Search results for: geographically-weighted regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3220

Search results for: geographically-weighted regression

700 Psychosocial Development: The Study of Adaptation and Development and Post-Retirement Satisfaction in Ageing Australians

Authors: Sahar El-Achkar, Mizan Ahmad

Abstract:

Poor adaptation of developmental milestones over the lifespan can significantly impact emotional experiences and Satisfaction with Life (SWL) post-retirement. Thus, it is important to understand how adaptive behaviour over the life course can predict emotional experiences. Broadly emotional experiences are either Positive Affect (PA) or Negative Affect (NA). This study sought to explore the impact of successful adaptation of developmental milestones throughout one’s life on emotional experiences and satisfaction with life following retirement. A cross-sectional self-report survey was completed by 132 Australian retirees between the ages 55 and 70 years. Three hierarchical regression models were fitted, controlling for age and gender, to predict PA, NA, and SWL. The full model predicting PA was statistically significant overall, F (8, 121) = 17.97, p < .001, account for 57% of the variability in PA. Industry/Inferiority were significantly predictive of PA. The full model predicting NA was statistically significant overall, F (8, 121) = 12.00, p < .001, accounting for 51% of the variability in NA. Age and Trust/Mistrust were significantly predictive of NA. The full model predicting NA was statistically significant overall, F (8, 121) = 12.00, p < .001, accounting for 51% of the variability in NA. Age and Trust/Mistrust were significantly predictive of NA. The full model predicting SWL, F (8, 121) = 11.05, p < .001, accounting for 45% of the variability in SWL. Trust/Mistrust and Ego Integrity/Despair were significantly predictive of SWL. A sense of industry post-retirement is important in generating PA. These results highlight that individuals presenting with adaptation and identity issues are likely to present with adjustment challenges and unpleasant emotional experiences post-retirement. This supports the importance of identifying and understanding the benefits of successful adaptation and development throughout the lifespan and its significance for the self-concept. Most importantly, the quality of lives of many may be improved, and the future risk of continued poor emotional experiences and SWL post-retirement may be mitigated. Specifically, the clinical implications of these findings are that they support the promotion of successful adaption over the life course and healthy ageing.

Keywords: adaptation, development, negative affect, positive affect, retirement, satisfaction with life

Procedia PDF Downloads 74
699 The Beacon of Collective Hope: Mixed Method Study on the Participation of Indian Youth with Regard to Mass Demonstrations Fueled by Social Activism Media

Authors: Akanksha Lohmore, Devanshu Arya, Preeti Kapur

Abstract:

Rarely does the human mind look at the positive fallout of highly negative events. Positive psychology attempts to emphasize on the strengths and positives for human well-being. The present study examines the underpinning socio-cognitive factors of the protest movements regarding the gang rape case of December 16th, 2012 through the lens of positive psychology. A gamut of negative emotions came to the forum globally: of anger, shame, hatred, violence, death penalty for the perpetrators, amongst other equally strong. In relation to this incident, a number of questions can be raised. Can such a heinous crime have some positive inputs for contemporary society? What is it that has held people to protests for long even when they see faded lines of success in view? This paper explains the constant feeding of protests and continuation of movements by the robust model of Collective Hope by Snyder, a phenomenon unexplored by social psychologists. In this paper, mixed method approach was undertaken. Results confirmed the interaction of various socio-psychological factors that imitated the Snyders model of collective hope. Emergence of major themes was: Sense of Agency, Sense of Worthiness, Social Sharing and Common Grievances and Hope of Collective Efficacy. Statistical analysis (correlation and regression) showed significant relationship between media usage and occurrence of these themes among participants. Media-communication processes and educational theories for development of citizenship behavior can find implications from these results. Theory development as indicated by theorists working in the area of Social Psychology of Protests can be furthered by the direction of research.

Keywords: agency, collective, hope, positive psychology, protest, social media

Procedia PDF Downloads 359
698 Age-Associated Seroprevalence of Toxoplasma gondii in 10892 Pregnant Women in Senegal between 2016 and 2019

Authors: Ndiaye Mouhamadou, Seck Abdoulaye, Ndiaye Babacar, Diallo Thierno Abdoulaye, Diop Abdou, Seck Mame Cheikh, Diongue Khadim, Badiane Aida Sadikh, Diallo Mamadou Alpha, Kouedvidjin Ekoué, Ndiaye Daouda

Abstract:

Background: Toxoplasmosis is a parasite disease that presents high rates of gestational and congenital infection worldwide and is therefore considered a public health problem and a neglected disease. The aim of this study was to determine the seroprevalence of toxoplasmosis in pregnant women referred to the medical biology laboratory of the Pasteur Institute of Dakar (Senegal) between January 2014 and December 2019. Methodology: This was a cross-sectional, descriptive, retrospective study of 10892 blood samples from pregnant women aged 16 to 46 years. The Architect toxo IgG/IgM from Abbot Laboratories, which is a chemiluminescent microparticle immunoassay (CMIA), was used for the quantitative determination of antibodies against Toxoplasma gondii in human serum. Results: In total, over a period from January 2014 to December 2019, 10892 requests for toxoplasmosis serology in pregnant women were included. The age of the patients included in our series ranged from 16 to 46 years. The mean age was 31.2 ± 5.72 years. The overall seroprevalence of T. gondii in pregnant women was estimated to be 28.9% [28.0-29.7]. In a multivariate logistic regression analysis, after adjustment for a covariate such as a study period, pregnant women aged 36-46 years were more likely to carry IgG antibodies to T. gondii than pregnant women younger than 36 years. Conclusion: T. gondii seroprevalence was significantly higher in pregnant women older than 36 years, leaving younger women more susceptible to primary T. gondii infection and their babies to congenital toxoplasmosis. There will be a need to increase awareness of the risk factors for toxoplasmosis and its different modes of transmission in these high-risk groups, but this should be supported by epidemiologic studies of the distribution of risk factors for toxoplasmosis in pregnant women and women of childbearing age.

Keywords: toxoplasmosis, pregnancy, seroprevalence, Senegal

Procedia PDF Downloads 134
697 Contribution of Football Club Jerseys towards English Premier League Fans’ Loyalty in Nigeria

Authors: B. O. Diyaolu

Abstract:

The globalization of football especially among youth over the decade is uprising. Nigeria youth displaying football jerseys at every opportunity is an acceptance of football globalization. The Love for English Premier League (EPL) football jersey is very strong among Nigeria fans. Football club jerseys of the EPL are a common sports product among fans in Nigeria. This study investigates the contribution of football club jerseys towards EPL fans’ loyalty in Nigeria. Descriptive survey research design was used for the study. The population consists of EPL fans in Nigeria. Simple random sampling technique (fish bowl without replacement) was used to select two states from the six geo-political zones. Purposive sampling technique was used to pick eight viewing centres while accidental sampling technique was used to pick five vendor stands from each State. An average of 250 respondents was selected from each state. A total of 3,200 respondents participated in the research. Two research instruments were used. A self-developed structured questionnaire on Football Jersey Scale (FJS): The instrument consists of 10 items. Fans Loyalty Scale (FLS): The instrument was modified from the psychological commitment to team (PCT) scale, and consists of 20 items. The Cronbach’s Alpha reliability coefficient of 0.72 and 0.75 was obtained, respectively. The hypothesis was tested at 0.05 significant levels. Data were analysed using frequency, percentages count, pie chart and multiple regressions. The result showed that the b-value of football club jersey is 0.148 also the standard regression coefficient (Beta) is 0.089. The t = 4.759 is statistically significant at p = 0.000. This signified a relative contribution of football club jersey on EPL fans loyalty in Nigeria. Club jersey, which is the most outstanding identifier of every club, was found to significantly predict loyalty. The jersey on the body of the fan has become the site for a declaration of loyalty which becomes available for social interaction and negotiation. The Nigerian local league clubs in an attempt to keep Nigerian fans loyal must borrow a leaf from their European counterparts.

Keywords: club Jerseys, English Premier League, football fans, Nigeria youth

Procedia PDF Downloads 256
696 Disinformation’s Threats to Democracy in Central Africa: Case Studies from Cameroon and Central African Republic

Authors: Simont Toussi

Abstract:

Cameroon and the Central African Republic arebound by the provisions of many regional and international charters, which condemn the manipulation of information, obstacles to access reliable information, or the limitation of freedoms of expression and opinion. These two countries also have constitutional guarantees for free speech and access to true and liable information. However, they are yet to define specific policies and regulations for access to information, disinformation, or misinformation. Yet, certain countries’ laws and regulations related to information and communication technologies, to criminal procedures, to terrorism, or intelligence services contain provisions that rather hider human rights by condemning false information. Like many other African countries, Cameroon and the Central African Republic face a profound democratic regression, and governments use multiple methods to stifle online discourse and digital rights. Despite the increased uptake of digital tools for political participation, there is a lack of interactivity and adoption of these tools. This enables a scarcity of information and creates room for the spreading of disinformation in the public space, hamperingdemocracy and the respect for human rights. This research aims to analyse the adequacy of stakeholders’ responses to disinformation in Cameroon and the Central African Republic in periods of political contestation, such as elections and anti-government protests, to highlight the nature, perpetrators, strategies, and channels of disinformation, as well as its effects on democratic actors, including civil society, bloggers, government critics, activists, and other human rights defenders. The study follows a qualitative method with literature review, content analysis, andkey informant’sinterviews with stakeholders’ representatives, emphasized crowdsourcing as a data and information collecting method in the two countries.

Keywords: disinformation, democracy, political manipulation, social media, media, fake news, central Africa, cameroon, misinformation, free speech

Procedia PDF Downloads 108
695 Effect of Information and Communication Technology (ICT) Usage by Cassava Farmers in Otukpo Local Government Area of Benue State, Nigeria

Authors: O. J. Ajayi, J. H. Tsado, F. Olah

Abstract:

The study analyzed the effect of information and communication technology (ICT) usage on cassava farmers in Otukpo local government area of Benue state, Nigeria. Primary data was collected from 120 randomly selected cassava farmers using multi-stage sampling technique. A structured questionnaire and interview schedule was employed to generate data. Data were analyzed using descriptive (frequency, mean and percentage) and inferential statistics (OLS (ordinary least square) and Chi-square). The result revealed that majority (78.3%) were within the age range of 21-50 years implying that the respondents were within the active age for maximum production. 96.8% of the respondents had one form of formal education or the other. The sources of ICT facilities readily available in area were radio(84.2%), television(64.2%) and mobile phone(90.8%) with the latter being the most relied upon for cassava farming. Most of the farmers were aware (98.3%) and had access (95.8%) to these ICT facilities. The dependence on mobile phone and radio were highly relevant in cassava stem selection, land selection, land preparation, cassava planting technique, fertilizer application and pest and disease management. The value of coefficient of determination (R2) indicated an 89.1% variation in the output of cassava farmers explained by the inputs indicated in the regression model implying that, there is a positive and significant relationship between the inputs and output. The results also indicated that labour, fertilizer and farm size were significant at 1% level of probability while ICT use was significant at 10%. Further findings showed that finance (78.3%) was the major constraint associated with ICT use. Recommendations were made on strengthening the use of ICT especially contemporary ones like the computer and internet among farmers for easy information sourcing which can boost agricultural production, improve livelihood and subsequently food security. This may be achieved by providing credit or subsidies and information centres like telecentres and cyber cafes through government assistance or partnership.

Keywords: ICT, cassava farmers, inputs, output

Procedia PDF Downloads 311
694 Effect of Cumulative Dissipated Energy on Short-Term and Long-Term Outcomes after Uncomplicated Cataract Surgery

Authors: Palaniraj Rama Raj, Himeesh Kumar, Paul Adler

Abstract:

Purpose: To investigate the effect of ultrasound energy, expressed as cumulative dissipated energy (CDE), on short and long-term outcomes after uncomplicated cataract surgery by phacoemulsification. Methods: In this single-surgeon, two-center retrospective study, non-glaucomatous participants who underwent uncomplicated cataract surgery were investigated. Best-corrected visual acuity (BCVA) and intraocular pressure (IOP) were measured at 3 separate time points: pre-operative, Day 1 and ≥1 month. Anterior chamber (AC) inflammation and corneal odema (CO) were assessed at 2 separate time points: Pre-operative and Day 1. Short-term changes (Day 1) in BCVA, IOP, AC and CO and long-term changes (≥1 month) in BCVA and IOP were evaluated as a function of CDE using a multivariate multiple linear regression model, adjusting for age, gender, cataract type and grade, preoperative IOP, preoperative BCVA and duration of long-term follow-up. Results: 110 eyes from 97 non-glaucomatous participants were analysed. 60 (54.55%) were female and 50 (45.45%) were male. The mean (±SD) age was 73.40 (±10.96) years. Higher CDE counts were strongly associated with higher grades of sclerotic nuclear cataracts (p <0.001) and posterior subcapsular cataracts (p <0.036). There was no significant association between CDE counts and cortical cataracts. CDE counts also had a positive correlation with Day 1 CO (p <0.001). There was no correlation between CDE counts and Day 1 AC inflammation. Short-term and long-term changes in post-operative IOP did not demonstrate significant associations with CDE counts (all p >0.05). Though there was no significant correlation between CDE counts and short-term changes in BCVA, higher CDE counts were strongly associated with greater improvements in long-term BCVA (p = 0.011). Conclusion: Though higher CDE counts were strongly associated with higher grades of Day 1 postoperative CO, there appeared to be no detriment to long-term BCVA. Correspondingly, the strong positive correlation between CDE counts and long-term BCVA was likely reflective of the greater severity of underlying cataract type and grade. CDE counts were not associated with short-term or long-term postoperative changes in IOP.

Keywords: cataract surgery, phacoemulsification, cumulative dissipated energy, CDE, surgical outcomes

Procedia PDF Downloads 180
693 Root System Architecture Analysis of Sorghum Genotypes and Its Effect on Drought Adaptation

Authors: Hailemariam Solomon, Taye Tadesse, Daniel Nadew, Firezer Girma

Abstract:

Sorghum is an important crop in semi-arid regions and has shown resilience to drought stress. However, recurrent drought is affecting its productivity. Therefore, it is necessary to explore genes that contribute to drought stress adaptation to increase sorghum productivity. The aim of this study is to evaluate and determine the effect of root system traits, specifically root angle, on drought stress adaptation and grain yield performance in sorghum genotypes. A total of 428 sorghum genotypes from the Ethiopian breeding program were evaluated in three drought-stress environments. Field trials were conducted using a row-column design with three replications. Root system traits were phenotyped using a high-throughput phenotyping platform and analyzed using a row-column design with two replications. Data analysis was performed using R software and regression analysis. The study found significant variations in root system architecture among the sorghum genotypes. Non-stay-green genotypes had a grain yield ranging from 1.63 to 3.1 tons/ha, while stay-green genotypes had a grain yield ranging from 2.4 to 2.9 tons/ha. The analysis of root angle showed that non-stay-green genotypes had an angle ranging from 8.0 to 30.5 degrees, while stay-green genotypes had an angle ranging from 12.0 to 29.0 degrees. Improved varieties exhibited angles between 14.04 and 19.50 degrees. Positive and significant correlations were observed between leaf areas and shoot dry weight, as well as between leaf width and shoot dry weight. Negative correlations were observed between root angle and leaf area, as well as between root angle and root length. This research highlights the importance of root system architecture, particularly root angle traits, in enhancing grain yield production in drought-stressed conditions. It also establishes an association between root angle and grain yield traits for maximizing sorghum productivity.

Keywords: roor sysytem architecture, root angle, narrow root angle, wider root angle, drought

Procedia PDF Downloads 75
692 Mother-Child Conversations about Emotions and Socio-Emotional Education in Children with Autism Spectrum Disorder

Authors: Beaudoin Marie-Joelle, Poirier Nathalie

Abstract:

Introduction: Children with autism spectrum disorder (ASD) tend to lack socio-emotional skills (e.g., emotional regulation and theory of mind). Eisenberg’s theoretical model on emotion-related socialization behaviors suggests that mothers of children with ASD could play a central role in fostering the acquisition of socio-emotional skills by engaging in frequent educational conversations about emotions. Although, mothers’ perceptions of their own emotional skills and their child’s personality traits and social deficits could mitigate the benefit of their educative role. Objective: Our study aims to explore the association between mother-child conversations about emotions and the socio-emotional skills of their children when accounting for the moderating role of the mothers’ perceptions. Forty-nine mothers completed five questionnaires about emotionally related conversations, self-openness to emotions, and perceptions of personality and socio-emotional skills of their children with ASD. Results: Regression analyses showed that frequent mother-child conversations about emotions predicted better emotional regulation and theory of mind skills in children with ASD (p < 0.01). The children’s theory of mind was moderated by mothers’ perceptions of their own emotional openness (p < 0.05) and their perceptions of their children’s openness to experience (p < 0.01) and conscientiousness (p < 0.05). Conclusion: Mothers likely play an important role in the socio-emotional education of children with ASD. Further, mothers may be most helpful when they perceive that their interventions improve their child’s behaviors. Our findings corroborate those of the Eisenberg model, which claims that mother-child conversations about emotions predict socio-emotional development skills in children with ASD. Our results also help clarify the moderating role of mothers’ perceptions, which could mitigate their willingness to engage in educational conversations about emotions with their children. Therefore, in special needs' children education, school professionals could collaborate with mothers to increase the frequency of emotion-related conversations in ASD's students with emotion dysregulation or theory of mind problems.

Keywords: autism, parental socialization of emotion, emotional regulation, theory of mind

Procedia PDF Downloads 88
691 Efficacy and Safety of Inhaled Nebulized Chemotherapy in Treatment of Patients with Newly Diagnosed Pulmonary Tuberculosis in Comparison to Standard Antimycobacterial Therapy

Authors: M. Kuzhko, M. Gumeniuk, D. Butov, T. Tlustova, O. Denysov, T. Sprynsian

Abstract:

Abstract: The objective of this work was to study the efficacy and safety of inhaled nebulized chemotherapy in the treatment of patients with newly diagnosed pulmonary tuberculosis in comparison with standard antimycobacterial therapy. Materials and methods: The study involved 68 patients aged between 20 and 70 years with newly diagnosed pulmonary tuberculosis. Patients were allocated to two groups. The first (main, n=21) group of patients received standard chemotherapy and further 0.15 g of isoniazid and rifampicin 0.15 g inhaled through a nebulizer, also they received salmeterol 50 mcg + fluticasone propionate 250 mcg at 2 breaths twice a day for 2 months. The second (control, n=47) group of patients received standard chemotherapy, consisting of orally administered isoniazid (0.3 g), rifampicin (0.6 g), pyrazinamide (2 g), ethambutol (1.2 g) with a dose reduction after the intensive phase of the therapy. The anti-TB drugs were procured through the Ukraine’s centralized national supply system. Results: Intoxication symptoms in the first group reduced following 1.39±0.18 months, whereas in the second group, intoxication symptoms reduced following 2.7±0.1 months, p<.001. Moreover, respiratory symptoms regression in the first group was observed following 1.6±0.2 months, whereas in the second group – following 2.5±0.2 months, p<0.05. Bacillary excretion period evaluated within 1 month was reduced, as it was shown by 66.6±10.5% in the main group compared to 27.6±6.5%, p<0.05, in the control group. In addition, period of cavities healing was reduced to 2.9±0.2 months in the main group compared to 3.7±0.1 months, p<0.05, in the control group. Residual radiological lung damage findings (large residual changes) were observed in 22 (23.8±9.5 %) patients of the main group versus 24 (51.0±7.2 %) patients in the control group, p<0.05. After completion of treatment scar stenosis of the bronchi II-III art. diagnosed in 3 (14.2±7.8%) patients in main group and 17 (68.0±6.8%) - control group, p<0.05. The duration of hospital treatment was 2.4±0.4 months in main group and 4.1±0.4 months in control group, p<0.05. Conclusion: Administration of of inhaled nebulized chemotherapy in patients with newly diagnosed pulmonary tuberculosis resulted in a comparatively quick reduction of disease manifestation.

Keywords: inhaled nebulized chemotherapy, pulmonary tuberculosis, tuberculosis, treatment of tuberculosis

Procedia PDF Downloads 197
690 Metagovernance and Sustainable Development Goals: Importance of Sustainable Policies and Democratic Institutions

Authors: Ghulam Rasool Madni

Abstract:

Global economies are prioritizing the attainment of Sustainable Development Goals (SDGs) for well-being of their people. An emphasis lies on the concept of metagovernance when contemplating the role of government in SDGs, especially in the context of its influence and guidance. Existing literature acknowledges the pivotal role of metagovernance in achieving the SDGs, but aspects of metagovernance unclear that are important for 17 SDGs. Using data from 41 countries, a comparative analysis is conducted for the year 2022. Utilizing a multiple regression analysis, the impact of different dimensions of metagovernance to achieve SDGs is explored, with a particular focus on sustainable policies, strategic capacity, policy coherence, democratic institutions, reflexivity, and adaptation. It is found that sustainable policies have a positive and significant relationship with different SDGs, including no poverty, zero hunger, health, sanitation and clean water, affordable and clean energy, decent work and economic growth, industry, innovation and infrastructure, reduced inequalities while democratic institutions also have a positive relationship with no poverty, good health and well-being, quality education, gender equality, clean water and sanitation, clean and affordable energy, and peace, justice, and strong institutions in these countries. Policymakers are suggested to ensure that sustainable policies are backed by legislation to provide them with a strong legal foundation. It is suggested to develop a long-term vision for sustainability that goes beyond short-term political cycles. Economies are encouraged to invest in building the capacity of government agencies, civil society organizations, and other stakeholders to effectively implement sustainable policies. Moreover, democratic institutions may be established through a constitution providing a solid foundation for democratic governance, including protection of human rights, separation of powers, and mechanisms for accountability and transparency.

Keywords: metagovernance, sustainable development goals, sustainable policies, democratic institutions

Procedia PDF Downloads 19
689 The Effects of Fearing Cancer in Women

Authors: E. Kotrotsiou, A. S. Topsioti, S. Mantzoukas, E. Dragioti, M. Gouva

Abstract:

Introduction: The literature has demonstrated that individual and psychological factors have a direct effect on the perceptions and attitudes of women with cancer. Objectives: To investigate the relationship between the fear of cancer and anxiety. Aim: To examine the impact of the fear of cancer in women with state and trait anxiety of women. Methods: A community sample of 286 women (mean age 39.6 years, SD = 9.5 ranged 20-60) participated in the current study. The women completed a) State - Trait Anxiety Inventory (STAI) and b) questionnaire concerning socio-demographic information and questions for fear of cancer. Results: The perception of fear in women with cancer is statistically independent from their age (t–test, p = 0.58), their family status (χ2, p = 0.519), their place of residency (χ2, p = 0.148), the manifestation of gynecological cancer (χ2, p = 0.979) or the manifestation of any type of cancer in the family (χ2, p = 0.277). In contrast, it was observed that there was a dependence in relation to a total of phobias (χ2, p = 0.003), the fear of illness (χ2, p< 0.001) and the fear of heights (χ2, p = 0.004). Furthermore, the participants that responded that they feared cancer displayed greater level of stress both as situation (t=-3.462; p=0.001) and as a trait of their personality (t=-4.377; p<0.001), and at the same time they displayed greater levels of depression in comparisons with the other participants. Furthermore, following multiple linear regression analysis it was observed that the participants that responded positively to the question if they feared cancer had 8, 3 units greater stress level as a personality trait in comparison to women that responded negatively to the question if they feared cancer (B=8.3; p=0.016; R2=0.506). Conclusion: Women’s fear of cancer is statistically independent from their age, family status, place of residency, the manifestation of gynaecological cancer and with the manifestation of cancer any type in the family. In contrast, there is a dependency with the total of phobias, fear of illness and fear of heights. Women that state that they have a fear of cancer manifest greater levels of stress from the rest of the participants both as situation and as a trait of their personality (p = 0.001 and p< 0.001 accordingly). In specific, the study demonstrated that the participants that positively to the question if they feared cancer had 8,3 units greater stress level as a personality trait in comparison to women that responded negatively.

Keywords: fear, women health, anxiety, psychology, cancer

Procedia PDF Downloads 262
688 Prevalence of Sexually Transmitted Infections in Pregnancy, Preterm Birth, Low Birthweight, and the Importance of Prenatal Care: Data from the 2020 United States Birth Certificate

Authors: Anthony J. Kondracki, Bonzo Reddick, Jennifer L. Barkin

Abstract:

Background: Many pregnancies in the United States are affected each year with the most common sexually transmitted infections (STIs), including Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and Treponema pallidum (TP, syphilis), and the rate of congenital syphilis has reached a 20-year high. We sought to estimate the prevalence of CT, NG, and TP in pregnancy and the risk of preterm birth (PTB) (<37 weeks gestation) and low birthweight (LBW) (<2500g) deliveries according to utilization of prenatal care (PNC) during the COVID-19 pandemic. Methods: This study was based on the 2020 National Center for Health Statistics (NCHS) Natality File restricted to singleton births (N=3,512,858). We estimated the prevalence of CT, NG, TP, PTBand LBW across timing and the number of prenatal care (PNC) visits attended. In multivariable logistic regression models, adjusted odds ratios of PTB and LBW were assessed according to STIs and PNC status. E-values, based on effect size estimates and the lower bound of the 95% confidence intervals (CIs) of the association, examined the potential impact of unmeasured confounding. Results: CT (1.8%) was most prevalent in pregnancy, followed by NG (0.3%) and TP (0.1%). The strongest predictors of PTB and LBW were maternal NG (12.2% and 12.1%, respectively), late initiation/no PNC (8.5% and 7.6%, respectively), and ≤10 prenatal visits (13.1% and 10.3%, respectively). The odds of PTB and LBW were 2.5- to 3-fold greater for each STI in women who received ≤10 compared to >10 prenatal visits. E-values demonstrated the minimum strength of potential unmeasured confounding necessary to explain away observed associations. Conclusions: Timely initiation and receipt of recommended number of prenatal visits benefits screening and treatment of all women for STIs, including NG to substantially reduce infant morbidity and mortality related to PTB and LBW among infants born during the COVID-19 pandemic.

Keywords: COVID-19 pandemic, sexually transmitted infections, preterm birth, low birthweight, prenatal care

Procedia PDF Downloads 152
687 Factors Affecting the Uptake of Modern Contraception Services in Oyo State, Nigeria

Authors: Folajinmi Oluwasina, Magbagbeola Dairo, Ikeoluwapo Ajayi

Abstract:

Contraception has proven to be an effective way of controlling fertility and spacing births. Studies have shown that contraception can avert the high-risk pregnancies and consequently reduce maternal deaths up to 32%. Uptake of modern contraception is promoted as a mechanism to address the reproductive health needs of men and women, as well as the crucial challenge of rapid population increase. A cross- sectional descriptive study using a two- stage systematic sampling technique was used to select 530 women of reproductive age out of 20,000 households. Respondents were interviewed using a semi-structured questionnaire. Knowledge was assessed on a 5 point score in which a score of ≤ 2 rated poor while perception was scored on 36 points score in which a score of ≤ 18 was rated low. Data were analyzed using descriptive statistics, Chi-square test and logistic regression at p< 0.05. There were 530 respondents. Age of respondents was 30.3 ±7.8 years, and 73.0% were married. About 90% had good knowledge of contraception while 60.8% had used contraceptives. The commonest source of information about contraception was mass media (72.8%). Minority (26.1%) obtained husbands approval before using contraceptive while 20.0% had used modern contraceptives before the first birth. Many (54.5%) of the respondents agreed that contraception helps in improving standard of living and 64.7% had good perception about contraception. Factors that hindered effective uptake of contraception services included poor service provider’s attitude (33.3%) and congestion at the service centers (4.5%). Respondents with nonuse of contraceptive before first birth are less likely to subsequently use contraceptives (OR= 0.324, 95% CI= 0.1-0.5). Husband approval of contraceptives use was the major determinant of women’s contraceptive use (OR = 3.4, 95% CI = 1.3-8.7). Respondents who had family planning centers not more than 5 kilometers walking distance to their residence did not significantly use contraception services (41.5%) more than 21.1% of those who had to take means of transportation to the service venues. This study showed that majority of the respondents were knowledgeable and aware of contraception services, but husband’s agreement on the use of modern contraceptives remains poor. Programmes that enhances husbands approval of modern contraception is thus recommended.

Keywords: contraception services, service provider’s attitude, uptake, husbands approval

Procedia PDF Downloads 364
686 Impacts of Extension Services on Stingless Bee Production and its Profitability and Sustainability in Malaysia

Authors: Ibrahim Aliyu Isah, Mohd Mansor Ismail, Salim Hassan, Norsida Bint Man

Abstract:

Global and National contributions of Extension Agents in income derive through stingless beekeeping production as acknowledged globally as a new source of wealth creation, which contributes significantly to the positive, sustainable economic growth of Malaysia. A common specie, Trigona itama, production through effective utilization of highly competent agents of extension services led to high increase of output that guaranteed high income and sustainability to farmers throughout the study areas. A study on impacts of extension services on stingless bee production and its profitability and sustainability in both Peninsular Malaysia and East (Sarawak) Malaysia was conducted with the following objectives: (i) to examined various impacts of extension services on sustainability as variables in enhancing stingless beekeeping production for positive profitability. (ii) to determine the profitability and sustainability of stingless beekeeping production in the study area through transfer of technology and human resources development. The study covers a sample of beekeepers in ten states of Peninsular Malaysia and Sarawak. The sample size of 87 respondents were selected out of the population and 54 of filled questionnaires were retrieved. Capital budgeting analysis was carried out and economic performance was evaluated. Data collected was analysed using SPSS version 23.0. Correlation and Regression analyses were used. The capital budgeting analysis and government incentive schemes was incorporated in the applied projection of stingless bee farms. The result of Net Present Value (NPV) is determined as an accepted projection to the financial appraisal. The NPV in the study indicated positive outcome of production that can generate positive income and indicated efficient yield of investment and Profitability index (PI). In summary, it is possible for the extension services to increase output and hence increase profit which is sustainable for growth and development of agricultural sector in Malaysia.

Keywords: extension services, impacts, profitability and sustainability, Sarawak and peninsular Malaysia, trigona itama production

Procedia PDF Downloads 89
685 Radiation Safety Factor of Education and Research Institution in Republic of Korea

Authors: Yeo Ryeong Jeon, Pyong Kon Cho, Eun Ok Han, Hyon Chul Jang, Yong Min Kim

Abstract:

This study surveyed on recognition related to radiation safety for radiation safety managers and workers those who have been worked in Republic of Korea education and research institution. At present, South Korea has no guideline and manual of radiation safety for education and research institution. Therefore, we tried to find an educational basis for development of radiation safety guideline and manual. To check the level of knowledge, attitude, and behavior about radiation safety, we used the questionnaire that consisted of 29 questions against knowledge, attitude and behavior, 4 questions against self-efficacy and expectation based on four factors (radiation source, human, organizational and physical environment) of the Haddon's matrix. Responses were collected between May 4 and June 30, 2015. We analyzed questionnaire by means of IBM SPSS/WIN 15 which well known as statistical package for social science. The data were compared with mean, standard deviation, Pearson's correlation, ANOVA (analysis of variance) and regression analysis. 180 copies of the questionnaire were returned from 60 workplaces. The overall mean results for behavior level was relatively lower than knowledge and attitude level. In particular, organizational environment factor on the radiation safety management indicated the lowest behavior level. Most of the factors were correlated in Pearson’s correlation analysis, especially between knowledge of human factors and behavior of human factors (Pearson’s correlation coefficient 0.809, P<.01). When analysis performed in line with the main radiation source type, institutions where have been used only opened RI (radioisotope) behavior level was the lowest among all subjects. Finally, knowledge of radiation source factor (β=0.556, P<.001) and human factor(β=0.376, P<.001) had the greatest impact in terms of behavior practice. Radiation safety managers and workers think positively about radiation safety management, but are poorly informed organizational environment of their institution. Thus, each institution need to efforts to settlement of radiation safety culture. Also, pedagogical interventions for improving knowledge on radiation safety needs in terms of safety accident prevention.

Keywords: radiation safety management, factor analysis, SPSS, republic of Korea

Procedia PDF Downloads 364
684 Sociolinguistic Aspects and Language Contact, Lexical Consequences in Francoprovençal Settings

Authors: Carmela Perta

Abstract:

In Italy the coexistence of standard language, its varieties and different minority languages - historical and migration languages - has been a way to study language contact in different directions; the focus of most of the studies is either the relations among the languages of the social repertoire, or the study of contact phenomena occurring in a particular structural level. However, studies on contact facts in relation to a given sociolinguistic situation of the speech community are still not present in literature. As regard the language level to investigate from the perspective of contact, it is commonly claimed that the lexicon is the most volatile part of language and most likely to undergo change due to superstrate influence, indeed first lexical features are borrowed, then, under long term cultural pressure, structural features may also be borrowed. The aim of this paper is to analyse language contact in two historical minority communities where Francoprovençal is spoken, in relation to their sociolinguistic situation. In this perspective, firstly lexical borrowings present in speakers’ speech production will be examined, trying to find a possible correlation between this part of the lexicon and informants’ sociolinguistic variables; secondly a possible correlation between a particular community sociolinguistic situation and lexical borrowing will be found. Methods used to collect data are based on the results obtained from 24 speakers in both the villages; the speaker group in the two communities consisted of 3 males and 3 females in each of four age groups, ranging in age from 9 to 85, and then divided into five groups according to their occupations. Speakers were asked to describe a sequence of pictures naming common objects and then describing scenes when they used these objects: they are common objects, frequently pronounced and belonging to semantic areas which are usually resistant and which are thought to survive. A subset of this task, involving 19 items with Italian source is examined here: in order to determine the significance of the independent variables (social factors) on the dependent variable (lexical variation) the statistical package SPSS, particularly the linear regression, was used.

Keywords: borrowing, Francoprovençal, language change, lexicon

Procedia PDF Downloads 372
683 Investigation of Shear Strength, and Dilative Behavior of Coarse-grained Samples Using Laboratory Test and Machine Learning Technique

Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari

Abstract:

Coarse-grained soils are known and commonly used in a wide range of geotechnical projects, including high earth dams or embankments for their high shear strength. The most important engineering property of these soils is friction angle which represents the interlocking between soil particles and can be applied widely in designing and constructing these earth structures. Friction angle and dilative behavior of coarse-grained soils can be estimated from empirical correlations with in-situ testing and physical properties of the soil or measured directly in the laboratory performing direct shear or triaxial tests. Unfortunately, large-scale testing is difficult, challenging, and expensive and is not possible in most soil mechanic laboratories. So, it is common to remove the large particles and do the tests, which cannot be counted as an exact estimation of the parameters and behavior of the original soil. This paper describes a new methodology to simulate particles grading distribution of a well-graded gravel sample to a smaller scale sample as it can be tested in an ordinary direct shear apparatus to estimate the stress-strain behavior, friction angle, and dilative behavior of the original coarse-grained soil considering its confining pressure, and relative density using a machine learning method. A total number of 72 direct shear tests are performed in 6 different sizes, 3 different confining pressures, and 4 different relative densities. Multivariate Adaptive Regression Spline (MARS) technique was used to develop an equation in order to predict shear strength and dilative behavior based on the size distribution of coarse-grained soil particles. Also, an uncertainty analysis was performed in order to examine the reliability of the proposed equation.

Keywords: MARS, coarse-grained soil, shear strength, uncertainty analysis

Procedia PDF Downloads 162
682 Main Control Factors of Fluid Loss in Drilling and Completion in Shunbei Oilfield by Unmanned Intervention Algorithm

Authors: Peng Zhang, Lihui Zheng, Xiangchun Wang, Xiaopan Kou

Abstract:

Quantitative research on the main control factors of lost circulation has few considerations and single data source. Using Unmanned Intervention Algorithm to find the main control factors of lost circulation adopts all measurable parameters. The degree of lost circulation is characterized by the loss rate as the objective function. Geological, engineering and fluid data are used as layers, and 27 factors such as wellhead coordinates and WOB are used as dimensions. Data classification is implemented to determine function independent variables. The mathematical equation of loss rate and 27 influencing factors is established by multiple regression method, and the undetermined coefficient method is used to solve the undetermined coefficient of the equation. Only three factors in t-test are greater than the test value 40, and the F-test value is 96.557%, indicating that the correlation of the model is good. The funnel viscosity, final shear force and drilling time were selected as the main control factors by elimination method, contribution rate method and functional method. The calculated values of the two wells used for verification differ from the actual values by -3.036m3/h and -2.374m3/h, with errors of 7.21% and 6.35%. The influence of engineering factors on the loss rate is greater than that of funnel viscosity and final shear force, and the influence of the three factors is less than that of geological factors. Quantitatively calculate the best combination of funnel viscosity, final shear force and drilling time. The minimum loss rate of lost circulation wells in Shunbei area is 10m3/h. It can be seen that man-made main control factors can only slow down the leakage, but cannot fundamentally eliminate it. This is more in line with the characteristics of karst caves and fractures in Shunbei fault solution oil and gas reservoir.

Keywords: drilling and completion, drilling fluid, lost circulation, loss rate, main controlling factors, unmanned intervention algorithm

Procedia PDF Downloads 112
681 Radar Track-based Classification of Birds and UAVs

Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo

Abstract:

In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).

Keywords: birds, classification, machine learning, UAVs

Procedia PDF Downloads 221
680 River Habitat Modeling for the Entire Macroinvertebrate Community

Authors: Pinna Beatrice., Laini Alex, Negro Giovanni, Burgazzi Gemma, Viaroli Pierluigi, Vezza Paolo

Abstract:

Habitat models rarely consider macroinvertebrates as ecological targets in rivers. Available approaches mainly focus on single macroinvertebrate species, not addressing the ecological needs and functionality of the entire community. This research aimed to provide an approach to model the habitat of the macroinvertebrate community. The approach is based on the recently developed Flow-T index, together with a Random Forest (RF) regression, which is employed to apply the Flow-T index at the meso-habitat scale. Using different datasets gathered from both field data collection and 2D hydrodynamic simulations, the model has been calibrated in the Trebbia river (2019 campaign), and then validated in the Trebbia, Taro, and Enza rivers (2020 campaign). The three rivers are characterized by a braiding morphology, gravel riverbeds, and summer low flows. The RF model selected 12 mesohabitat descriptors as important for the macroinvertebrate community. These descriptors belong to different frequency classes of water depth, flow velocity, substrate grain size, and connectivity to the main river channel. The cross-validation R² coefficient (R²𝒸ᵥ) of the training dataset is 0.71 for the Trebbia River (2019), whereas the R² coefficient for the validation datasets (Trebbia, Taro, and Enza Rivers 2020) is 0.63. The agreement between the simulated results and the experimental data shows sufficient accuracy and reliability. The outcomes of the study reveal that the model can identify the ecological response of the macroinvertebrate community to possible flow regime alterations and to possible river morphological modifications. Lastly, the proposed approach allows extending the MesoHABSIM methodology, widely used for the fish habitat assessment, to a different ecological target community. Further applications of the approach can be related to flow design in both perennial and non-perennial rivers, including river reaches in which fish fauna is absent.

Keywords: ecological flows, macroinvertebrate community, mesohabitat, river habitat modeling

Procedia PDF Downloads 94
679 Association of 1565C/T Polymorphism of Integrin Beta-3 (ITGB3) Gene and Increased Risk for Myocardial Infarction in Patients with Premature Coronary Artery Disease among Iranian Population

Authors: Mehrdad Sheikhvatan, Mohammad Ali Boroumand, Mehrdad Behmanesh, Shayan Ziaee

Abstract:

Contradictory results have been obtained regarding the role of integrin, beta 3 (ITGB3) gene polymorphisms in occurrence of acute myocardial infarction (MI) in patients with coronary artery disease (CAD). Hence, we aimed to assess the association between 1565C/T polymorphism of ITGB3 gene and increased risk for acute MI in patients who suffered premature CAD in Iranian population. Our prospective study included 1000 patients (492 men and 508 women aged 21 to 55 years) referred to Tehran Heart center during a period of four years from 2008 to 2011 with the final diagnosis of premature CAD and classified into two groups with history of MI (n = 461) and without of MI (n = 539). The polymorphism variants were determined by PCR-RFLP technique by entering 10% of randomized samples and then genotyping of the polymorphism was also conducted by High Resolution Melting (HRM) method. Among study samples, 640 were followed with a median follow-up time 45.74 months for determining association of long-term major adverse cardiac events (MACE) and genotypes of polymorphisms. There was no significant difference in the frequency of 1565C/T polymorphism between the MI and non-MI groups. The frequency of wild genotype was 69.2% and 72.2%, the frequency of homozygous genotype was 21.3% and 18.4%, and the frequency of mutant genotype was 9.5% and 9.5%, respectively (p=0.505). Results were also similar when adjusted for covariates in a multivariate logistic regression model. No significant difference was also found in total-MACE free survival rate between the patients with different genotypes of 1565C/T polymorphism in both MI and non-MI group. The carriage of the 1565C/T polymorphism of ITGB3 gene seems unlikely to be a significant risk factor for the development of MI in Iranian patients with premature CAD. The presence of this ITGB3 gene polymorphism may not also predict long-term cardiac events.

Keywords: coronary artery disease, myocardial infarction, gene, integrin, beta 3, polymorphism

Procedia PDF Downloads 399
678 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 55
677 Sports Preference Intervention as a Predictor of Sustainable Participation at Risk Teenagers in Ibadan Metropolis, Ibadan Nigerian

Authors: Felix Olajide Ibikunle

Abstract:

Introductory Statement: Sustainable participation of teenagers in sports requires deliberate and concerted plans and managerial policy rooted in the “philosophy of catch them young.” At risk, teenagers need proper integration into societal aspiration: This direction will go a long way to streamline them into security breaches and attractive nuisance free lifestyles. Basic Methodology: The population consists of children between 13-19 years old. A proportionate sampling size technique of 60% was adopted to select seven zones out of 11 geo-political zones in the Ibadan metropolis. Qualitative information and interview were used to collect needed information. The majority of the teenagers were out of school, street hawkers, motor pack touts and unserious vocation apprentices. These groups have the potential for security breaches in the metropolis and beyond. Five hundred and thirty-four (534) respondents were used for the study. They were drawn from Ojoo, Akingbile and Moniya axis = 72; Agbowo, Ajibode and Apete axis = 74; Akobo, Basorun and Idi-ape axis 79; Wofun, Monatan and Iyana-Church axis = 78; Molete, Oke-ado and Oke-Bola axis = 75; Beere, Odinjo, Elekuro axis = 77; Eleyele, Ologuneru and Alesinloye axis = 79. Major Findings: Multiple regression was used to analyze the independent variables and percentages. The respondents' average age was 15.6 years old, and 100% were male. The instrument (questionnaire) used yielded; sport preference (r = 0.72), intervention (r = 0.68), and sustainable participation (r = 0.70). The relative contributions of sport preference on the participation of at risk teenagers was (F-ratio = 1.067); Intervention contribution of sport on the participation of at risk teenagers = produced (F-ratio of 12.095) was significant while, sustainable participation of at risk teenagers produced (F-ratio = 1.062) was significant. Closing Statement: The respondents’ sport preference stimulated their participation in sports. The intervention exposed at risk-teenagers to coaching, which activated their interest and participation in sports. At the same time, sustainable participation contributed positively to evolving at risk teenagers' participation in their preferred sport.

Keywords: sport, preference, intervention, teenagers, sustainable, participation and risk teenagers

Procedia PDF Downloads 79
676 Analysis of the Role of Population Ageing on Crosstown Roads' Traffic Accidents Using Latent Class Clustering

Authors: N. Casado-Sanz, B. Guirao

Abstract:

The population aged 65 and over is projected to double in the coming decades. Due to this increase, driver population is expected to grow and in the near future, all countries will be faced with population aging of varying intensity and in unique time frames. This is the greatest challenge facing industrialized nations and due to this fact, the study of the relationships of dependency between population aging and road safety is becoming increasingly relevant. Although the deterioration of driving skills in the elderly has been analyzed in depth, to our knowledge few research studies have focused on the road infrastructure and the mobility of this particular group of users. In Spain, crosstown roads have one of the highest fatality rates. These rural routes have a higher percentage of elderly people who are more dependent on driving due to the absence or limitations of urban public transportation. Analysing road safety in these routes is very complex because of the variety of the features, the dispersion of the data and the complete lack of related literature. The objective of this paper is to identify key factors that cause traffic accidents. The individuals under study were the accidents with killed or seriously injured in Spanish crosstown roads during the period 2006-2015. Latent cluster analysis was applied as a preliminary tool for segmentation of accidents, considering population aging as the main input among other socioeconomic indicators. Subsequently, a linear regression analysis was carried out to estimate the degree of dependence between the accident rate and the variables that define each group. The results show that segmenting the data is very interesting and provides further information. Additionally, the results revealed the clear influence of the aging variable in the clusters obtained. Other variables related to infrastructure and mobility levels, such as the crosstown roads layout and the traffic intensity aimed to be one of the key factors in the causality of road accidents.

Keywords: cluster analysis, population ageing, rural roads, road safety

Procedia PDF Downloads 110
675 Application of Sentinel-2 Data to Evaluate the Role of Mangrove Conservation and Restoration on Aboveground Biomass

Authors: Raheleh Farzanmanesh, Christopher J. Weston

Abstract:

Mangroves are forest ecosystems located in the inter-tidal regions of tropical and subtropical coastlines that provide many valuable economic and ecological benefits for millions of people, such as preventing coastal erosion, providing breeding, and feeding grounds, improving water quality, and supporting the well-being of local communities. In addition, mangroves capture and store high amounts of carbon in biomass and soils that play an important role in combating climate change. The decline in mangrove area has prompted government and private sector interest in mangrove conservation and restoration projects to achieve multiple Sustainable Development Goals, from reducing poverty to improving life on land. Mangrove aboveground biomass plays an essential role in the global carbon cycle, climate change mitigation and adaptation by reducing CO2 emissions. However, little information is available about the effectiveness of mangrove sustainable management on mangrove change area and aboveground biomass (AGB). Here, we proposed a method for mapping, modeling, and assessing mangrove area and AGB in two Global Environment Facility (GEF) blue forests projects based on Sentinel-2 Level 1C imagery during their conservation lifetime. The SVR regression model was used to estimate AGB in Tahiry Honko project in Madagascar and the Abu Dhabi Blue Carbon Demonstration Project (Abu Dhabi Emirates. The results showed that mangrove forests and AGB declined in the Tahiry Honko project, while in the Abu Dhabi project increased after the conservation initiative was established. The results provide important information on the impact of mangrove conservation activities and contribute to the development of remote sensing applications for mapping and assessing mangrove forests in blue carbon initiatives.

Keywords: blue carbon, mangrove forest, REDD+, aboveground biomass, Sentinel-2

Procedia PDF Downloads 72
674 Developing Countries and the Entrepreneurial Intention of Postgraduates: A Study of Nigerian Postgraduates in UUM

Authors: Mahmoud Ahmad Mahmoud

Abstract:

The surge in unemployment among nations and the understanding of the important role played by entrepreneurship in job creation by researchers and policy makers have steered to the postulation that entrepreneurship activities can be spurred through the development of entrepreneurial intentions. Notwithstanding, entrepreneurial intention studies are very scarce in the developing world especially in the African continent. Even among the developed countries, studies of entrepreneurial intention were mostly focused on the undergraduate candidates. This paper therefore, aimed at filling the gap by employing the descriptive quantitative survey method to examine the entrepreneurial intention of 158 Nigerian postgraduate candidates of Universiti Utara Malaysia (UUM), comprising 46 Masters and 112 PhD candidates who are studying in the College of Business (COB), College of Arts and Sciences (CAS) and College of Legal, Government and International Studies (COLGIS), the theory of planned behaviour (TPB) model was used due its reputable validity, with attitudes, subjective norms and perceived behavioural control as the independent variables. Preliminary analysis and data screening were conducted which qualifies the data to the multivariate analysis assumptions. The reliability test was performed using the Cronbach Alpha method which shows all variables as reliable with a value of >0.70. However, the data is free from the multicollinearity issue with all factors in the Pearson correlation having <0.9 value and the VIF having <10. Regression analysis has shown the sufficiency and predictive capability of the TPB model to entrepreneurship intention with attitude, subjective norms and perceived behavioural control being positively and significantly related to the entrepreneurial intention of Nigerian postgraduates. Considering the Beta values, perceived behavioural control emerged as the strongest factor that influences the postgraduates entrepreneurial intention. Developing countries are therefore, recommended to make efforts in redesigning their entrepreneurship development policies to fit candidates of the highest level of academia. Further studies should replicate in a larger sample that comprises more than one university and more than one developing country.

Keywords: attitude, entrepreneurial intention, Nigeria, perceived behavioral control, postgraduates, subjective norms

Procedia PDF Downloads 432
673 Identification of Rurban Centres in Determining Regional Development in the Hinterland of Koch Bihar, West Bengal, India

Authors: Ballari Bagchi

Abstract:

The dynamism ingrained in the process of urban-rural integration is manifested in the emergence of rurban settlements, referring to areas that combine the characteristics of agricultural activities found in rural zones with those of suburban living areas and industrialised zones. The concept of rurbanisation refers to the idea of introducing urban conveniences and opportunities, to rural areas in an attempt to stem rural urban migration. In the backdrop of the worldwide problem of disharmonised urban-rural dependence and the associated problems in urban and rural areas, the present study seeks to explore the potentialities of few settlements having a blend of rural and urban characteristics in the urban field of Koch Bihar. The prime concern of the present paper is three-fold: (i) to identify the rurban centres, (ii) to analyse the spatial integration of these identified centres with the rural areas situated in the urban periphery, and (iii) to suggest the necessities to be introduced in these settlements. The methodology applied here includes rurban index, gravity model, and functional classification of rurban centres, correlation and regression analysis and cartographic representation of data collected through primary and secondary sources. The investigation has identified a number of settlements potentially viable to be termed as rurban centres which may render services to the other less equipped rural areas in all aspects of life and thereby would lessen the burden on Koch Bihar urban centre. The levels of infrastructure of these settlements should be such that it might even attract the urban population in a reverse direction. The villages belonging to the lower rung of these service settlements would require metalled road connection with these intermediate settlements in addition to their connection with the core town. That is to say, a proper policy needs to be adopted in this regard to furnish these settlements with required infrastructures for serving their own population as well as the population of other villages. As a consequence of that, the idea of a well-coordinated settlement hierarchy may emerge in future.

Keywords: Hinterland, rurban, settlement hierarchy, urban-rural integration

Procedia PDF Downloads 313
672 Variations in Heat and Cold Waves over Southern India

Authors: Amit G. Dhorde

Abstract:

It is now well established that the global surface air temperatures have increased significantly during the period that followed the industrial revolution. One of the main predictions of climate change is that the occurrences of extreme weather events will increase in future. In many regions of the world, high-temperature extremes have already started occurring with rising frequency. The main objective of the present study is to understand spatial and temporal changes in days with heat and cold wave conditions over southern India. The study area includes the region of India that lies to the south of Tropic of Cancer. To fulfill the objective, daily maximum and minimum temperature data for 80 stations were collected for the period 1969-2006 from National Data Center of India Meteorological Department. After assessing the homogeneity of data, 62 stations were finally selected for the study. Heat and cold waves were classified as slight, moderate and severe based on the criteria given by Indias' meteorological department. For every year, numbers of days experiencing heat and cold wave conditions were computed. This data was analyzed with linear regression to find any existing trend. Further, the time period was divided into four decades to investigate the decadal frequency of the occurrence of heat and cold waves. The results revealed that the average annual temperature over southern India shows an increasing trend, which signifies warming over this area. Further, slight cold waves during winter season have been decreasing at the majority of the stations. The moderate cold waves also show a similar pattern at the majority of the stations. This is an indication of warming winters over the region. Besides this analysis, other extreme indices were also analyzed such as extremely hot days, hot days, very cold nights, cold nights, etc. This analysis revealed that nights are becoming warmer and days are getting warmer over some regions too.

Keywords: heat wave, cold wave, southern India, decadal frequency

Procedia PDF Downloads 128
671 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 127