Search results for: heterogeneous wireless networks
1402 Geo-Visualization of Crimes against Children: An India Level Study 2001-2012
Authors: Ritvik Chauhan, Vijay Kumar Baraik
Abstract:
Crime is a rare event on earth surface. It is not simple but a complex event occurring in a spatio- temporal environment. Crime is one of the most serious security threats to human environments as it may result in harm to the individuals through the loss of property, physical and psychological injuries. The conventional studies done on different nature crime was mostly related to laws, psychological, social and political themes. The geographical areas are heterogeneous in their environmental conditions, associations between structural conditions, social organization which contributing specific crimes. The crime pattern analysis is made through theories in which criminal events occurs in persistent, identifiable patterns in a particular space and time. It will be the combined analysis of spatial factors and rational factors to the crime. In this study, we are analyzing the combined factors for the origin of crime against children. Children have always been vulnerable to victimization more because they are silent victims both physically and mentally to crimes and they even not realize what is happening with them. Their trusting nature and innocence always misused by criminals to perform crimes. The nature of crime against children is changed in past years like child rape, kidnapping &abduction, selling & buying of girls, foeticide, infanticide, prostitution, child marriage etc turned to more cruel and inhuman. This study will focus on understanding the space-time pattern of crime against children during the period 2001-2012. It also makes an attempt to explore and ascertain the association of crimes categorised against children, its rates with various geographical and socio-demographic factors through causal analysis using selected indicators (child sex-ratio, education, literacy rate, employment, income, etc.) obtained from the Census of India and other government sources. The outcome of study will help identifying the high crime regions with specified nature of crimes. It will also review the existing efforts and exploring the new plausible measure for tracking, monitoring and minimization of crime rate to meet the end goal of protecting the children from crimes committed against them.Keywords: crime against children, geographic profiling, spatio-temporal analysis, hotspot
Procedia PDF Downloads 2111401 Probing Scientific Literature Metadata in Search for Climate Services in African Cities
Authors: Zohra Mhedhbi, Meheret Gaston, Sinda Haoues-Jouve, Julia Hidalgo, Pierre Mazzega
Abstract:
In the current context of climate change, supporting national and local stakeholders to make climate-smart decisions is necessary but still underdeveloped in many countries. To overcome this problem, the Global Frameworks for Climate Services (GFCS), implemented under the aegis of the United Nations in 2012, has initiated many programs in different countries. The GFCS contributes to the development of Climate Services, an instrument based on the production and transfer of scientific climate knowledge for specific users such as citizens, urban planning actors, or agricultural professionals. As cities concentrate on economic, social and environmental issues that make them more vulnerable to climate change, the New Urban Agenda (NUA), adopted at Habitat III in October 2016, highlights the importance of paying particular attention to disaster risk management, climate and environmental sustainability and urban resilience. In order to support the implementation of the NUA, the World Meteorological Organization (WMO) has identified the urban dimension as one of its priorities and has proposed a new tool, the Integrated Urban Services (IUS), for more sustainable and resilient cities. In the southern countries, there’s a lack of development of climate services, which can be partially explained by problems related to their economic financing. In addition, it is often difficult to make climate change a priority in urban planning, given the more traditional urban challenges these countries face, such as massive poverty, high population growth, etc. Climate services and Integrated Urban Services, particularly in African cities, are expected to contribute to the sustainable development of cities. These tools will help promoting the acquisition of meteorological and socio-ecological data on their transformations, encouraging coordination between national or local institutions providing various sectoral urban services, and should contribute to the achievement of the objectives defined by the United Nations Framework Convention on Climate Change (UNFCCC) or the Paris Agreement, and the Sustainable Development Goals. To assess the state of the art on these various points, the Web of Science metadatabase is queried. With a query combining the keywords "climate*" and "urban*", more than 24,000 articles are identified, source of more than 40,000 distinct keywords (but including synonyms and acronyms) which finely mesh the conceptual field of research. The occurrence of one or more names of the 514 African cities of more than 100,000 inhabitants or countries, reduces this base to a smaller corpus of about 1410 articles (2990 keywords). 41 countries and 136 African cities are cited. The lexicometric analysis of the metadata of the articles and the analysis of the structural indicators (various centralities) of the networks induced by the co-occurrence of expressions related more specifically to climate services show the development potential of these services, identify the gaps which remain to be filled for their implementation and allow to compare the diversity of national and regional situations with regard to these services.Keywords: African cities, climate change, climate services, integrated urban services, lexicometry, networks, urban planning, web of science
Procedia PDF Downloads 1951400 Gravity and Geodetic Control of Geodynamic Activity near Aswan Lake, Egypt
Authors: Anwar H. Radwan, Jan Mrlina, El-Sayed A. Issawy, Ali Rayan, Salah M. Mahmoud
Abstract:
Geodynamic investigations in the Aswan Lake region were started after the M=5.5 earthquake in 1981, triggered by the lake water fluctuations. Besides establishing the seismological networks, also the geodetic observations focused on the Kalabsha and Sayal fault zones were started. It was found that the Kalabsha fault is an active dextral strike-slip with normal component indicating uplift on its southern side. However, the annual velocity rates in both components do not exceed 2 mm/y, and do not therefore represent extremely active faulting. We also launched gravity monitoring in 1997, and performed another two campaigns in 2000 and 2002. The observed non- tidal temporal gravity changes indicate rather the flood water infiltration into the porous Nubian sandstone, than tectonic stress effect. The station nearest to the lake exhibited about 60 μGal positive gravity change within the 1997-2002 period.Keywords: gravity monitoring, surface movements, Lake Aswan, groundwater change
Procedia PDF Downloads 5011399 Analysis and Design of Inductive Power Transfer Systems for Automotive Battery Charging Applications
Authors: Wahab Ali Shah, Junjia He
Abstract:
Transferring electrical power without any wiring has been a dream since late 19th century. There were some advances in this area as to know more about microwave systems. However, this subject has recently become very attractive due to their practiScal systems. There are low power applications such as charging the batteries of contactless tooth brushes or implanted devices, and higher power applications such as charging the batteries of electrical automobiles or buses. In the first group of applications operating frequencies are in microwave range while the frequency is lower in high power applications. In the latter, the concept is also called inductive power transfer. The aim of the paper is to have an overview of the inductive power transfer for electrical vehicles with a special concentration on coil design and power converter simulation for static charging. Coil design is very important for an efficient and safe power transfer. Coil design is one of the most critical tasks. Power converters are used in both side of the system. The converter on the primary side is used to generate a high frequency voltage to excite the primary coil. The purpose of the converter in the secondary is to rectify the voltage transferred from the primary to charge the battery. In this paper, an inductive power transfer system is studied. Inductive power transfer is a promising technology with several possible applications. Operation principles of these systems are explained, and components of the system are described. Finally, a single phase 2 kW system was simulated and results were presented. The work presented in this paper is just an introduction to the concept. A reformed compensation network based on traditional inductor-capacitor-inductor (LCL) topology is proposed to realize robust reaction to large coupling variation that is common in dynamic wireless charging application. In the future, this type compensation should be studied. Also, comparison of different compensation topologies should be done for the same power level.Keywords: coil design, contactless charging, electrical automobiles, inductive power transfer, operating frequency
Procedia PDF Downloads 2491398 Cloud-Based Dynamic Routing with Feedback in Formal Methods
Authors: Jawid Ahmad Baktash, Mursal Dawodi, Tomokazu Nagata
Abstract:
With the rapid growth of Cloud Computing, Formal Methods became a good choice for the refinement of message specification and verification for Dynamic Routing in Cloud Computing. Cloud-based Dynamic Routing is becoming increasingly popular. We propose feedback in Formal Methods for Dynamic Routing and Cloud Computing; the model and topologies show how to send messages from index zero to all others formally. The responsibility of proper verification becomes crucial with Dynamic Routing in the cloud. Formal Methods can play an essential role in the routing and development of Networks, and the testing of distributed systems. Event-B is a formal technique that consists of describing the problem rigorously and introduces solutions or details in the refinement steps. Event-B is a variant of B, designed for developing distributed systems and message passing of the dynamic routing. In Event-B and formal methods, the events consist of guarded actions occurring spontaneously rather than being invoked.Keywords: cloud, dynamic routing, formal method, Pro-B, event-B
Procedia PDF Downloads 4231397 Analysis and Rule Extraction of Coronary Artery Disease Data Using Data Mining
Authors: Rezaei Hachesu Peyman, Oliyaee Azadeh, Salahzadeh Zahra, Alizadeh Somayyeh, Safaei Naser
Abstract:
Coronary Artery Disease (CAD) is one major cause of disability in adults and one main cause of death in developed. In this study, data mining techniques including Decision Trees, Artificial neural networks (ANNs), and Support Vector Machine (SVM) analyze CAD data. Data of 4948 patients who had suffered from heart diseases were included in the analysis. CAD is the target variable, and 24 inputs or predictor variables are used for the classification. The performance of these techniques is compared in terms of sensitivity, specificity, and accuracy. The most significant factor influencing CAD is chest pain. Elderly males (age > 53) have a high probability to be diagnosed with CAD. SVM algorithm is the most useful way for evaluation and prediction of CAD patients as compared to non-CAD ones. Application of data mining techniques in analyzing coronary artery diseases is a good method for investigating the existing relationships between variables.Keywords: classification, coronary artery disease, data-mining, knowledge discovery, extract
Procedia PDF Downloads 6571396 Generalized Rough Sets Applied to Graphs Related to Urban Problems
Authors: Mihai Rebenciuc, Simona Mihaela Bibic
Abstract:
Branch of modern mathematics, graphs represent instruments for optimization and solving practical applications in various fields such as economic networks, engineering, network optimization, the geometry of social action, generally, complex systems including contemporary urban problems (path or transport efficiencies, biourbanism, & c.). In this paper is studied the interconnection of some urban network, which can lead to a simulation problem of a digraph through another digraph. The simulation is made univoc or more general multivoc. The concepts of fragment and atom are very useful in the study of connectivity in the digraph that is simulation - including an alternative evaluation of k- connectivity. Rough set approach in (bi)digraph which is proposed in premier in this paper contribute to improved significantly the evaluation of k-connectivity. This rough set approach is based on generalized rough sets - basic facts are presented in this paper.Keywords: (bi)digraphs, rough set theory, systems of interacting agents, complex systems
Procedia PDF Downloads 2431395 Enhancing Cultural Heritage Data Retrieval by Mapping COURAGE to CIDOC Conceptual Reference Model
Authors: Ghazal Faraj, Andras Micsik
Abstract:
The CIDOC Conceptual Reference Model (CRM) is an extensible ontology that provides integrated access to heterogeneous and digital datasets. The CIDOC-CRM offers a “semantic glue” intended to promote accessibility to several diverse and dispersed sources of cultural heritage data. That is achieved by providing a formal structure for the implicit and explicit concepts and their relationships in the cultural heritage field. The COURAGE (“Cultural Opposition – Understanding the CultuRal HeritAGE of Dissent in the Former Socialist Countries”) project aimed to explore methods about socialist-era cultural resistance during 1950-1990 and planned to serve as a basis for further narratives and digital humanities (DH) research. This project highlights the diversity of flourished alternative cultural scenes in Eastern Europe before 1989. Moreover, the dataset of COURAGE is an online RDF-based registry that consists of historical people, organizations, collections, and featured items. For increasing the inter-links between different datasets and retrieving more relevant data from various data silos, a shared federated ontology for reconciled data is needed. As a first step towards these goals, a full understanding of the CIDOC CRM ontology (target ontology), as well as the COURAGE dataset, was required to start the work. Subsequently, the queries toward the ontology were determined, and a table of equivalent properties from COURAGE and CIDOC CRM was created. The structural diagrams that clarify the mapping process and construct queries are on progress to map person, organization, and collection entities to the ontology. Through mapping the COURAGE dataset to CIDOC-CRM ontology, the dataset will have a common ontological foundation with several other datasets. Therefore, the expected results are: 1) retrieving more detailed data about existing entities, 2) retrieving new entities’ data, 3) aligning COURAGE dataset to a standard vocabulary, 4) running distributed SPARQL queries over several CIDOC-CRM datasets and testing the potentials of distributed query answering using SPARQL. The next plan is to map CIDOC-CRM to other upper-level ontologies or large datasets (e.g., DBpedia, Wikidata), and address similar questions on a wide variety of knowledge bases.Keywords: CIDOC CRM, cultural heritage data, COURAGE dataset, ontology alignment
Procedia PDF Downloads 1451394 Challenges in the Construction of a 6M Diameter and 1.6km Long Tunnel Under Crossing a Channel in the West of Singapore
Authors: David Loh, Wan Chee Wai, Pei Nan, Chen Zhe
Abstract:
To increase the conveyance capacity to Western Singapore and to meet Singapore’s long-term water needs in a more cost-effective manner, four new transmission pipelines consisting of two 2200 mm diameter water pipes and two 1200mm diameter water pipes will be needed by 2024 to convey water from a Water Reclamation Plant to existing networks in the west region of Singapore. Out of the several possible routes studied, the most cost-effective and technically feasible route was selected to lay the proposed 1.6km-long pipelines that cross a channel via a 6m diameter subsea tunnel. This paper outlines the challenges the team faced throughout the project thus far. It also examined the difficulties such as (1) construction of a 56m-deep launching shaft near a highly sensitive 700mm diameter Gas Transmission Pipeline (GTP) and at a location with high groundwater; (2) manpower and supply disruptions caused by the COVID-19 pandemic situation.Keywords: underwater tunnel, subsea engineering, subsea tunnel construction, waterpipe construction
Procedia PDF Downloads 271393 A Ku/K Band Power Amplifier for Wireless Communication and Radar Systems
Authors: Meng-Jie Hsiao, Cam Nguyen
Abstract:
Wide-band devices in Ku band (12-18 GHz) and K band (18-27 GHz) have received significant attention for high-data-rate communications and high-resolution sensing. Especially, devices operating around 24 GHz is attractive due to the 24-GHz unlicensed applications. One of the most important components in RF systems is power amplifier (PA). Various PAs have been developed in the Ku and K bands on GaAs, InP, and silicon (Si) processes. Although the PAs using GaAs or InP process could have better power handling and efficiency than those realized on Si, it is very hard to integrate the entire system on the same substrate for GaAs or InP. Si, on the other hand, facilitates single-chip systems. Hence, good PAs on Si substrate are desirable. Especially, Si-based PA having good linearity is necessary for next generation communication protocols implemented on Si. We report a 16.5 to 25.5 GHz Si-based PA having flat saturated power of 19.5 ± 1.5 dBm, output 1-dB power compression (OP1dB) of 16.5 ± 1.5 dBm, and 15-23 % power added efficiency (PAE). The PA consists of a drive amplifier, two main amplifiers, and lump-element Wilkinson power divider and combiner designed and fabricated in TowerJazz 0.18µm SiGe BiCMOS process having unity power gain frequency (fMAX) of more than 250 GHz. The PA is realized as a cascode amplifier implementing both heterojunction bipolar transistor (HBT) and n-channel metal–oxide–semiconductor field-effect transistor (NMOS) devices for gain, frequency response, and linearity consideration. Particularly, a body-floating technique is utilized for the NMOS devices to improve the voltage swing and eliminate parasitic capacitances. The developed PA has measured flat gain of 20 ± 1.5 dB across 16.5-25.5 GHz. At 24 GHz, the saturated power, OP1dB, and maximum PAE are 20.8 dBm, 18.1 dBm, and 23%, respectively. Its high performance makes it attractive for use in Ku/K-band, especially 24 GHz, communication and radar systems. This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Keywords: power amplifiers, amplifiers, communication systems, radar systems
Procedia PDF Downloads 1111392 Freight Time and Cost Optimization in Complex Logistics Networks, Using a Dimensional Reduction Method and K-Means Algorithm
Authors: Egemen Sert, Leila Hedayatifar, Rachel A. Rigg, Amir Akhavan, Olha Buchel, Dominic Elias Saadi, Aabir Abubaker Kar, Alfredo J. Morales, Yaneer Bar-Yam
Abstract:
The complexity of providing timely and cost-effective distribution of finished goods from industrial facilities to customers makes effective operational coordination difficult, yet effectiveness is crucial for maintaining customer service levels and sustaining a business. Logistics planning becomes increasingly complex with growing numbers of customers, varied geographical locations, the uncertainty of future orders, and sometimes extreme competitive pressure to reduce inventory costs. Linear optimization methods become cumbersome or intractable due to a large number of variables and nonlinear dependencies involved. Here we develop a complex systems approach to optimizing logistics networks based upon dimensional reduction methods and apply our approach to a case study of a manufacturing company. In order to characterize the complexity in customer behavior, we define a “customer space” in which individual customer behavior is described by only the two most relevant dimensions: the distance to production facilities over current transportation routes and the customer's demand frequency. These dimensions provide essential insight into the domain of effective strategies for customers; direct and indirect strategies. In the direct strategy, goods are sent to the customer directly from a production facility using box or bulk trucks. In the indirect strategy, in advance of an order by the customer, goods are shipped to an external warehouse near a customer using trains and then "last-mile" shipped by trucks when orders are placed. Each strategy applies to an area of the customer space with an indeterminate boundary between them. Specific company policies determine the location of the boundary generally. We then identify the optimal delivery strategy for each customer by constructing a detailed model of costs of transportation and temporary storage in a set of specified external warehouses. Customer spaces help give an aggregate view of customer behaviors and characteristics. They allow policymakers to compare customers and develop strategies based on the aggregate behavior of the system as a whole. In addition to optimization over existing facilities, using customer logistics and the k-means algorithm, we propose additional warehouse locations. We apply these methods to a medium-sized American manufacturing company with a particular logistics network, consisting of multiple production facilities, external warehouses, and customers along with three types of shipment methods (box truck, bulk truck and train). For the case study, our method forecasts 10.5% savings on yearly transportation costs and an additional 4.6% savings with three new warehouses.Keywords: logistics network optimization, direct and indirect strategies, K-means algorithm, dimensional reduction
Procedia PDF Downloads 1391391 Survey on Malware Detection
Authors: Doaa Wael, Naswa Abdelbaky
Abstract:
Malware is malicious software that is built to cause destructive actions and damage information systems and networks. Malware infections increase rapidly, and types of malware have become more sophisticated, which makes the malware detection process more difficult. On the other side, the Internet of Things IoT technology is vulnerable to malware attacks. These IoT devices are always connected to the internet and lack security. This makes them easy for hackers to access. These malware attacks are becoming the go-to attack for hackers. Thus, in order to deal with this challenge, new malware detection techniques are needed. Currently, building a blockchain solution that allows IoT devices to download any file from the internet and to verify/approve whether it is malicious or not is the need of the hour. In recent years, blockchain technology has stood as a solution to everything due to its features like decentralization, persistence, and anonymity. Moreover, using blockchain technology overcomes some difficulties in malware detection and improves the malware detection ratio over-than the techniques that do not utilize blockchain technology. In this paper, we study malware detection models which are based on blockchain technology. Furthermore, we elaborate on the effect of blockchain technology in malware detection, especially in the android environment.Keywords: malware analysis, blockchain, malware attacks, malware detection approaches
Procedia PDF Downloads 871390 Detection of COVID-19 Cases From X-Ray Images Using Capsule-Based Network
Authors: Donya Ashtiani Haghighi, Amirali Baniasadi
Abstract:
Coronavirus (COVID-19) disease has spread abruptly all over the world since the end of 2019. Computed tomography (CT) scans and X-ray images are used to detect this disease. Different Deep Neural Network (DNN)-based diagnosis solutions have been developed, mainly based on Convolutional Neural Networks (CNNs), to accelerate the identification of COVID-19 cases. However, CNNs lose important information in intermediate layers and require large datasets. In this paper, Capsule Network (CapsNet) is used. Capsule Network performs better than CNNs for small datasets. Accuracy of 0.9885, f1-score of 0.9883, precision of 0.9859, recall of 0.9908, and Area Under the Curve (AUC) of 0.9948 are achieved on the Capsule-based framework with hyperparameter tuning. Moreover, different dropout rates are investigated to decrease overfitting. Accordingly, a dropout rate of 0.1 shows the best results. Finally, we remove one convolution layer and decrease the number of trainable parameters to 146,752, which is a promising result.Keywords: capsule network, dropout, hyperparameter tuning, classification
Procedia PDF Downloads 771389 Evaluation of the MCFLIRT Correction Algorithm in Head Motion from Resting State fMRI Data
Authors: V. Sacca, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
In the last few years, resting-state functional MRI (rs-fMRI) was widely used to investigate the architecture of brain networks by investigating the Blood Oxygenation Level Dependent response. This technique represented an interesting, robust and reliable approach to compare pathologic and healthy subjects in order to investigate neurodegenerative diseases evolution. On the other hand, the elaboration of rs-fMRI data resulted to be very prone to noise due to confounding factors especially the head motion. Head motion has long been known to be a source of artefacts in task-based functional MRI studies, but it has become a particularly challenging problem in recent studies using rs-fMRI. The aim of this work was to evaluate in MS patients a well-known motion correction algorithm from the FMRIB's Software Library - MCFLIRT - that could be applied to minimize the head motion distortions, allowing to correctly interpret rs-fMRI results.Keywords: head motion correction, MCFLIRT algorithm, multiple sclerosis, resting state fMRI
Procedia PDF Downloads 2121388 Research on Air pollution Spatiotemporal Forecast Model Based on LSTM
Authors: JingWei Yu, Hong Yang Yu
Abstract:
At present, the increasingly serious air pollution in various cities of China has made people pay more attention to the air quality index(hereinafter referred to as AQI) of their living areas. To face this situation, it is of great significance to predict air pollution in heavily polluted areas. In this paper, based on the time series model of LSTM, a spatiotemporal prediction model of PM2.5 concentration in Mianyang, Sichuan Province, is established. The model fully considers the temporal variability and spatial distribution characteristics of PM2.5 concentration. The spatial correlation of air quality at different locations is based on the Air quality status of other nearby monitoring stations, including AQI and meteorological data to predict the air quality of a monitoring station. The experimental results show that the method has good prediction accuracy that the fitting degree with the actual measured data reaches more than 0.7, which can be applied to the modeling and prediction of the spatial and temporal distribution of regional PM2.5 concentration.Keywords: LSTM, PM2.5, neural networks, spatio-temporal prediction
Procedia PDF Downloads 1341387 Predictive Analysis of Personnel Relationship in Graph Database
Authors: Kay Thi Yar, Khin Mar Lar Tun
Abstract:
Nowadays, social networks are so popular and widely used in all over the world. In addition, searching personal information of each person and searching connection between them (peoples’ relation in real world) becomes interesting issue in our society. In this paper, we propose a framework with three portions for exploring peoples’ relations from their connected information. The first portion focuses on the Graph database structure to store the connected data of peoples’ information. The second one proposes the graph database searching algorithm, the Modified-SoS-ACO (Sense of Smell-Ant Colony Optimization). The last portion proposes the Deductive Reasoning Algorithm to define two persons’ relationship. This study reveals the proper storage structure for connected information, graph searching algorithm and deductive reasoning algorithm to predict and analyze the personnel relationship from peoples’ relation in their connected information.Keywords: personnel information, graph storage structure, graph searching algorithm, deductive reasoning algorithm
Procedia PDF Downloads 4501386 Integration of Smart Grid Technologies with Smart Phones for Energy Monitoring and Management
Authors: Arjmand Khaliq, Pemra Sohaib
Abstract:
There is increasing trend of use of smart devices in the present age. The growth of computing techniques and advancement in hardware has also brought the use of sensors and smart devices to a high degree during the course of time. So use of smart devices for control, management communication and optimization has become very popular. This paper gives proposed methodology which involves sensing and switching unite for load, two way communications between utility company and smart phones of consumers using cellular techniques and price signaling resulting active participation of user in energy management .The goal of this proposed control methodology is active participation of user in energy management with accommodation of renewable energy resource. This will provide load adjustment according to consumer’s choice, increased security and reliability for consumer, switching of load according to consumer need and monitoring and management of energy.Keywords: cellular networks, energy management, renewable energy source, smart grid technology
Procedia PDF Downloads 4131385 'The Network' - Cradle to Cradle Engagement Framework for Women in STEM
Authors: Jessica Liqin Kong
Abstract:
Female engineers and scientists face unique challenges in their careers that make the development of professional networks crucial, but also more difficult. Working to overcome these challenges, ‘The Network’ was established in 2013 at the Queensland University of Technology (QUT) in Australia as an alumni chapter with the purpose of evoking continuous positive change for female participation and retention in science, technology, engineering and mathematics (STEM). ‘The Network’ adopts an innovative model for a Women in STEM alumni chapter which was inspired by the cradle to cradle approach to engagement, and the concept of growing and harvesting individual and collective social capital through a variety of initiatives. ‘The Network’ fosters an environment where the values exchanged in social and professional relationships can be capitalized for both current and future women in STEM. The model of ‘The Network’ acts as a simulation and opportunity for participants to further develop their leadership and other soft skills through learning, building and experimenting with ‘The Network’.Keywords: women in STEM, engagement, Cradle-to-Cradle, social capital
Procedia PDF Downloads 2841384 Self in Networks: Public Sphere in the Era of Globalisation
Authors: Sanghamitra Sadhu
Abstract:
A paradigm shift from capitalism to information technology is discerned in the era globalisation. The idea of public sphere, which was theorized in terms of its decline in the wake of the rise of commercial mass media has now emerged as a transnational or global sphere with the discourse being dominated by the ‘network society’. In other words, the dynamic of globalisation has brought about ‘a spatial turn’ in the social and political sciences which is also manifested in the public sphere, Especially the global public sphere. The paper revisits the Habermasian concept of the public sphere and focuses on the various social networking sites with their plausibility to create a virtual global public sphere. Situating Habermas’s notion of the bourgeois public sphere in the present context of global public sphere, it considers the changing dimensions of the public sphere across time and examines the concept of the ‘public’ with its shifting transformation from the concrete collective to the fluid ‘imagined’ category. The paper addresses the problematic of multimodal self-portraiture in the social networking sites as well as various online diaries/journals with an attempt to explore the nuances of the networked self.Keywords: globalisation, network society, public sphere, self-fashioning, identity, autonomy
Procedia PDF Downloads 4161383 The Establishment of Primary Care Networks (England, UK) Throughout the COVID-19 Pandemic: A Qualitative Exploration of Workforce Perceptions
Authors: Jessica Raven Gates, Gemma Wilson-Menzfeld, Professor Alison Steven
Abstract:
In 2019, the Primary Care system in the UK National Health Service (NHS) was subject to reform and restructuring. Primary Care Networks (PCNs) were established, which aligned with a trend towards integrated care both within the NHS and internationally. The introduction of PCNs brought groups of GP practices in a locality together, to operate as a network, build on existing services and collaborate at a larger scale. PCNs were expected to bring a range of benefits to patients and address some of the workforce pressures in the NHS, through an expanded and collaborative workforce. The early establishment of PCNs was disrupted by the emerging COVID-19 pandemic. This study, set in the context of the pandemic, aimed to explore experiences of the PCN workforce, and their perceptions of the establishment of PCNs. Specific objectives focussed on examining factors perceived as enabling or hindering the success of a PCN, the impact on day-to-day work, the approach to implementing change, and the influence of the COVID-19 pandemic upon PCN development. This study is part of a three-phase PhD project that utilized qualitative approaches and was underpinned by social constructionist philosophy. Phase 1: a systematic narrative review explored the provision of preventative healthcare services in UK primary settings and examined facilitators and barriers to delivery as experienced by the workforce. Phase 2: informed by the findings of phase 1, semi-structured interviews were conducted with fifteen participants (PCN workforce). Phase 3: follow-up interviews were conducted with original participants to examine any changes to their experiences and perceptions of PCNs. Three main themes span across phases 2 and 3 and were generated through a Framework Analysis approach: 1) working together at scale, 2) network infrastructure, and 3) PCN leadership. Findings suggest that through efforts to work together at scale and collaborate as a network, participants have broadly accepted the concept of PCNs. However, the workforce has been hampered by system design and system complexity. Operating against such barriers has led to a negative psychological impact on some PCN leaders and others in the PCN workforce. While the pandemic undeniably increased pressure on healthcare systems around the world, it also acted as a disruptor, offering a glimpse into how collaboration in primary care can work well. Through the integration of findings from all phases, a new theoretical model has been developed, which conceptualises the findings from this Ph.D. study and demonstrates how the workforce has experienced change associated with the establishment of PCNs. The model includes a contextual component of the COVID-19 pandemic and has been informed by concepts from Complex Adaptive Systems theory. This model is the original contribution to knowledge of the PhD project, alongside recommendations for practice, policy and future research. This study is significant in the realm of health services research, and while the setting for this study is the UK NHS, the findings will be of interest to an international audience as the research provides insight into how the healthcare workforce may experience imposed policy and service changes.Keywords: health services research, qualitative research, NHS workforce, primary care
Procedia PDF Downloads 581382 Predicting Shortage of Hospital Beds during COVID-19 Pandemic in United States
Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi
Abstract:
World-wide spread of coronavirus grows the concern about planning for the excess demand of hospital services in response to COVID-19 pandemic. The surge in the hospital services demand beyond the current capacity leads to shortage of ICU beds and ventilators in some parts of US. In this study, we forecast the required number of hospital beds and possible shortage of beds in US during COVID-19 pandemic to be used in the planning and hospitalization of new cases. In this paper, we used a data on COVID-19 deaths and patients’ hospitalization besides the data on hospital capacities and utilization in US from publicly available sources and national government websites. we used a novel ensemble modelling of deep learning networks, based on stacking different linear and non-linear layers to predict the shortage in hospital beds. The results showed that our proposed approach can predict the excess hospital beds demand very well and this can be helpful in developing strategies and plans to mitigate this gap.Keywords: COVID-19, deep learning, ensembled models, hospital capacity planning
Procedia PDF Downloads 1561381 Design Thinking Activities: A Tool in Overcoming Student Reticence
Authors: Marinel Dayawon
Abstract:
Student participation in classroom activities is vital in the teaching- learning the process as it develops self-confidence, social relationships and good academic performance of students. It is the teacher’s empathetic manner and creativity to create solutions that encourage teamwork and mutual support while dropping the academic competition within the class that hinder every shy student to walk with courage and talk with conviction because they consider their ideas, weak, as compared to the bright students. This study aimed to explore the different design thinking strategies that will change the mindset of shy students in classroom activities, maximizing their participation in all given tasks while sharing their views through ideation and providing them a wider world through compromise agreement within the members of the group, sensitivity to one’s idea, thus, arriving at a collective decision in the development of a prototype that indicates improvement in their classroom involvement. The study used the qualitative type of research. Triangulation is done through participant observation, focus group discussion and interview, documented through photos and videos. The respondents were the second- year Bachelor of Secondary Education students of the Institute of Teacher Education at Isabela State University- Cauayan City Campus. The result of the study revealed that reticent students when involved in game activities through a slap and tap method, writing their clustered ideas, using sticky notes is excited in sharing ideas as it doesn’t use oral communication. It is also observed after three weeks of using the design thinking strategies; shy students volunteer as secretary, rapporteur or group leader in the team- building activities as it represents the ideas of the heterogeneous group, removing the individual identity of the ideas. Superior students learned to listen to the ideas of the reticent students and involved them in the prototyping process of designing a remediation program for high school students showing reticence in the classroom, making their experience as a benchmark. The strategies made a 360- degrees transformation of the shy students, producing their journal log, in their journey to being open. Thus, faculty members are now adopting the design thinking approach.Keywords: design thinking activities, qualitative, reticent students, Isabela, Philippines
Procedia PDF Downloads 2251380 Automated Driving Deep Neural Networks Model Accuracy and Performance Assessment in a Simulated Environment
Authors: David Tena-Gago, Jose M. Alcaraz Calero, Qi Wang
Abstract:
The evolution and integration of automated vehicles have become more and more tangible in recent years. State-of-the-art technological advances in the field of camera-based Artificial Intelligence (AI) and computer vision greatly favor the performance and reliability of the Advanced Driver Assistance System (ADAS), leading to a greater knowledge of vehicular operation and resembling human behavior. However, the exclusive use of this technology still seems insufficient to control vehicular operation at 100%. To reveal the degree of accuracy of the current camera-based automated driving AI modules, this paper studies the structure and behavior of one of the main solutions in a controlled testing environment. The results obtained clearly outline the lack of reliability when using exclusively the AI model in the perception stage, thereby entailing using additional complementary sensors to improve its safety and performance.Keywords: accuracy assessment, AI-driven mobility, artificial intelligence, automated vehicles
Procedia PDF Downloads 1131379 Discharge Estimation in a Two Flow Braided Channel Based on Energy Concept
Authors: Amiya Kumar Pati, Spandan Sahu, Kishanjit Kumar Khatua
Abstract:
River is our main source of water which is a form of open channel flow and the flow in the open channel provides with many complex phenomena of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress, and depth-averaged velocity. The development of society, more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. A river flow consisting of small and shallow channels sometimes divide and recombine numerous times because of the slow water flow or the built up sediments. The pattern formed during this process resembles the strands of a braid. Braided streams form where the sediment load is so heavy that some of the sediments are deposited as shifting islands. Braided rivers often exist near the mountainous regions and typically carry coarse-grained and heterogeneous sediments down a fairly steep gradient. In this paper, the apparent shear stress formulae were suitably modified, and the Energy Concept Method (ECM) was applied for the prediction of discharges at the junction of a two-flow braided compound channel. The Energy Concept Method has not been applied for estimating the discharges in the braided channels. The energy loss in the channels is analyzed based on mechanical analysis. The cross-section of channel is divided into two sub-areas, namely the main-channel below the bank-full level and region above the bank-full level for estimating the total discharge. The experimental data are compared with a wide range of theoretical data available in the published literature to verify this model. The accuracy of this approach is also compared with Divided Channel Method (DCM). From error analysis of this method, it is observed that the relative error is less for the data-sets having smooth floodplains when compared to rough floodplains. Comparisons with other models indicate that the present method has reasonable accuracy for engineering purposes.Keywords: critical flow, energy concept, open channel flow, sediment, two-flow braided compound channel
Procedia PDF Downloads 1261378 Association of the Frequency of the Dairy Products Consumption by Students and Health Parameters
Authors: Radyah Ivan, Khanferyan Roman
Abstract:
Milk and dairy products are an important component of a balanced diet. Dairy products represent a heterogeneous food group of solid, semi-solid and liquid, fermented or non-fermented foods, each differing in nutrients such as fat and micronutrient content. Deficiency of milk and dairy products contributes a impact on the main health parameters of the various age groups of the population. The goal of this study was to analyze of the frequency of the consumption of milk and various groups of dairy products by students and its association with their body mass index (BMI), body composition and other physiological parameters. 388 full-time students of the Medical Institute of RUDN University (185 male and 203 female, average age was 20.4+2.2 and 21.9+1.7 y.o., respectively) took part in the cross-sectional study. Anthropometric measurements, estimation of BMI and body composition were analyzed by bioelectrical impedance analysis. The frequency of consumption of the milk and various groups of dairy products was studied using a modified questionnaire on the frequency of consumption of products. Due to the questionnaire data on the frequency of consumption of the diary products, it have been demonstrated that only 11% of respondents consume milk daily, 5% - cottage cheese, 4% and 1% - fermented natural and with fillers milk products, respectively, hard cheese -4%. The study demonstrated that about 16% of the respondents did not consume milk at all over the past month, about one third - cottage cheese, 22% - natural sour-milk products and 18% - sour-milk products with various fillers. hard cheeses and pickled cheeses didn’t consume 9% and 26% of respondents, respectively. We demonstrated the gender differences in the characteristics of consumer preferences were revealed. Thus female students are less likely to use cream, sour cream, soft cheese, milk comparing to male students. Among female students the prevalence of persons with overweight was higher (25%) than among male students (19%). A modest inverse relationship was demonstrated between daily milk intake, BMI, body composition parameters and diary products consumption (r=-0.61 and r=-0.65). The study showed daily insufficient milk and dairy products consumption by students and due to this it have been demonstrated the relationship between the low and rare consumption of diary products and main parameters of indicators of physical activity and health indicators.Keywords: frequency of consumption, milk, dairy products, physical development, nutrition, body mass index.
Procedia PDF Downloads 361377 Factors That Determine International Competitiveness of Agricultural Products in Latin America 1990-2020
Authors: Oluwasefunmi Eunice Irewole, Enrique Armas Arévalos
Abstract:
Agriculture has played a crucial role in the economy and the development of many countries. Moreover, the basic needs for human survival are; food, shelter, and cloth are link on agricultural production. Most developed countries see that agriculture provides them with food and raw materials for different goods such as (shelter, medicine, fuel and clothing) which has led to an increase in incomes, livelihoods and standard of living. This study aimed at analysing the relationship between International competitiveness of agricultural products, with the area, fertilizer, labour force, economic growth, foreign direct investment, exchange rate and inflation rate in Latin America during the period of 1991-to 2019. In this study, panel data econometric methods were used, as well as cross-section dependence (Pesaran test), unit root (cross-section Augumented Dickey Fuller and Cross-sectional Im, Pesaran, and Shin tests), cointergration (Pedroni and Fisher-Johansen tests), and heterogeneous causality (Pedroni and Fisher-Johansen tests) (Hurlin and Dumitrescu test). The results reveal that the model has cross-sectional dependency and that they are integrated at one I. (1). The "fully modified OLS and dynamic OLS estimators" were used to examine the existence of a long-term relationship, and it was found that a long-term relationship existed between the selected variables. The study revealed a positive significant relationship between International Competitiveness of the agricultural raw material and area, fertilizer, labour force, economic growth, and foreign direct investment, while international competitiveness has a negative relationship with the advantages of the exchange rate and inflation. The economy policy recommendations deducted from this investigation is that Foreign Direct Investment and the labour force have a positive contribution to the increase of International Competitiveness of agricultural products.Keywords: revealed comparative advantage, agricultural products, area, fertilizer, economic growth, granger causality, panel unit root
Procedia PDF Downloads 1001376 Bit Error Rate (BER) Performance of Coherent Homodyne BPSK-OCDMA Network for Multimedia Applications
Authors: Morsy Ahmed Morsy Ismail
Abstract:
In this paper, the structure of a coherent homodyne receiver for the Binary Phase Shift Keying (BPSK) Optical Code Division Multiple Access (OCDMA) network is introduced based on the Multi-Length Weighted Modified Prime Code (ML-WMPC) for multimedia applications. The Bit Error Rate (BER) of this homodyne detection is evaluated as a function of the number of active users and the signal to noise ratio for different code lengths according to the multimedia application such as audio, voice, and video. Besides, the Mach-Zehnder interferometer is used as an external phase modulator in homodyne detection. Furthermore, the Multiple Access Interference (MAI) and the receiver noise in a shot-noise limited regime are taken into consideration in the BER calculations.Keywords: OCDMA networks, bit error rate, multiple access interference, binary phase-shift keying, multimedia
Procedia PDF Downloads 1751375 Continuous Land Cover Change Detection in Subtropical Thicket Ecosystems
Authors: Craig Mahlasi
Abstract:
The Subtropical Thicket Biome has been in peril of transformation. Estimates indicate that as much as 63% of the Subtropical Thicket Biome is severely degraded. Agricultural expansion is the main driver of transformation. While several studies have sought to document and map the long term transformations, there is a lack of information on disturbance events that allow for timely intervention by authorities. Furthermore, tools that seek to perform continuous land cover change detection are often developed for forests and thus tend to perform poorly in thicket ecosystems. This study investigates the utility of Earth Observation data for continuous land cover change detection in Subtropical Thicket ecosystems. Temporal Neural Networks are implemented on a time series of Sentinel-2 observations. The model obtained 0.93 accuracy, a recall score of 0.93, and a precision score of 0.91 in detecting Thicket disturbances. The study demonstrates the potential of continuous land cover change in Subtropical Thicket ecosystems.Keywords: remote sensing, land cover change detection, subtropical thickets, near-real time
Procedia PDF Downloads 1621374 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach
Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas
Abstract:
Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)
Procedia PDF Downloads 731373 Applications of AI, Machine Learning, and Deep Learning in Cyber Security
Authors: Hailyie Tekleselase
Abstract:
Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data
Procedia PDF Downloads 126