historical data of test automation projects. The identified patterns are the foundation to predict the implementation of unknown test case specifications. Based on this support, a test engineer solely has to review and parameterize the test automation components instead of writing them manually, resulting in a significant time reduction for establishing test automation. Compared to other generation approaches, this ML-based solution can handle different writing styles, authors, application domains, and even languages. Furthermore, test automation tools require expert knowledge by means of programming skills, whereas this approach only requires historical data to generate test cases. The proposed solution is evaluated using various multi-label evaluation criteria (EC) and two small-sized real-world systems. The most prominent EC is ‘Subset Accuracy’. The promising results show an accuracy of at least 86% for test cases, where a 1:1 relationship (Multi-Class) between test step specification and test automation component exists. For complex multi-label problems, i.e., one test step can be implemented by several components, the prediction accuracy is still at 60%. It is better than the current state-of-the-art results. It is expected the prediction quality to increase for larger systems with respective historical data. Consequently, this technique facilitates the time reduction for establishing test automation and is thereby independent of the application domain and project. As a work in progress, the next steps are to investigate incremental and active learning as additions to increase the usability of this approach, e.g., in case labelled historical data is scarce.

Keywords: machine learning, multi-class, multi-label, supervised learning, test automation

Procedia PDF Downloads 135
7932 FPGA Implementation of RSA Encryption Algorithm for E-Passport Application

Authors: Khaled Shehata, Hanady Hussien, Sara Yehia

Abstract:

Securing the data stored on E-passport is a very important issue. RSA encryption algorithm is suitable for such application with low data size. In this paper the design and implementation of 1024 bit-key RSA encryption and decryption module on an FPGA is presented. The module is verified through comparing the result with that obtained from MATLAB tools. The design runs at a frequency of 36.3 MHz on Virtex-5 Xilinx FPGA. The key size is designed to be 1024-bit to achieve high security for the passport information. The whole design is achieved through VHDL design entry which makes it a portable design and can be directed to any hardware platform.

Keywords: RSA, VHDL, FPGA, modular multiplication, modular exponential

Procedia PDF Downloads 395
7931 Endodontic Pretreatments, Clinical Opportunities and Challenges

Authors: Ilma Robo, Manola Kelmendi, Saimir Heta, Megi Tafa, Vera Ostreni

Abstract:

Preservation of a natural tooth, even if endodontically treated, is more indicated than its replacement with an artificial tooth placed in prosthetic ways or with implant treatment. It is known how technology and endodontic treatment procedures have evolved significantly. It is also known that significant developments have been made in both dental prostheses and implant treatments, and again, in both specialties, it is emphasized that both the tooth placed with dental prostheses and the tooth placed with implant treatment cannot replace the natural tooth. The issue is whether long-term periapical tissue healing is achieved after a successful endodontic treatment, and for this, clinical data should be collected. In the cases when the apical closure or "apical filling" with the endodontic filling was carried out correctly clinically, but for various reasons, the healing of the periapical tissues did not occur, but also for those cases when the endodontic treatment did not reach the "apical filling" of the root canal. Teeth Endodontic retreatments have their clinical difficulty, but knowing the reason why endodontic treatment success has not been achieved clinically, the clinical endodontic approach is easier. In this process, it is important for the dentist to recognize the clinical and radiographic signs of persistent apical periodontitis or renewed apical periodontitis. After this initial procedure, dentists must know and evaluate the possibility of clinical endodontic retreatment by reporting, not precisely, but with very approximate values, the percentage of clinical success of endodontic retreatment. Depending on the reason for the performance, endodontic re-treatment may also need more specialized equipment or tools, for which even the professional who undertakes the re-treatment must be equipped with the relevant knowledge of their use and clinical application. Evaluating the clinical success of endodontic re-treatment is actually a more difficult process and requires more clinical responsibility since it must be considered that the initial treatment was performed by the same specialist as the specialist who undertakes the same endodontic re-treatment. Tooth So, the clinical endodontic re-treatment of a tooth should not be seen as a fund of clinical practice only of a good successful endodontist, but as part of routine endodontic treatments, nor should it be seen as a typical case where the tools and the most advanced technological devices in the endodontic field. So, the clinical picture of endodontic re-treatments offers the possibility of finding endodontic malpractice, the possibility of more accurate assessment of dental morphological anomalies, and above all, the cognitive and professional possibilities of the diagnosis of persistent apical periodontitis. This study offers the possibility of evaluating these three directions by presenting in numbers and in percentage the frequency of the reasons why the endodontic success of the root canal treatment is not always achieved.

Keywords: apical periodontitis, clinical susccess, endodontics, E.faecalis

Procedia PDF Downloads 22
7930 A Pilot Study on the Development and Validation of an Instrument to Evaluate Inpatient Beliefs, Expectations and Attitudes toward Reflexology (IBEAR)-16

Authors: Samuel Attias, Elad Schiff, Zahi Arnon, Eran Ben-Arye, Yael Keshet, Ibrahim Matter, Boker Lital Keinan

Abstract:

Background: Despite the extensive use of manual therapies, reflexology in particular, no validated tools have been developed to evaluate patients' beliefs, attitudes and expectations regarding reflexology. Such tools however are essential to improve the results of the reflexology treatment, by better adjusting it to the patients' attitudes and expectations. The tool also enables assessing correlations with clinical results of interventional studies using reflexology. Methods: The IBEAR (Inpatient Beliefs, Expectations and Attitudes toward Reflexology) tool contains 25 questions (8 demographic and 17 specifically addressing reflexology), and was constructed in several stages: brainstorming by a multidisciplinary team of experts; evaluation of each of the proposed questions by the experts' team; and assessment of the experts' degree of agreement per each question, based on a Likert 1-7 scale (1 – don't agree at all; 7 – agree completely). Cronbach's Alpha was computed to evaluate the questionnaire's reliability while the Factor analysis test was used for further validation (228 patients). The questionnaire was tested and re-tested (48h) on a group of 199 patients to assure clarity and reliability, using the Pearson coefficient and the Kappa test. It was modified based on these results into its final form. Results: After its construction, the IBEAR questionnaire passed the expert group's preliminary consensus, evaluation of the questions' clarity (from 5.1 to 7.0), inner validation (from 5.5 to 7) and structural validation (from 5.5 to 6.75). Factor analysis pointed to two content worlds in a division into 4 questions discussing attitudes and expectations versus 5 questions on belief and attitudes. Of the 221 questionnaires collected, a Cronbach's Alpha coefficient was calculated on nine questions relating to beliefs, expectations, and attitudes regarding reflexology. This measure stood at 0.716 (satisfactory reliability). At the Test-Retest stage, 199 research participants filled in the questionnaire a second time. The Pearson coefficient for all questions ranged between 0.73 and 0.94 (good to excellent reliability). As for dichotomic answers, Kappa scores ranged between 0.66 and 1.0 (mediocre to high). One of the questions was removed from the IBEAR following questionnaire validation. Conclusions: The present study provides evidence that the proposed IBEAR-16 questionnaire is a valid and reliable tool for the characterization of potential reflexology patients and may be effectively used in settings which include the evaluation of inpatients' beliefs, expectations, and attitudes toward reflexology.

Keywords: reflexology, attitude, expectation, belief, CAM, inpatient

Procedia PDF Downloads 230
7929 Robot-Assisted Therapy for Autism Spectrum Disorder: Evaluating the Impact of NAO Robot on Social and Language Skills

Authors: M. Aguilar, D. L. Araujo, A. L. Avendaño, D. C. Flores, I. Lascurain, R. A. Molina, M. Romero

Abstract:

This work presents an application of social robotics, specifically the use of a NAO Robot as a tool for therapists in the treatment of Autism Spectrum Disorder (ASD). According to this, therapies approved by specialist psychologists have been developed and implemented, focusing on creating a triangulation between the robot, the child, and the therapist, aiming to improve their social and language skills, as well as communication skills and joint attention. In addition, quantitative and qualitative analysis tools have been developed and applied to prove the acceptance and the impact of the robot in the treatment of ASD.

Keywords: autism spectrum disorder, NAO robot, social and language skills, therapy

Procedia PDF Downloads 142
7928 Environmental Related Mortality Rates through Artificial Intelligence Tools

Authors: Stamatis Zoras, Vasilis Evagelopoulos, Theodoros Staurakas

Abstract:

The association between elevated air pollution levels and extreme climate conditions (temperature, particulate matter, ozone levels, etc.) and mental consequences has been, recently, the focus of significant number of studies. It varies depending on the time of the year it occurs either during the hot period or cold periods but, specifically, when extreme air pollution and weather events are observed, e.g. air pollution episodes and persistent heatwaves. It also varies spatially due to different effects of air quality and climate extremes to human health when considering metropolitan or rural areas. An air pollutant concentration and a climate extreme are taking a different form of impact if the focus area is countryside or in the urban environment. In the built environment the climate extreme effects are driven through the formed microclimate which must be studied more efficiently. Variables such as biological, age groups etc may be implicated by different environmental factors such as increased air pollution/noise levels and overheating of buildings in comparison to rural areas. Gridded air quality and climate variables derived from the land surface observations network of West Macedonia in Greece will be analysed against mortality data in a spatial format in the region of West Macedonia. Artificial intelligence (AI) tools will be used for data correction and prediction of health deterioration with climatic conditions and air pollution at local scale. This would reveal the built environment implications against the countryside. The air pollution and climatic data have been collected from meteorological stations and span the period from 2000 to 2009. These will be projected against the mortality rates data in daily, monthly, seasonal and annual grids. The grids will be operated as AI-based warning models for decision makers in order to map the health conditions in rural and urban areas to ensure improved awareness of the healthcare system by taken into account the predicted changing climate conditions. Gridded data of climate conditions, air quality levels against mortality rates will be presented by AI-analysed gridded indicators of the implicated variables. An Al-based gridded warning platform at local scales is then developed for future system awareness platform for regional level.

Keywords: air quality, artificial inteligence, climatic conditions, mortality

Procedia PDF Downloads 119
7927 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.

Keywords: clustering, load profiling, load modeling, machine learning, energy efficiency and quality

Procedia PDF Downloads 169
7926 Flow Visualization and Mixing Enhancement in Y-Junction Microchannel with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure using High-Viscous Liquids

Authors: Ayalew Yimam Ali

Abstract:

The Y-shaped microchannel is used to mix both miscible or immiscible fluids with different viscosities. However, mixing at the entrance of the Y-junction microchannel can be a difficult mixing phenomena due to micro-scale laminar flow aspects with the two miscible high-viscosity water-glycerol fluids. One of the most promising methods to improve mixing performance and diffusion mass transfer in laminar flow phenomena is acoustic streaming (AS), which is a time-averaged, second-order steady streaming that can produce rolling motion in the microchannel by oscillating a low-frequency range acoustic transducer and inducing an acoustic wave in the flow field. The developed 3D trapezoidal, triangular structure spine used in this study was created using sophisticated CNC machine cutting tools used to create microchannel mold with a 3D trapezoidal triangular structure spine alone the Y-junction longitudinal mixing region. In order to create the molds for the 3D trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm trapezoidal triangular sharp edge tip depth from PMMA glass (Polymethylmethacrylate) with advanced CNC machine and the channel manufactured using PDMS (Polydimethylsiloxane) which is grown up longitudinally on top surface of the Y-junction microchannel using soft lithography nanofabrication strategies. Flow visualization of 3D rolling steady acoustic streaming and mixing enhancement with high-viscosity miscible fluids with different trapezoidal, triangular structure longitudinal length, channel width, high volume flow rate, oscillation frequency, and amplitude using micro-particle image velocimetry (μPIV) techniques were used to study the 3D acoustic streaming flow patterns and mixing enhancement. The streaming velocity fields and vorticity flow fields show 16 times more high vorticity maps than in the absence of acoustic streaming, and mixing performance has been evaluated at various amplitudes, flow rates, and frequencies using the grayscale value of pixel intensity with MATLAB software. Mixing experiments were performed using fluorescent green dye solution with de-ionized water in one inlet side of the channel, and the de-ionized water-glycerol mixture on the other inlet side of the Y-channel and degree of mixing was found to have greatly improved from 67.42% without acoustic streaming to 0.96.83% with acoustic streaming. The results show that the creation of a new 3D steady streaming rolling motion with a high volume flowrate around the entrance was enhanced by the formation of a new, three-dimensional, intense streaming rolling motion with a high-volume flowrate around the entrance junction mixing zone with the two miscible high-viscous fluids which are influenced by laminar flow fluid transport phenomena.

Keywords: micro fabrication, 3d acoustic streaming flow visualization, micro-particle image velocimetry, mixing enhancement

Procedia PDF Downloads 27
7925 Utility of Geospatial Techniques in Delineating Groundwater-Dependent Ecosystems in Arid Environments

Authors: Mangana B. Rampheri, Timothy Dube, Farai Dondofema, Tatenda Dalu

Abstract:

Identifying and delineating groundwater-dependent ecosystems (GDEs) is critical to the well understanding of the GDEs spatial distribution as well as groundwater allocation. However, this information is inadequately understood due to limited available data for the most area of concerns. Thus, this study aims to address this gap using remotely sensed, analytical hierarchy process (AHP) and in-situ data to identify and delineate GDEs in Khakea-Bray Transboundary Aquifer. Our study developed GDEs index, which integrates seven explanatory variables, namely, Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), Land-use and landcover (LULC), slope, Topographic Wetness Index (TWI), flow accumulation and curvature. The GDEs map was delineated using the weighted overlay tool in ArcGIS environments. The map was spatially classified into two classes, namely, GDEs and Non-GDEs. The results showed that only 1,34 % (721,91 km2) of the area is characterised by GDEs. Finally, groundwater level (GWL) data was used for validation through correlation analysis. Our results indicated that: 1) GDEs are concentrated at the northern, central, and south-western part of our study area, and 2) the validation results showed that GDEs classes do not overlap with GWL located in the 22 boreholes found in the given area. However, the results show a possible delineation of GDEs in the study area using remote sensing and GIS techniques along with AHP. The results of this study further contribute to identifying and delineating priority areas where appropriate water conservation programs, as well as strategies for sustainable groundwater development, can be implemented.

Keywords: analytical hierarchy process (AHP), explanatory variables, groundwater-dependent ecosystems (GDEs), khakea-bray transboundary aquifer, sentinel-2

Procedia PDF Downloads 112
7924 Machine Learning Techniques for Estimating Ground Motion Parameters

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.

Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine

Procedia PDF Downloads 125
7923 The Effect of Incorporating Animal Assisted Interventions with Trauma Focused Cognitive Behavioral Therapy

Authors: Kayla Renteria

Abstract:

This study explored the role animal-assisted psychotherapy (AAP) can play in treating Post-Traumatic Stress Disorder (PTSD) when incorporated into Trauma-informed cognitive behavioral therapy (TF-CBT). A review of the literature was performed to show how incorporating AAP could benefit TF-CBT since this treatment model often presents difficulties, such as client motivation and avoidance of the exposure element of the intervention. In addition, the fluidity of treatment goals during complex trauma cases was explored, as this issue arose in the case study. This study follows the course of treatment of a 12-year-old female presenting with symptoms of PTSD. Treatment consisted of traditional components of the TF-CBT model, with the added elements of AAP to address typical treatment obstacles in TF-CBT. A registered therapy dog worked with the subject in all sessions throughout her treatment. The therapy dog was incorporated into components such as relaxation and coping techniques, narrative therapy techniques, and psychoeducation on the cognitive triangle. Throughout the study, the client’s situation and clinical needs required the therapist to switch goals to focus on current safety and stability. The therapy dog provided support and neurophysiological benefits to the client through AAP during this shift in treatment. The client was assessed quantitatively using the Child PTSD Symptom Scale Self Report for DSM-5 (CPSS-SR-5) before and after therapy and qualitatively through a feedback form given after treatment. The participant showed improvement in CPSS-SR-V scores, and she reported that the incorporation of the therapy animal improved her therapy. The results of this study show how the use of AAP provided the client a solid, consistent relationship with the therapy dog that supported her through processing various types of traumas. Implications of the results of treatment and for future research are discussed.

Keywords: animal-assisted therapy, trauma-focused cognitive behavioral therapy, PTSD in children, trauma treatment

Procedia PDF Downloads 224
7922 Postmodern Communication Through Semiology

Authors: Mladen Milicevic

Abstract:

This paper takes a semiological approach to show, that the meaning is not located in the art object nor it is exclusively in the mind of the perceiver, but rather lies in the relationship of the two. The ultimate intention of making art is to be presented and perceived by subjective human beings. But there will be as many different interpretations of the art presented to them, as they are individuals in the audience. To support this claim, the latest research from neuroscience, cognitive psychology, and Neo-Darwinism is used. This paper draws on Richard Dawkins’ concept of memes as one of the main tools for explaining how differences get created within various socio-cultural environments. Analyzing pitfalls of the modernist worldview, the author proposes postmodern methods as more efficient ways of understanding today’s complexities in the art, culture, and the world. Deconstructing how these differences have come about, presents a possibility for the transgression of the opposing and many times adamant viewpoints.

Keywords: semiology, music, meme, postmodern

Procedia PDF Downloads 406
7921 A QoS Aware Cluster Based Routing Algorithm for Wireless Mesh Network Using LZW Lossless Compression

Authors: J. S. Saini, P. P. K. Sandhu

Abstract:

The multi-hop nature of Wireless Mesh Networks and the hasty progression of throughput demands results in multi- channels and multi-radios structures in mesh networks, but the main problem of co-channels interference reduces the total throughput, specifically in multi-hop networks. Quality of Service mentions a vast collection of networking technologies and techniques that guarantee the ability of a network to make available desired services with predictable results. Quality of Service (QoS) can be directed at a network interface, towards a specific server or router's performance, or in specific applications. Due to interference among various transmissions, the QoS routing in multi-hop wireless networks is formidable task. In case of multi-channel wireless network, since two transmissions using the same channel may interfere with each other. This paper has considered the Destination Sequenced Distance Vector (DSDV) routing protocol to locate the secure and optimised path. The proposed technique also utilizes the Lempel–Ziv–Welch (LZW) based lossless data compression and intra cluster data aggregation to enhance the communication between the source and the destination. The use of clustering has the ability to aggregate the multiple packets and locates a single route using the clusters to improve the intra cluster data aggregation. The use of the LZW based lossless data compression has ability to reduce the data packet size and hence it will consume less energy, thus increasing the network QoS. The MATLAB tool has been used to evaluate the effectiveness of the projected technique. The comparative analysis has shown that the proposed technique outperforms over the existing techniques.

Keywords: WMNS, QOS, flooding, collision avoidance, LZW, congestion control

Procedia PDF Downloads 343
7920 Teachers' Experience for Improving Fine Motor Skills of Children with Down Syndrome in the Context of Special Education in Southern Province of Sri Lanka

Authors: Sajee A. Gamage, Champa J. Wijesinghe, Patricia Burtner, Ananda R. Wickremasinghe

Abstract:

Background: Teachers working in the context of special education have an enormous responsibility of enhancing performance skills of children in their classroom settings. Fine Motor Skills (FMS) are essential functional skills for children to gain independence in Activities of Daily Living. Children with Down Syndrome (DS) are predisposed to specific challenges due to deficits in FMS. This study is aimed to determine the teachers’ experience on improving FMS of children with DS in the context of special education of Southern Province, Sri Lanka. Methodology: A cross-sectional study was conducted among all consenting eligible teachers (n=147) working in the context of special education in government schools of Southern Province of Sri Lanka. A self-administered questionnaire was developed based on literature and expert opinion to assess teachers’ experience regarding deficits of FMS, limitations of classroom activity performance and barriers to improve FMS of children with DS. Results: Approximately 93% of the teachers were females with a mean age ( ± SD) of 43.1 ( ± 10.1) years. Thirty percent of the teachers had training in special educationand 83% had children with DS in their classrooms. Major deficits of FMS reported were deficits in grasping (n=116; 79%), in-hand manipulation (n=103; 70%) and bilateral hand use (n=99; 67.3%). Paperwork (n=70; 47.6%), painting (n=58; 39.5%), scissor work (n=50; 34.0%), pencil use for writing (n=45; 30.6%) and use of tools in the classroom (n=41; 27.9%) were identified as major classroom performance limitations of children with DS. Parental factors (n=67; 45.6%), disease specific characteristics (n=58; 39.5%) and classroom factors (n=36; 24.5%), were identified as major barriers to improve FMS in the classroom setting. Lack of resources and standard tools, social stigma and late school admission were also identified as barriers to FMS training. Eighty nine percent of the teachers informed that training fine motor activities in a special education classroom was more successful than work with normal classroom setting. Conclusion: Major areas of FMS deficits were grasping, in-hand manipulation and bilateral hand use; classroom performance limitations included paperwork, painting and scissor work of children with DS. Teachers recommended regular practice of fine motor activities according to individual need. Further research is required to design a culturally specific FMS assessment tool and intervention methods to improve FMS of children with DS in Sri Lanka.

Keywords: classroom activities, Down syndrome, experience, fine motor skills, special education, teachers

Procedia PDF Downloads 156
7919 E-Learning Recommender System Based on Collaborative Filtering and Ontology

Authors: John Tarus, Zhendong Niu, Bakhti Khadidja

Abstract:

In recent years, e-learning recommender systems has attracted great attention as a solution towards addressing the problem of information overload in e-learning environments and providing relevant recommendations to online learners. E-learning recommenders continue to play an increasing educational role in aiding learners to find appropriate learning materials to support the achievement of their learning goals. Although general recommender systems have recorded significant success in solving the problem of information overload in e-commerce domains and providing accurate recommendations, e-learning recommender systems on the other hand still face some issues arising from differences in learner characteristics such as learning style, skill level and study level. Conventional recommendation techniques such as collaborative filtering and content-based deal with only two types of entities namely users and items with their ratings. These conventional recommender systems do not take into account the learner characteristics in their recommendation process. Therefore, conventional recommendation techniques cannot make accurate and personalized recommendations in e-learning environment. In this paper, we propose a recommendation technique combining collaborative filtering and ontology to recommend personalized learning materials to online learners. Ontology is used to incorporate the learner characteristics into the recommendation process alongside the ratings while collaborate filtering predicts ratings and generate recommendations. Furthermore, ontological knowledge is used by the recommender system at the initial stages in the absence of ratings to alleviate the cold-start problem. Evaluation results show that our proposed recommendation technique outperforms collaborative filtering on its own in terms of personalization and recommendation accuracy.

Keywords: collaborative filtering, e-learning, ontology, recommender system

Procedia PDF Downloads 392
7918 Data Integration with Geographic Information System Tools for Rural Environmental Monitoring

Authors: Tamas Jancso, Andrea Podor, Eva Nagyne Hajnal, Peter Udvardy, Gabor Nagy, Attila Varga, Meng Qingyan

Abstract:

The paper deals with the conditions and circumstances of integration of remotely sensed data for rural environmental monitoring purposes. The main task is to make decisions during the integration process when we have data sources with different resolution, location, spectral channels, and dimension. In order to have exact knowledge about the integration and data fusion possibilities, it is necessary to know the properties (metadata) that characterize the data. The paper explains the joining of these data sources using their attribute data through a sample project. The resulted product will be used for rural environmental analysis.

Keywords: remote sensing, GIS, metadata, integration, environmental analysis

Procedia PDF Downloads 124