Search results for: elastic solid
471 A Multi-Family Offline SPE LC-MS/MS Analytical Method for Anionic, Cationic and Non-ionic Surfactants in Surface Water
Authors: Laure Wiest, Barbara Giroud, Azziz Assoumani, Francois Lestremau, Emmanuelle Vulliet
Abstract:
Due to their production at high tonnages and their extensive use, surfactants are contaminants among those determined at the highest concentrations in wastewater. However, analytical methods and data regarding their occurrence in river water are scarce and concern only a few families, mainly anionic surfactants. The objective of this study was to develop an analytical method to extract and analyze a wide variety of surfactants in a minimum of steps, with a sensitivity compatible with the detection of ultra-traces in surface waters. 27 substances, from 12 families of surfactants, anionic, cationic and non-ionic were selected for method optimization. Different retention mechanisms for the extraction by solid phase extraction (SPE) were tested and compared in order to improve their detection by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The best results were finally obtained with a C18 grafted silica LC column and a polymer cartridge with hydrophilic lipophilic balance (HLB), and the method developed allows the extraction of the three types of surfactants with satisfactory recoveries. The final analytical method comprised only one extraction and two LC injections. It was validated and applied for the quantification of surfactants in 36 river samples. The method's limits of quantification (LQ), intra- and inter-day precision and accuracy were evaluated, and good performances were obtained for the 27 substances. As these compounds have many areas of application, contaminations of instrument and method blanks were observed and considered for the determination of LQ. Nevertheless, with LQ between 15 and 485 ng/L, and accuracy of over 80%, this method was suitable for monitoring surfactants in surface waters. Application on French river samples revealed the presence of anionic, cationic and non-ionic surfactants with median concentrations ranging from 24 ng/L for octylphenol ethoxylates (OPEO) to 4.6 µg/L for linear alkylbenzenesulfonates (LAS). The analytical method developed in this work will therefore be useful for future monitoring of surfactants in waters. Moreover, this method, which shows good performances for anionic, non-ionic and cationic surfactants, may be easily adapted to other surfactants.Keywords: anionic surfactant, cationic surfactant, LC-MS/MS, non-ionic surfactant, SPE, surface water
Procedia PDF Downloads 145470 Leaching of Metal Cations from Basic Oxygen Furnace (BOF) Steelmaking Slag Immersed in Water
Authors: Umashankar Morya, Somnath Basu
Abstract:
Metalloids like arsenic are often present as contaminants in industrial effluents. Removal of the same is essential before the safe discharge of the wastewater into the environment. Otherwise, these pollutants tend to percolate into aquifers over a period of time and contaminate drinking water sources. Several adsorbents, including metal powders, carbon nanotubes and zeolites, are being used for this purpose, with varying degrees of success. However, most of these solutions are not only costly but also not always readily available. This restricts their use, especially among financially weaker communities. Slag generated globally from primary steelmaking operations exceeds 200 billion kg every year. Some of it is utilized for applications like road construction, filler in reinforced concrete, railway track ballast and recycled into iron ore agglomeration processes. However, these usually involve low-value addition, and a significant amount of the slag still ends up in a landfill. However, there is a strong possibility that the constituents in the steelmaking slag may immobilize metalloid contaminants present in wastewater through a combination of adsorption and precipitation of insoluble product(s). Preliminary experiments have already indicated that exposure to basic oxygen steelmaking slag does reduce pollutant concentration in wastewater. In addition, the slag is relatively inexpensive and available in large quantities and in several countries across the world. Investigations on the mechanism of interactions at the water-solid interfaces have been in progress for some time. However, at the same time, there are concerns about the possibility of leaching of metal ions from the slag particles in concentrations greater than what exists in the water bodies where the “treated” wastewater would eventually be discharged. The effect of such leached ions on the aquatic flora and fauna is yet uncertain. This has prompted the present investigation, which focuses on the leaching of metal ions from steelmaking slag particles in contact with wastewater, and the influence of these ions on the removal of contaminant species. Experiments were carried out to quantify the leaching behavior of different ionic species upon exposure of the slag particles to simulated wastewater, both with and without specific metalloid contaminants.Keywords: slag, water, metalloid, heavy metal, wastewater
Procedia PDF Downloads 75469 Thermal Regulation of Channel Flows Using Phase Change Material
Authors: Kira Toxopeus, Kamran Siddiqui
Abstract:
Channel flows are common in a wide range of engineering applications. In some types of channel flows, particularly the ones involving chemical or biological processes, the control of the flow temperature is crucial to maintain the optimal conditions for the chemical reaction or to control the growth of biological species. This often becomes an issue when the flow experiences temperature fluctuations due to external conditions. While active heating and cooling could regulate the channel temperature, it may not be feasible logistically or economically and is also regarded as a non-sustainable option. Thermal energy storage utilizing phase change material (PCM) could provide the required thermal regulation sustainably by storing the excess heat from the channel and releasing it back as required, thus regulating the channel temperature within a range in the proximity of the PCM melting temperature. However, in designing such systems, the configuration of the PCM storage within the channel is critical as it could influence the channel flow dynamics, which would, in turn, affect the heat exchange between the channel fluid and the PCM. The present research is focused on the investigation of the flow dynamical behavior in the channel during heat transfer from the channel flow to the PCM thermal energy storage. Offset vertical columns in a narrow channel were used that contained the PCM. Two different column shapes, square and circular, were considered. Water was used as the channel fluid that entered the channel at a temperature higher than that of the PCM melting temperature. Hence, as the water was passing through the channel, the heat was being transferred from the water to the PCM, causing the PCM to store the heat through a phase transition from solid to liquid. Particle image velocimetry (PIV) was used to measure the two-dimensional velocity field of the channel flow as it flows between the PCM columns. Thermocouples were also attached to the PCM columns to measure the PCM temperature at three different heights. Three different water flow rates (0.5, 0.75 and 1.2 liters/min) were considered. At each flow rate, experiments were conducted at three different inlet water temperatures (28ᵒC, 33ᵒC and 38ᵒC). The results show that the flow rate and the inlet temperature influenced the flow behavior inside the channel.Keywords: channel flow, phase change material, thermal energy storage, thermal regulation
Procedia PDF Downloads 140468 The Influence of Organic Waste on Vegetable Nutritional Components and Healthy Livelihood, Minna, Niger State, Nigeria
Authors: A. Abdulkadir, A. A. Okhimamhe, Y. M. Bello, H. Ibrahim, D. H. Makun, M. T. Usman
Abstract:
Household waste form a larger proportion of waste generated across the state, accumulation of organic waste is an apparent problem and the existing dump sites could be overstressed. Niger state has abundant arable land and water resources thus should be one of the highest producers of agricultural crops in the country. However, the major challenge to agricultural sector today is the loss of soil nutrient coupled with high cost of fertilizer. These have continued to increase the use of fertilizer and decomposed solid waste for enhancing agricultural yield, which have varying effects on the soil as well a threat to human livelihood. Consequently, vegetable yield samples from poultry droppings decomposed household waste manure, NPK treatments and control from each replication were subjected to proximate analysis to determine the nutritional and anti-nutritional component as well as heavy metal concentration. Data collected was analyzed using SPSS software and Randomized complete Block Design means were compared. The result shows that the treatments do not devoid the concentrations of any nutritional components while the anti-nutritional analysis proved that NPK had higher oxalate content than control and organic treats. The concentration of lead and cadmium are within safe permissible level while the mercury level exceeded the FAO/WHO maximum permissible limit for the entire treatments depicts the need for urgent intervention to minimize mercury levels in soil and manure in order to mitigate its toxic effect. Thus, eco-agriculture should be widely accepted and promoted by the stakeholders for soil amendment, higher yield, strategies for sustainable environmental protection, food security, poverty eradication, attainment of sustainable development and healthy livelihood.Keywords: anti-nutritional, healthy livelihood, nutritional waste, organic waste
Procedia PDF Downloads 380467 Carbon-Encapsulated Iron Nanoparticles for Hydrogen Sulfide Removal
Authors: Meriem Abid, Erika Oliveria-Jardim, Andres Fullana, Joaquin Silvestre-Albero
Abstract:
The rapid industrial development associated with the increase of volatile organic compounds (VOCs) has seriously impacted the environment. Among VOCs, hydrogen sulfide (H₂S) is known as a highly toxic, malodorous, flammable, and corrosive gas, which is emitted from diverse chemical processes, including industrial waste-gas streams, natural gas processing, and biogas purification. The high toxicity, corrosively, and very characteristic odor threshold of H2S call for urgent development of efficient desulfurization processes from the viewpoint of environmental protection and resource regeneration. In order to reduce H₂S emissions, effective technologies for have been performed. The general method of H₂S removal included amine aqueous solution, adsorption process, biological methods, and fixed-bed solid catalytic oxidation processes. Ecologically and economically, low-temperature direct oxidation of H₂S to elemental sulfur using catalytic oxidation is the preferred approach for removing H₂S-containing gas streams. A large number of catalysts made from carbon, metal oxides, clay, and others, have been studied extensively for this application. In this sense, activated carbon (AC) is an attractive catalyst for H₂S removal because it features a high specific surface area, diverse functional groups, low cost, durability, and high efficiency. It is interesting to stand out that AC is modified using metal oxides to promote the efficiency of H₂S removal and to enhance the catalytic performance. Based on these premises, the main goal of the present study is the evaluation of the H₂S adsorption performance in carbon-encapsulated iron nanoparticles obtained from an olive mill, thermally treated at 600, 800 and 1000 ºC temperatures under anaerobic conditions. These results anticipate that carbon-encapsulated iron nanoparticles exhibit a promising performance for the H₂S removal up to 360 mg/g.Keywords: H₂S removal, catalytic oxidation, carbon encapsulated iron, olive mill wastewater
Procedia PDF Downloads 87466 Development of Hydrodynamic Drag Calculation and Cavity Shape Generation for Supercavitating Torpedoes
Authors: Sertac Arslan, Sezer Kefeli
Abstract:
In this paper, firstly supercavitating phenomenon and supercavity shape design parameters are explained and then drag force calculation methods of high speed supercavitating torpedoes are investigated with numerical techniques and verified with empirical studies. In order to reach huge speeds such as 200, 300 knots for underwater vehicles, hydrodynamic hull drag force which is proportional to density of water (ρ) and square of speed should be reduced. Conventional heavy weight torpedoes could reach up to ~50 knots by classic underwater hydrodynamic techniques. However, to exceed 50 knots and reach about 200 knots speeds, hydrodynamic viscous forces must be reduced or eliminated completely. This requirement revives supercavitation phenomena that could be implemented to conventional torpedoes. Supercavitation is the use of cavitation effects to create a gas bubble, allowing the torpedo to move at huge speed through the water by being fully developed cavitation bubble. When the torpedo moves in a cavitation envelope due to cavitator in nose section and solid fuel rocket engine in rear section, this kind of torpedoes could be entitled as Supercavitating Torpedoes. There are two types of cavitation; first one is natural cavitation, and second one is ventilated cavitation. In this study, disk cavitator is modeled with natural cavitation and supercavitation phenomenon parameters are studied. Moreover, drag force calculation is performed for disk shape cavitator with numerical techniques and compared via empirical studies. Drag forces are calculated with computational fluid dynamics methods and different empirical methods. Numerical calculation method is developed by comparing with empirical results. In verification study cavitation number (σ), drag coefficient (CD) and drag force (D), cavity wall velocity (UKeywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavity flows
Procedia PDF Downloads 188465 Al-Azhar’s Ideological Capacity to Counter Extremism
Authors: Dina Tawfic, Robert Hassan
Abstract:
The current chapter addresses Al-Azhar's strategy to counter extremism in tandem with reflecting on the ideology of the Islamic establishment itself. The topic is motivated by the fact that some of the Western governments have been relying on Al-Azhar to counter the ideology of Islamist radicalism and violent extremism, in particular during the rise of the Islamic State in Syria and Iraq (known as ISIS/ ISIL/ Daesh) in 2014/2015. In his visit to Egypt in June 2016, Brett McGurk, the then U.S. envoy for the global coalition to counter ISIS, commended Al-Azhar’s “intellectual and reforming role” in refuting the ideology of extremism. On the other hand, Egyptian liberal intellectuals, such as Farag Fouda (1945- 1992) and Nasr Hamed Abu Zeid (1943-2010), had always questioned the ideological capability of Al-Azhar to counter extremism, citing the rigidity and resistance of the Islamic establishment to carry out genuine reformation. This chapter aims to discuss the following research questions: what is the strategy of Al-Azhar to counter extremism? Does Al-Azhar have a solid strategy to combat online propaganda produced by violent extremist groups? Is it applicable to identify Al-Azhar ideological identity? and is it capable of countering extremism? To answer these questions, I conducted intensive interviews with seven senior scholars and officials at Al-Azhar and the Endowments ministry from September to December 2020. Using a qualitative approach as a backdrop, this project uses semi-structured interviews to collect data. Participants were briefed on the purpose of the study and consented to be interviewed and to record their interviews. Some of the participants chose to conceal their names. All the interviews were conducted in Arabic via Zoom. The researcher then transcribed and translated the interviews into English. A purposive sample is used to select the seven interviewees, based on their prominence and experience in the field of counter-extremism and Al-Azhar affairs. The researcher uses a snowball sample to select the sample, in which a personal contact recommends other officials within the establishment.Keywords: Al-Azhar, Egypt, Counter-Extremism, Political Islam, Ideology
Procedia PDF Downloads 222464 Microfluidic Chambers with Fluid Walls for Cell Biology
Authors: Cristian Soitu, Alexander Feuerborn, Cyril Deroy, Alfonso Castrejon-Pita, Peter R. Cook, Edmond J. Walsh
Abstract:
Microfluidics now stands as an academically mature technology after a quarter of a century research activities have delivered a vast array of proof of concepts for many biological workflows. However, translation to industry remains poor, with only a handful of notable exceptions – e.g. digital PCR, DNA sequencing – mainly because of biocompatibility issues, limited range of readouts supported or complex operation required. This technology exploits the domination of interfacial forces over gravitational ones at the microscale, replacing solid walls with fluid ones as building blocks for cell micro-environments. By employing only materials used by biologists for decades, the system is shown to be biocompatible, and easy to manufacture and operate. The method consists in displacing a continuous fluid layer into a pattern of isolated chambers overlaid with an immiscible liquid to prevent evaporation. The resulting fluid arrangements can be arrays of micro-chambers with rectangular footprint, which use the maximum surface area available, or structures with irregular patterns. Pliant, self-healing fluid walls confine volumes as small as 1 nl. Such fluidic structures can be reconfigured during the assays, giving the platform an unprecedented level of flexibility. Common workflows in cell biology are demonstrated – e.g. cell growth and retrieval, cloning, cryopreservation, fixation and immunolabeling, CRISPR-Cas9 gene editing, and proof-of-concept drug tests. This fluid-shaping technology is shown to have potential for high-throughput cell- and organism-based assays. The ability to make and reconfigure on-demand microfluidic circuits on standard Petri dishes should find many applications in biology, and yield more relevant phenotypic and genotypic responses when compared to standard microfluidic assays.Keywords: fluid walls, micro-chambers, reconfigurable, freestyle
Procedia PDF Downloads 193463 A Review on Investigating the Relations between Water Harvesting and Water Conflicts
Authors: B. Laurita
Abstract:
The importance of Water Harvesting (WH) as an effective mean to deal with water scarcity is universally recognized. The collection and storage of rainwater, floodwater or quick runoff and their conversion to productive uses can ensure water availability for domestic and agricultural use, enabling a lower exploitation of the aquifer, preventing erosion events and providing significant ecosystem services. At the same time, it has been proven that it can reduce the insurgence of water conflicts if supported by a cooperative process of planning and management. On the other hand, the construction of water harvesting structures changes the hydrological regime, affecting upstream-downstream dynamics and changing water allocation, often causing contentions. Furthermore, dynamics existing between water harvesting and water conflict are not properly investigated yet. Thus, objective of this study is to analyze the relations between water harvesting and the insurgence of water conflicts, providing a solid theoretical basis and foundations for future studies. Two search engines were selected in order to perform the study: Google Scholar and Scopus. Separate researches were conducted on the mutual influences between water conflicts and the four main water harvesting techniques: rooftop harvesting, surface harvesting, underground harvesting, runoff harvesting. Some of the aforementioned water harvesting techniques have been developed and implemented on scales ranging from the small, household-sided ones, to gargantuan dam systems. Instead of focusing on the collisions related to large-scale systems, this review is aimed to look for and collect examples of the effects that the implementation of small water harvesting systems has had on the access to the water resource and on water governance. The present research allowed to highlight that in the studies that have been conducted up to now, water harvesting, and in particular those structures that allow the collection and storage of water for domestic use, is usually recognized as a positive, palliative element during contentions. On the other hand, water harvesting can worsen and, in some cases, even generate conflicts for water management. This shows the necessity of studies that consider both benefits and negative influences of water harvesting, analyzing its role respectively as triggering or as mitigating factor of conflicting situations.Keywords: arid areas, governance, water conflicts, water harvesting
Procedia PDF Downloads 203462 Energy Conversion for Sewage Sludge by Microwave Heating Pyrolysis and Gasification
Authors: Young Nam Chun, Soo Hyuk Yun, Byeo Ri Jeong
Abstract:
The recent gradual increase in the energy demand is mostly met by fossil fuel, but the research on and development of new alternative energy sources is drawing much attention due to the limited fossil fuel supply and the greenhouse gas problem. Biomass is an eco-friendly renewable energy that can achieve carbon neutrality. The conversion of the biomass sludge wastes discharged from a wastewater treatment plant to clean energy is an important green energy technology in an eco-friendly way. In this NRF study, a new type of microwave thermal treatment was developed to apply the biomass-CCS technology to sludge wastes. For this, the microwave dielectric heating characteristics were examined to investigate the energy conversion mechanism for the combined drying-pyrolysis/gasification of the dewatered wet sludge. The carbon dioxide gasification was tested using the CO2 captured from the pre-combustion capture process. In addition, the results of the pyrolysis and gasification test with the wet sludge were analyzed to compare the microwave energy conversion results with the results of the use of the conventional heating method. Gas was the largest component of the product of both pyrolysis and gasification, followed by sludge char and tar. In pyrolysis, the main components of the producer gas were hydrogen and carbon monoxide, and there were some methane and hydrocarbons. In gasification, however, the amount of carbon monoxide was greater than that of hydrogen. In microwave gasification, a large amount of heavy tar was produced. The largest amount of benzene among light tar was produced in both pyrolysis and gasification. NH3 and HCN which are the precursors of NOx, generated as well. In microwave heating, the sludge char had a smooth surface, like that of glass, and in the conventional heating method with an electric furnace, deep cracks were observed in the sludge char. This indicates that the gas obtained from the microwave pyrolysis and gasification of wet sewage sludge can be used as fuel, but the heavy tar and NOx precursors in the gas must be treated. Sludge char can be used as solid fuel or as a tar reduction adsorbent in the process if necessary. This work supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1R1A2A2A03003044).Keywords: microwave heating, pyrolysis gasification, precombustion CCS, sewage sludge, biomass energy
Procedia PDF Downloads 321461 Impact of a Professional Learning Community on the Continuous Professional Development of Teacher Educators in Myanmar
Authors: Moet Moet Myint lay
Abstract:
Professional learning communities provide ongoing professional development for teachers, where they become learning leaders and actively participate in school improvement. The development of professional knowledge requires a significant focus on professional competence in the work of teachers, and a solid foundation of professional knowledge and skills is necessary for members of society to become intelligent members. Continuing professional development (CPD) plays a vital role in improving educational outcomes, as its importance has been proven over the years. This article explores the need for CPD for teachers in Myanmar and the utility of professional learning communities in improving teacher quality. This study aims to explore a comprehensive understanding of professional learning communities to support the continuing professional development of teacher educators in improving the quality of education. The research questions are: (1) How do teacher educators in Myanmar understand the concept of professional learning communities for continuing professional development? (2) What CPD training is required for all teachers in teachers' colleges? Quantitative research methods were used in this study. Survey data were collected from 50 participants (teacher trainers) from five educational institutions. The analysis shows that professional learning communities when done well, can have a lasting impact on teacher quality. Furthermore, the creation of professional learning communities is the best indicator of professional development in existing education systems. Some research suggests that teacher professional development is closely related to teacher professional skills and school improvement. As a result of the collective learning process, teachers gain a deeper understanding of the subject matter, increase their knowledge, and develop their professional teaching skills. This will help improve student performance and school quality in the future. The lack of clear understanding and knowledge about PLC among school leaders and leads teachers to believe that PLC activities are not beneficial. Lack of time, teacher accountability, leadership skills, and negative attitudes of participating teachers were the most frequently cited challenges in implementing PLCs. As a result of these findings, educators and stakeholders can use them to implement professional learning communities.Keywords: professional learning communities, continuing professional development, teacher education, competence, school improvement
Procedia PDF Downloads 58460 Design and Synthesis of Fully Benzoxazine-Based Porous Organic Polymer Through Sonogashira Coupling Reaction for CO₂ Capture and Energy Storage Application
Authors: Mohsin Ejaz, Shiao-Wei Kuo
Abstract:
The growing production and exploitation of fossil fuels have placed human society in serious environmental issues. As a result, it's critical to design efficient and eco-friendly energy production and storage techniques. Porous organic polymers (POPs) are multi-dimensional porous network materials developed through the formation of covalent bonds between different organic building blocks that possess distinct geometries and topologies. POPs have tunable porosities and high surface area making them a good candidate for an effective electrode material in energy storage applications. Herein, we prepared a fully benzoxazine-based porous organic polymers (TPA–DHTP–BZ POP) through sonogashira coupling of dihydroxyterephthalaldehyde (DHPT) and triphenylamine (TPA) containing benzoxazine (BZ) monomers. Firstly, both BZ monomers (TPA-BZ-Br and DHTP-BZ-Ea) were synthesized by three steps, including Schiff base, reduction, and mannich condensation reaction. Finally, the TPA–DHTP–BZ POP was prepared through the sonogashira coupling reaction of brominated monomer (TPA-BZ-Br) and ethynyl monomer (DHTP-BZ-Ea). Fourier transform infrared (FTIR) and solid-state nuclear magnetic resonance (NMR) spectroscopy confirmed the successful synthesis of monomers as well as POP. The porosity of TPA–DHTP–BZ POP was investigated by the N₂ absorption technique and showed a Brunauer–Emmett–Teller (BET) surface area of 196 m² g−¹, pore size 2.13 nm and pore volume of 0.54 cm³ g−¹, respectively. The TPA–DHTP–BZ POP experienced thermal ring-opening polymerization, resulting in poly (TPA–DHTP–BZ) POP having strong inter and intramolecular hydrogen bonds formed by phenolic groups and Mannich bridges, thereby enhancing CO₂ capture and supercapacitive performance. The poly(TPA–DHTP–BZ) POP demonstrated a remarkable CO₂ capture of 3.28 mmol g−¹ and a specific capacitance of 67 F g−¹ at 0.5 A g−¹. Thus, poly(TPA–DHTP–BZ) POP could potentially be used for energy storage and CO₂ capture applications.Keywords: porous organic polymer, benzoxazine, sonogashira coupling, CO₂, supercapacitor
Procedia PDF Downloads 73459 Design and Development of an Innovative MR Damper Based on Intelligent Active Suspension Control of a Malaysia's Model Vehicle
Authors: L. Wei Sheng, M. T. Noor Syazwanee, C. J. Carolyna, M. Amiruddin, M. Pauziah
Abstract:
This paper exhibits the alternatives towards active suspension systems revised based on the classical passive suspension system to improve comfort and handling performance. An active Magneto rheological (MR) suspension system is proposed as to explore the active based suspension system to enhance performance given its freedom to independently specify the characteristics of load carrying, handling, and ride quality. Malaysian quarter car with two degrees of freedom (2DOF) system is designed and constructed to simulate the actions of an active vehicle suspension system. The structure of a conventional twin-tube shock absorber is modified both internally and externally to comprehend with the active suspension system. The shock absorber peripheral structure is altered to enable the assembling and disassembling of the damper through a non-permanent joint whereby the stress analysis of the designed joint is simulated using Finite Element Analysis. Simulation on the internal part where an electrified copper coil of 24AWG is winded is done using Finite Element Method Magnetics to measure the magnetic flux density inside the MR damper. The primary purpose of this approach is to reduce the vibration transmitted from the effects of road surface irregularities while maintaining solid manoeuvrability. The aim of this research is to develop an intelligent control system of a consecutive damping automotive suspension system. The ride quality is improved by means of the reduction of the vertical body acceleration caused by the car body when it experiences disturbances from speed bump and random road roughness. Findings from this research are expected to enhance the quality of ride which in return can prevent the deteriorating effect of vibration on the vehicle condition as well as the passengers’ well-being.Keywords: active suspension, FEA, magneto rheological damper, Malaysian quarter car model, vibration control
Procedia PDF Downloads 209458 The Visualization of Hydrological and Hydraulic Models Based on the Platform of Autodesk Civil 3D
Authors: Xiyue Wang, Shaoning Yan
Abstract:
Cities in China today is faced with an increasingly serious river ecological crisis accompanying with the development of urbanization: waterlogging on account of the fragmented urban natural hydrological system; the limited ecological function of the hydrological system caused by a destruction of water system and waterfront ecological environment. Additionally, the eco-hydrological processes of rivers are affected by various environmental factors, which are more complex in the context of urban environment. Therefore, efficient hydrological monitoring and analysis tools, accurate and visual hydrological and hydraulic models are becoming more important basis for decision-makers and an important way for landscape architects to solve urban hydrological problems, formulating sustainable and forward-looking schemes. The study mainly introduces the river and flood analysis model based on the platform of Autodesk Civil 3D. Taking the Luanhe River in Qian'an City of Hebei Province as an example, the 3D models of the landform, river, embankment, shoal, pond, underground stream and other land features were initially built, with which the water transfer simulation analysis, river floodplain analysis, and river ecology analysis were carried out, ultimately the real-time visualized simulation and analysis of rivers in various hypothetical scenarios were realized. Through the establishment of digital hydrological and hydraulic model, the hydraulic data can be accurately and intuitively simulated, which provides basis for rational water system and benign urban ecological system design. Though, the hydrological and hydraulic model based on Autodesk Civil3D own its boundedness: the interaction between the model and other data and software is unfavorable; the huge amount of 3D data and the lack of basic data restrict the accuracy and application range. The hydrological and hydraulic model based on Autodesk Civil3D platform provides more possibility to access convenient and intelligent tool for urban planning and monitoring, a solid basis for further urban research and design.Keywords: visualization, hydrological and hydraulic model, Autodesk Civil 3D, urban river
Procedia PDF Downloads 297457 The Implication of Islamic Finance and Banking for the Sustainable Development in Bangladesh
Authors: Khan Md. Abdus Subhan, Rabeya Bushra
Abstract:
Bangladesh has already seen significant growth in Islamic banking and finance, contributing to the rapid expansion of this sector in the global banking and finance industry. The objective of this study is to analyse the Islamic finance and banking industry's ability to contribute to sustainable development in Bangladesh. It aims to assess the current state, potential, and limitations of Islamic banking and finance in the country. Bangladesh has significant growth potential for Islamic banking and finance. However, addressing several challenges is imperative. These challenges include the absence of a well-developed infrastructure for Islamic banking and finance, a lack of a solid legal framework, limited attention from the central bank, the absence of an Islamic capital market, and a shortage of experts in Sharia law as well as public awareness. Bangladesh, a nation characterized by a primarily Muslim populace, has acknowledged the importance of Islamic finance and banking in promoting sustainable development. Islamic banking principles advocate for ethical practices, risk sharing, and the avoidance of interest-based transactions. This article examines the impact of Islamic finance and banking on promoting sustainable development in Bangladesh and emphasizes its capacity to tackle socio-economic difficulties. The Islamic banking sector, as a trailblazer in funding sustainable development, has the potential to play a significant role in facilitating the shift toward a circular economy. According to Shari'ah rules and the Sustainable Development Goals (SDGs), Islamic finance principles will help change the linear economy into a circular one. They will also provide a strong framework and a lot of funding sources. This study aims to offer crucial recommendations and techniques for the successful implementation of Islamic finance institutions in Bangladesh. The study will use quantitative research methodology, collecting data from secondary sources. This research offers a thorough understanding of the reasoning for the payment of Zakat and its socio-economic importance. Furthermore, the study provides significant insights that could assist Bangladeshi policymakers and governments in implementing Islamic financing systems.Keywords: sustainable development, Islamic fintech, Islamic banking, Bangladesh
Procedia PDF Downloads 39456 Emblica officinalis Fruit Extract Ameliorates Cisplatin-Induced Nephrotoxicity in Experimental Rats
Authors: Prerna Kalra, Surender Singh
Abstract:
Cisplatin is the most common chemotherapeutic agent used in different solid tumors, but its main limiting factor is dose-dependent nephrotoxicity by generating reactive oxygen species, by stimulating inflammatory and apoptotic pathways. Additional adjuvant therapies to decrease the toxicity of this chemotherapeutic drug are essential. This study was designed to evaluate the protective role of Emblica officinalis Geartn (Indian gooseberry) against cisplatin induced nephrotoxicity. Emblica officinalis was orally administered to Wistar rats (n=6) for 10 days in 50, 100 and 200mg/kg body weight. On day 7, 8mg/kg of cisplatin was administered intra-peritoneally to rats in all groups. Serum creatinine, blood urea nitrogen and antioxidant levels were measured on day10. The renal damage was evaluated by histopathological and transmission electron microscopy. We found that 200mg/kg dose of Emblica officinalis significantly inhibited the elevation of biochemical parameters i.e. serum creatinine, blood urea nitrogen, oxidant stress marker (malondialdehyde) and increased the reduced levels of antioxidant marker (endogenous glutathione and superoxide dismutase). Cisplatin treated rats have shown acute tubular necrosis and infiltration of inflammatory cells in rat kidney which was reversed after treating the animals with Emblica officinalis in the treatment group. In ultrastructural changes cisplatin treated group showed the damaged mitochondria (M) with dissolved cristae and large number of lysosomes (L) and vacuole (V) formation in tubular epithelial cells. EOE administered group showed visible cristae formation and sign of autophagy vacuoles at a dose of 200mg/kg. Further in-silico studies revealed that ellagic acid is responsible for its nephroprotective effect. The above findings conclude that the Emblica officinalis may be used as an adjuvant therapy in cisplatin induced nephrotoxicity.Keywords: antioxidant, cisplatin, Emblica officinalis, in silico, nephrotoxicity
Procedia PDF Downloads 291455 Preparation of Tempeh Spores Powder
Authors: Jaruwan Chutrtong, Tanakwan Bussabun
Abstract:
Study production of tempeh inoculums powder by freeze-drying comparison with dry at 50°C and the sun bask for developing efficient tempeh inoculums for tempeh producing. Rhizopus oligosporus in PDA slant cultures was incubated at 30°C for 3-5 days until spores and mycelium. Preparation spores suspension with sterilized water and then count the number of started spores. Fill spores suspension in Rice flour and soy flour, mixed with water (in the ratio 10: 7), which is steamed and sterilized at 121°C 15min. Incubated at room temperature for 4 days, count number of spores. Then take the progressive infection and full spore dough to dry at 50°C, sun bask, and lyophilize. Grind to powder. Then pack in plastic bags, stored at 5°C. To investigate quality of inoculums which use different methods, tempeh was fermented every 4 weeks for 24 weeks of the experiment. The result found that rice flour is not suitable to use as raw material in the production of powdered spores. Fungi can growth rarely. Less number of spores and requires more time than soy flour. For drying method, lyophilization is the least possible time. Samples from this method are very hard and very dark and harder to grind than other methods. Drying at 50°C takes longer time than lyophilization but can also set time use for drying. Character of the dry samples is hard solid and brown color, but can be grinded easier. The sun drying takes the longest time, can’t determine the exact time. When the spore powder was used to fermented tempeh immediately, product has similar characters as which use spores that was fresh prepared. The tempeh has normal quality. When spore powder stored at low temperature, tempeh from storage spore in weeks 4, 8 and 12 is still normal. Time spending in production was close to the production of fresh spores. After storage spores for 16 and 20 weeks, tempeh is still normal but growth and sporulation were take longer time than usual (about 6 hours). At 24 week storage, fungal growth is not good, made tempeh looks inferior to normal color, also smell and texture.Keywords: freez drying, preparation, spores powder, tempeh
Procedia PDF Downloads 202454 The Dead Alexandrian Historic Vein: The Revitalization of Mahmoudiyah Canal 'The Forgotten Environmental Asset'
Authors: Sara S. Fouad, Omneya Messallam
Abstract:
In 1818, a seventy-five kilometer long canal was dug (called the Mahmoudiyah canal) connecting between Alexandria city in Egypt and the western branch of the Nile. It was a productive resource and vital to its environment, context, transportation, and recreation. It played a significant role in people’s lives and Alexandria city’s shape. The canal, which was the main vein of goods’ transporting from Alexandria’s seaport to the different parts of Egypt, was still in use today as a major source of clear water in the city. But nowadays, Mahmoudiyah canal is converting into ‘dead waterway’. The canal became sources of pollution as a result of solid and industrial waste thus causing many diseases, destroying communities and biodiversity, with urban invasion, the loss of community aesthetic value and healthy environment. Therefore, this paper aims to propose an urban strategy, as a solution to revive the forgotten canal, through recreating a cultural promenade on its shore. The main aim of this research is to formulate decent quality of life, unpolluted space, an area gathering the city space for nature, tourism and investments. As a case study, this paper investigates Mahmoudiyah canal through urban and ecological analyses, aiming to design an urban strategy for reviving it by creating a cultural promenade enriched with public spaces and green areas, which can most probably enhance the quality of life, city re-living and development. Community participation is also considered as vital and intrinsic implementation stage. The empirical research involved using several data assembly methods such as interviews, mental mapping, structural observations and questionnaires. The paper ends with a set of conclusions leading to proposals for the Mahmoudiyah canal revitalization considering the complex challenges and processes of sustainable regeneration focusing on city’s rehabilitation and lost identity.Keywords: Mahmoudiyah canal, community aesthetic value, city re-living, cultural promenade
Procedia PDF Downloads 132453 Thermal Instability in Solid under Irradiation
Authors: P. Selyshchev
Abstract:
Construction materials for nuclear facilities are operated under extreme thermal and radiation conditions. First of all, they are nuclear fuel, fuel assemblies, and reactor vessel. It places high demands on the control of their state, stability of their state, and their operating conditions. An irradiated material is a typical example of an open non-equilibrium system with nonlinear feedbacks between its elements. Fluxes of energy, matter and entropy maintain states which are far away from thermal equilibrium. The links that arise under irradiation are inherently nonlinear. They form the mechanisms of feed-backs that can lead to instability. Due to this instability the temperature of the sample, heat transfer, and the defect density can exceed the steady-state value in several times. This can lead to change of typical operation and an accident. Therefore, it is necessary to take into account the thermal instability to avoid the emergency situation. The point is that non-thermal energy can be accumulated in materials because irradiation produces defects (first of all these are vacancies and interstitial atoms), which are metastable. The stored energy is about energy of defect formation. Thus, an annealing of the defects is accompanied by releasing of non-thermal stored energy into thermal one. Temperature of the material grows. Increase of temperature results in acceleration of defect annealing. Density of the defects drops and temperature grows more and more quickly. The positive feed-back is formed and self-reinforcing annealing of radiation defects develops. To describe these phenomena a theoretical approach to thermal instability is developed via formalism of complex systems. We consider system of nonlinear differential equations for different components of microstructure and temperature. The qualitative analysis of this non-linear dynamical system is carried out. Conditions for development of instability have been obtained. Points of bifurcation have been found. Convenient way to represent obtained results is a set of phase portraits. It has been shown that different regimes of material state under irradiation can develop. Thus degradation of irradiated material can be limited by means of choice appropriate kind of evolution of materials under irradiation.Keywords: irradiation, material, non-equilibrium state, nonlinear feed-back, thermal instability
Procedia PDF Downloads 268452 An Investigation into the Crystallization Tendency/Kinetics of Amorphous Active Pharmaceutical Ingredients: A Case Study with Dipyridamole and Cinnarizine
Authors: Shrawan Baghel, Helen Cathcart, Biall J. O'Reilly
Abstract:
Amorphous drug formulations have great potential to enhance solubility and thus bioavailability of BCS class II drugs. However, the higher free energy and molecular mobility of the amorphous form lowers the activation energy barrier for crystallization and thermodynamically drives it towards the crystalline state which makes them unstable. Accurate determination of the crystallization tendency/kinetics is the key to the successful design and development of such systems. In this study, dipyridamole (DPM) and cinnarizine (CNZ) has been selected as model compounds. Thermodynamic fragility (m_T) is measured from the heat capacity change at the glass transition temperature (Tg) whereas dynamic fragility (m_D) is evaluated using methods based on extrapolation of configurational entropy to zero 〖(m〗_(D_CE )), and heating rate dependence of Tg 〖(m〗_(D_Tg)). The mean relaxation time of amorphous drugs was calculated from Vogel-Tammann-Fulcher (VTF) equation. Furthermore, the correlation between fragility and glass forming ability (GFA) of model drugs has been established and the relevance of these parameters to crystallization of amorphous drugs is also assessed. Moreover, the crystallization kinetics of model drugs under isothermal conditions has been studied using Johnson-Mehl-Avrami (JMA) approach to determine the Avrami constant ‘n’ which provides an insight into the mechanism of crystallization. To further probe into the crystallization mechanism, the non-isothermal crystallization kinetics of model systems was also analysed by statistically fitting the crystallization data to 15 different kinetic models and the relevance of model-free kinetic approach has been established. In addition, the crystallization mechanism for DPM and CNZ at each extent of transformation has been predicted. The calculated fragility, glass forming ability (GFA) and crystallization kinetics is found to be in good correlation with the stability prediction of amorphous solid dispersions. Thus, this research work involves a multidisciplinary approach to establish fragility, GFA and crystallization kinetics as stability predictors for amorphous drug formulations.Keywords: amorphous, fragility, glass forming ability, molecular mobility, mean relaxation time, crystallization kinetics, stability
Procedia PDF Downloads 354451 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation
Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang
Abstract:
Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation
Procedia PDF Downloads 68450 Characterization of Potato Starch/Guar Gum Composite Film Modified by Ecofriendly Cross-Linkers
Authors: Sujosh Nandi, Proshanta Guha
Abstract:
Synthetic plastics are preferred for food packaging due to high strength, stretch-ability, good water vapor and gas barrier properties, transparency and low cost. However, environmental pollution generated by these synthetic plastics is a major concern of modern human civilization. Therefore, use of biodegradable polymers as a substitute for synthetic non-biodegradable polymers are encouraged to be used even after considering drawbacks related to mechanical and barrier properties of the films. Starch is considered one of the potential raw material for the biodegradable polymer, encounters poor water barrier property and mechanical properties due to its hydrophilic nature. That apart, recrystallization of starch molecules occurs during aging which decreases flexibility and increases elastic modulus of the film. The recrystallization process can be minimized by blending of other hydrocolloids having similar structural compatibility, into the starch matrix. Therefore, incorporation of guar gum having a similar structural backbone, into the starch matrix can introduce a potential film into the realm of biodegradable polymer. However, hydrophilic nature of both starch and guar gum, water barrier property of the film is low. One of the prospective solution to enhance this could be modification of the potato starch/guar gum (PSGG) composite film using cross-linker. Over the years, several cross-linking agents such as phosphorus oxychloride, sodium trimetaphosphate, etc. have been used to improve water vapor permeability (WVP) of the films. However, these chemical cross-linking agents are toxic, expensive and take longer time to degrade. Therefore, naturally available carboxylic acid (tartaric acid, malonic acid, succinic acid, etc.) had been used as a cross-linker and found that water barrier property enhanced substantially. As per our knowledge, no works have been reported with tartaric acid and succinic acid as a cross-linking agent blended with the PSGG films. Therefore, the objective of the present study was to examine the changes in water vapor barrier property and mechanical properties of the PSGG films after cross-linked with tartaric acid (TA) and succinic acid (SA). The cross-linkers were blended with PSGG film-forming solution at four different concentrations (4, 8, 12 & 16%) and cast on teflon plate at 37°C for 20 h. From the fourier-transform infrared spectroscopy (FTIR) study of the developed films, a band at 1720cm-1 was observed which is attributed to the formation of ester group in the developed films. On the other hand, it was observed that tensile strength (TS) of the cross-linked film decreased compared to non-cross linked films, whereas strain at break increased by several folds. Moreover, the results depicted that tensile strength diminished with increasing the concentration of TA or SA and lowest TS (1.62 MPa) was observed for 16% SA. That apart, maximum strain at break was also observed for TA at 16% and the reason behind this could be a lesser degree of crystallinity of the TA cross-linked films compared to SA. However, water vapor permeability of succinic acid cross-linked film was reduced significantly, but it was enhanced significantly by addition of tartaric acid.Keywords: cross linking agent, guar gum, organic acids, potato starch
Procedia PDF Downloads 114449 Digitalising the Instruction: Between Technology Integration and Instrumental Use
Authors: H. Zouar, I. Kassous, F. Benzert
Abstract:
The relentless pace of technology development in the last two decades has pervaded much of the recent educational discourse on a nation-wide scale. The rippling echoes of the buzz that account for the myriad of advantages the new technologies bring to the pedagogical activity has inevitably transcended from the western world to the Algerian educational contexts. Attempts have been made by Algerian practitioners to heed this digital advancement and push their instructional practices forward. However, due to the still largely existing first-order barriers as exemplified in the forms of deficient institutional infrastructure and unavailability of sufficient digital materials, the results of those attempts have polarised the views of Algerian academics regarding technology integration within higher education context. Hence, this study aims at measuring the possibility of integrating technology in our classrooms in a way that conforms to the philosophy of hybrid education. It also attempts to re-consider teachers’ understanding of technology integration in our context. Furthermore, the purpose of this research is also to reveal the level of teachers’ awareness regarding the distinction between technology integration and instrumental use. In view of the nature of these aims, a mixed-methods mode of investigation has been adopted to collect both qualitative and quantitative data from different perspectives. The data collection tools comprise of an observation as well as students’ and teachers’ questionnaires. The findings show that despite the fact that the examined context is not without its technological limitations, technology integration can be successfully incorporated contingent on teachers' level of knowledge and agency. Technology integration in Algerian universities does not proceed as the bedrock theory of it entails due to issues within teachers' general understanding of utilizing technology in class. It seems that technology is a means to an end, depending on the teachers who make use of it in order to deliver lessons (PowerPoint presentation) and issue commands (Facebook posting). Teachers' ability to clearly discern between integrating technology in their practices versus employing it as an instrument of instruction needs further consideration in order to establish a solid understanding of technology integration within higher education context.Keywords: technology integration, hybrid education, teachers' understanding, teachers' awareness, instrumental use
Procedia PDF Downloads 124448 Preparation of Biodegradable Methacrylic Nanoparticles by Semicontinuous Heterophase Polymerization for Drugs Loading: The Case of Acetylsalicylic Acid
Authors: J. Roberto Lopez, Hened Saade, Graciela Morales, Javier Enriquez, Raul G. Lopez
Abstract:
Implementation of systems based on nanostructures for drug delivery applications have taken relevance in recent studies focused on biomedical applications. Although there are several nanostructures as drugs carriers, the use of polymeric nanoparticles (PNP) has been widely studied for this purpose, however, the main issue for these nanostructures is the size control below 50 nm with a narrow distribution size, due to they must go through different physiological barriers and avoid to be filtered by kidneys (< 10 nm) or the spleen (> 100 nm). Thus, considering these and other factors, it can be mentioned that drug-loaded nanostructures with sizes varying between 10 and 50 nm are preferred in the development and study of PNP/drugs systems. In this sense, the Semicontinuous Heterophase Polymerization (SHP) offers the possibility to obtain PNP in the desired size range. Considering the above explained, methacrylic copolymer nanoparticles were obtained under SHP. The reactions were carried out in a jacketed glass reactor with the required quantities of water, ammonium persulfate as initiator, sodium dodecyl sulfate/sodium dioctyl sulfosuccinate as surfactants, methyl methacrylate and methacrylic acid as monomers with molar ratio of 2/1, respectively. The monomer solution was dosed dropwise during reaction at 70 °C with a mechanical stirring of 650 rpm. Nanoparticles of poly(methyl methacrylate-co-methacrylic acid) were loaded with acetylsalicylic acid (ASA, aspirin) by a chemical adsorption technique. The purified latex was put in contact with a solution of ASA in dichloromethane (DCM) at 0.1, 0.2, 0.4 or 0.6 wt-%, at 35°C during 12 hours. According to the boiling point of DCM, as well as DCM and water densities, the loading process is completed when the whole DCM is evaporated. The hydrodynamic diameter was measured after polymerization by quasi-elastic light scattering and transmission electron microscopy, before and after loading procedures with ASA. The quantitative and qualitative analyses of PNP loaded with ASA were measured by infrared spectroscopy, differential scattering calorimetry and thermogravimetric analysis. Also, the molar mass distributions of polymers were determined in a gel permeation chromatograph apparatus. The load capacity and efficiency were determined by gravimetric analysis. The hydrodynamic diameter results for methacrylic PNP without ASA showed a narrow distribution with an average particle size around 10 nm and a composition methyl methacrylate/methacrylic acid molar ratio equal to 2/1, same composition of Eudragit S100, which is a commercial compound widely used as excipient. Moreover, the latex was stabilized in a relative high solids content (around 11 %), a monomer conversion almost 95 % and a number molecular weight around 400 Kg/mol. The average particle size in the PNP/aspirin systems fluctuated between 18 and 24 nm depending on the initial percentage of aspirin in the loading process, being the drug content as high as 24 % with an efficiency loading of 36 %. These average sizes results have not been reported in the literature, thus, the methacrylic nanoparticles here reported are capable to be loaded with a considerable amount of ASA and be used as a drug carrier.Keywords: aspirin, biocompatibility, biodegradable, Eudragit S100, methacrylic nanoparticles
Procedia PDF Downloads 140447 Increasing Sulfur Handling Cost Efficiency Using the Eco Sulfur Paving Block Method at PT Pertamina EP Field Cepu
Authors: Adha Bayu Wijaya, A. Zainal Abidin, Naufal Baihaqi, Joko Suprayitno, Astika Titistiti, Muslim Adi Wijaya, Endah Tri Lestari, Agung Wibowo
Abstract:
Sulfur is a non-metallic chemical element in the form of a yellow crystalline solid with the chemical formula, and is formed from several types of natural and artificial chemical reactions. Commercial applications of sulfur processed products can be found in various aspects of life, for example in the use of processed sulfur as paving blocks. The Gundih Central Processing Plant (CPP) is capable of producing 14 tons/day of sulfur pellets. This amount comes from the high H2S content of the wells with a total concentration of 20,000 ppm and a volume accumulation of 14 MMSCFD acid gas. H2S is converted to sulfur using the thiobacillus microbe in the Biological Sulfur Recovery Unit (BSRU) with a sulfur product purity level greater than 95%. In 2018 sulfur production at Gundih CPP was recorded at 4044 tons which could potentially trigger serious problems from an environmental aspect. The use of sulfur as material for making paving blocks is an alternative solution in addressing the potential impact on the environment, as regulated by Government Regulation No.22 of Year 2021 concerning the Waste Management of Non-Hazardous and Toxic Substances (B3), and the high cost of handling sulfur by third parties. The design mix of ratio sulfur paving blocks is 22% cements, rock ash 67%, and 11% of sulfur pellets. The sulfur used in making the paving mixture is pure sulfur, namely the side product category without any contaminants, thereby eliminating the potential for environmental pollution when implementing sulfur paving. Strength tests of sulfur paving materials have also been confirmed by external laboratories. The standard used in making sulfur paving blocks refers to the SNI 03-0691-1996 standard. With the results of sulfur paving blocks made according to quality B. Currently, sulfur paving blocks are used in building access to wells locations and in public roads in the Cepu Field area as a contribution from Corporate Social Responsibility (CSR).Keywords: sulphur, innovation, paving block, CSR, sulphur paving
Procedia PDF Downloads 75446 Eco-Efficient Cementitious Materials for Construction Applications in Ireland
Authors: Eva Ujaczki, Rama Krishna Chinnam, Ronan Courtney, Syed A. M. Tofail, Lisa O'Donoghue
Abstract:
Concrete is the second most widely used material in the world and is made of cement, sand, and aggregates. Cement is a hydraulic binder which reacts with water to form a solid material. In the cement manufacturing process, the right mix of minerals from mined natural rocks, e.g., limestone is melted in a kiln at 1450 °C to form a new compound, clinker. In the final stage, the clinker is milled into a fine cement powder. The principal cement types manufactured in Ireland are: 1) CEM I – Portland cement; 2) CEM II/A – Portland-fly ash cement; 3) CEM II/A – Portland-limestone cement and 4) CEM III/A – Portland-round granulated blast furnace slag (GGBS). The production of eco-efficient, blended cement (CEM II, CEM III) reduces CO₂ emission and improves energy efficiency compared to traditional cements. Blended cements are produced locally in Ireland and more than 80% of produced cement is blended. These eco-efficient, blended cements are a relatively new class of construction materials and a kind of geopolymer binders. From a terminological point of view, geopolymer cement is a binding system that is able to harden at room temperature. Geopolymers do not require calcium-silicate-hydrate gel but utilize the polycondensation of SiO₂ and Al₂O₃ precursors to achieve a superior strength level. Geopolymer materials are usually synthesized using an aluminosilicate raw material and an activating solution which is mainly composed of NaOH or KOH and Na₂SiO₃. Cement is the essential ingredient in concrete which is vital for economic growth of countries. The challenge for the global cement industry is to reach to increasing demand at the same time recognize the need for sustainable usage of resources. Therefore, in this research, we investigated the potential for Irish wastes to be used in geopolymer cement type applications through a national stakeholder workshop with the Irish construction sector and relevant stakeholders. This paper aims at summarizing Irish stakeholder’s perspective for introducing new secondary raw materials, e.g., bauxite residue or increasing the fly ash addition into cement for eco-efficient cement production.Keywords: eco-efficient, cement, geopolymer, blending
Procedia PDF Downloads 165445 Peptide-Gold Nanocluster as an Optical Biosensor for Glycoconjugate Secreted from Leishmania
Authors: Y. A. Prada, Fanny Guzman, Rafael Cabanzo, John J. Castillo, Enrique Mejia-Ospino
Abstract:
In this work, we show the important results about of synthesis of photoluminiscents gold nanoclusters using a small peptide as template for biosensing applications. Interestingly, we design one peptide (NBC2854) homologue to conservative domain from 215 250 residue of a galactolectin protein which can recognize the proteophosphoglycans (PPG) from Leishmania. Peptide was synthetized by multiple solid phase synthesis using FMoc group methodology in acid medium. Finally, the peptide was purified by High-Performance Liquid Chromatography using a Vydac C-18 preparative column and the detection was at 215 nm using a Photo Diode Array detector. Molecular mass of this peptide was confirmed by MALDI-TOF and to verify the α-helix structure we use Circular Dichroism. By means of the methodology used we obtained a novel fluorescents gold nanoclusters (AuNC) using NBC2854 as a template. In this work, we described an easy and fast microsonic method for the synthesis of AuNC with ≈ 3.0 nm of hydrodynamic size and photoemission at 630 nm. The presence of cysteine residue in the C-terminal of the peptide allows the formation of Au-S bond which confers stability to Peptide-based gold nanoclusters. Interactions between the peptide and gold nanoclusters were confirmed by X-ray Photoemission and Raman Spectroscopy. Notably, from the ultrafine spectra shown in the MALDI-TOF analysis which containing only 3-7 KDa species was assigned to Au₈-₁₈[NBC2854]₂ clusters. Finally, we evaluated the Peptide-gold nanocluster as an optical biosensor based on fluorescence spectroscopy and the fluorescence signal of PPG (0.1 µg-mL⁻¹ to 1000 µg-mL⁻¹) was amplified at the same wavelength emission (≈ 630 nm). This can suggest that there is a strong interaction between PPG and Pep@AuNC, therefore, the increase of the fluorescence intensity can be related to the association mechanism that take place when the target molecule is sensing by the Pep@AuNC conjugate. Further spectroscopic studies are necessary to evaluate the fluorescence mechanism involve in the sensing of the PPG by the Pep@AuNC. To our best knowledge the fabrication of an optical biosensor based on Pep@AuNC for sensing biomolecules such as Proteophosphoglycans which are secreted in abundance by parasites Leishmania.Keywords: biosensing, fluorescence, Leishmania, peptide-gold nanoclusters, proteophosphoglycans
Procedia PDF Downloads 169444 Numerical Modelling of Hydrodynamic Drag and Supercavitation Parameters for Supercavitating Torpedoes
Authors: Sezer Kefeli, Sertaç Arslan
Abstract:
In this paper, supercavitationphenomena, and parameters are explained, and hydrodynamic design approaches are investigated for supercavitating torpedoes. In addition, drag force calculation methods ofsupercavitatingvehicles are obtained. Basically, conventional heavyweight torpedoes reach up to ~50 knots by classic hydrodynamic techniques, on the other hand super cavitating torpedoes may reach up to ~200 knots, theoretically. However, in order to reachhigh speeds, hydrodynamic viscous forces have to be reduced or eliminated completely. This necessity is revived the supercavitation phenomena that is implemented to conventional torpedoes. Supercavitation is a type of cavitation, after all, it is more stable and continuous than other cavitation types. The general principle of supercavitation is to separate the underwater vehicle from water phase by surrounding the vehicle with cavitation bubbles. This situation allows the torpedo to operate at high speeds through the water being fully developed cavitation. Conventional torpedoes are entitled as supercavitating torpedoes when the torpedo moves in a cavity envelope due to cavitator in the nose section and solid fuel rocket engine in the rear section. There are two types of supercavitation phase, these are natural and artificial cavitation phases. In this study, natural cavitation is investigated on the disk cavitators based on numerical methods. Once the supercavitation characteristics and drag reduction of natural cavitationare studied on CFD platform, results are verified with the empirical equations. As supercavitation parameters cavitation number (), pressure distribution along axial axes, drag coefficient (C_?) and drag force (D), cavity wall velocity (U_?) and dimensionless cavity shape parameters, which are cavity length (L_?/d_?), cavity diameter(d_ₘ/d_?) and cavity fineness ratio (〖L_?/d〗_ₘ) are investigated and compared with empirical results. This paper has the characteristics of feasibility study to carry out numerical solutions of the supercavitation phenomena comparing with empirical equations.Keywords: CFD, cavity envelope, high speed underwater vehicles, supercavitating flows, supercavitation, drag reduction, supercavitation parameters
Procedia PDF Downloads 173443 Enhancing the Flotation of Fine and Ultrafine Pyrite Particles Using Electrolytically Generated Bubbles
Authors: Bogale Tadesse, Krutik Parikh, Ndagha Mkandawire, Boris Albijanic, Nimal Subasinghe
Abstract:
It is well established that the floatability and selectivity of mineral particles are highly dependent on the particle size. Generally, a particle size of 10 micron is considered as the critical size below which both flotation selectivity and recovery decline sharply. It is widely accepted that the majority of ultrafine particles, including highly liberated valuable minerals, will be lost in tailings during a conventional flotation process. This is highly undesirable particularly in the processing of finely disseminated complex and refractory ores where there is a requirement for fine grinding in order to liberate the valuable minerals. In addition, the continuing decline in ore grade worldwide necessitates intensive processing of low grade mineral deposits. Recent advances in comminution allow the economic grinding of particles down to 10 micron sizes to enhance the probability of liberating locked minerals from low grade ores. Thus, it is timely that the flotation of fine and ultrafine particles is improved in order to reduce the amount of valuable minerals lost as slimes. It is believed that the use of fine bubbles in flotation increases the bubble-particle collision efficiency and hence the flotation performance. Electroflotation, where bubbles are generated by the electrolytic breakdown of water to produce oxygen and hydrogen gases, leads to the formation of extremely finely dispersed gas bubbles with dimensions varying from 5 to 95 micron. The sizes of bubbles generated by this method are significantly smaller than those found in conventional flotation (> 600 micron). In this study, microbubbles generated by electrolysis of water were injected into a bench top flotation cell to assess the performance electroflotation in enhancing the flotation of fine and ultrafine pyrite particles of sizes ranging from 5 to 53 micron. The design of the cell and the results from optimization of the process variables such as current density, pH, percent solid and particle size will be presented at this conference.Keywords: electroflotation, fine bubbles, pyrite, ultrafine particles
Procedia PDF Downloads 336442 Rising Levels of Greenhouse Gases: Implication for Global Warming in Anambra State South Eastern Nigeria
Authors: Chikwelu Edward Emenike, Ogbuagu Uchenna Fredrick
Abstract:
About 34% of the solar radiant energy reaching the earth is immediately reflected back to space as incoming radiation by clouds, chemicals, dust in the atmosphere and by the earth’s surface. Most of the remaining 66% warms the atmosphere and land. Most of the incoming solar radiation not reflect away is degraded into low-quality heat and flows into space. The rate at which this energy returns to space as low-quality heat is affected by the presence of molecules of greenhouse gases. Gaseous emission was measured with the aid of Growen gas Analyzer with a digital readout. Total measurements of eight parameters of twelve selected sample locations taken at two different seasons within two months were made. The ambient air quality investigation in Anambra State has shown the overall mean concentrations of gaseous emission at twelve (12) locations. The mean gaseous emissions showed (NO2=0.66ppm, SO2=0.30ppm, CO=43.93ppm, H2S=2.17ppm, CH4=1.27ppm, CFC=1.59ppb, CO2=316.33ppm, N2O=302.67ppb and O3=0.37ppm). These values do not conform to the National Ambient Air Quality Standard (NAAQS) and thus contribute significantly to the global warming. Because some of these gaseous emissions (SO2, NO2) are oxidizing agents, they act as irritants that damage delicate tissues in the eyes and respiratory passages. These can impair lung function and trigger cardiovascular problems as the heart tries to compensate for lack of Oxygen by pumping faster and harder. The major sources of air pollution are transportation, industrial processes, stationary fuel combustion and solid waste disposal, thus much is yet to be done in a developing country like Nigeria. Air pollution control using pollution-control equipment to reduce the major conventional pollutants, relocating people who live very close to dumpsites, processing and treatment of gases to produce electricity, heat, fuel and various chemical components should be encouraged.Keywords: ambient air, atmosphere, greenhouse gases, anambra state
Procedia PDF Downloads 432