Search results for: correlation and prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5938

Search results for: correlation and prediction

3418 Mechanical Characterization of Brain Tissue in Compression

Authors: Abbas Shafiee, Mohammad Taghi Ahmadian, Maryam Hoviattalab

Abstract:

The biomechanical behavior of brain tissue is needed for predicting the traumatic brain injury (TBI). Each year over 1.5 million people sustain a TBI in the USA. The appropriate coefficients for injury prediction can be evaluated using experimental data. In this study, an experimental setup on brain soft tissue was developed to perform unconfined compression tests at quasistatic strain rates ∈0.0004 s-1 and 0.008 s-1 and 0.4 stress relaxation test under unconfined uniaxial compression with ∈ 0.67 s-1 ramp rate. The fitted visco-hyperelastic parameters were utilized by using obtained stress-strain curves. The experimental data was validated using finite element analysis (FEA) and previous findings. Also, influence of friction coefficient on unconfined compression and relaxation test and effect of ramp rate in relaxation test is investigated. Results of the findings are implemented on the analysis of a human brain under high acceleration due to impact.

Keywords: brain soft tissue, visco-hyperelastic, finite element analysis (FEA), friction, quasistatic strain rate

Procedia PDF Downloads 656
3417 Malnutrition Among Adult Hospitalized Orthopedic Patients: Nursing Role And Nutrition Screening

Authors: Ehsan Ahmed Yahia

Abstract:

Introduction: The nursing role in nutrition screening and assessing hospitalized patients is important. Malnutrition is a common and costly problem, particularly among hospitalized patients, and can have an adverse effect on the healing process. The study's goal is to assess the prevalence of malnutrition among adult hospitalized orthopedic patients and to detect the barriers to the nutrition screening process. Aim of the study: This study aimed to (a) assess the prevalence of malnutrition in hospitalized orthopedic patients and (b) evaluate the relationship between malnutrition and selected clinical outcomes. Material and Methods: This prospective field study was conducted for three months between 03/2022 and 06/2022 in the selected orthopedic departments in a teaching hospital affiliated withCairo University, Egypt. with a total number of one hundred twenty (120) patients. Patients' assessment included checking for malnutrition using the Nutritional Risk Screening Questionnaire. Patients at risk for malnourishment were defined as NRS score ≥ 3. Clinical outcomes under consideration included 1) length of hospitalization, 2) mobilization after surgery and conservative treatment, and 3) rate of adverse events. Results: This study found that malnutrition is a significant problem among patients hospitalized in an orthopedic ward. The prevalence of malnutrition was the highest in patients with lumbar spine and pelvis fractures, followed by the proximal femur and proximal humerus fractures. Patients at risk for malnutrition had significantly prolonged hospitalization, delayed postoperative mobilization, and increased incidence of adverse events.27.8% of the study sample were at risk for malnutrition. The highest prevalence of malnourishment was found in Septic Surgery with 32%, followed by Traumatology with 19.6% and Arthroplasty with 15.3%. A higher prevalence of malnutrition was detected among patients with typical fractures, such as lumbar spine and pelvis (46.7%), proximal femur (34.4%), and proximal humeral (23.7%) fractures. Additionally, patients at risk for malnutrition showed prolonged hospitalization (14.7 ± 11.1 vs. 21.2 ± 11.7 days), delayed postoperative mobilization (2.3 ± 2.9 vs. 4.1 ± 4.9 days), and delayed to mobilize after conservative treatment (1.1 ± 2.7 vs. 1.8 ± 1.9 days). A significant statistical correlation of NRS with individual parameters (Spearman's rank correlation, p < 0.05) was observed. The rate of adverse incidents in patients at risk for malnutrition was significantly higher than that of patients with a regular nutritional status (37.2% vs. 21.1%, p < 0.001). Conclusions: Our results indicate that the prevalence of malnutrition in surgical patients is significant. The nutritional status of patients with typical fractures is especially at risk. Prolonged hospitalization, delayed postoperative mobilization, and delayed mobilization after conservative treatment is significantly associated with malnutrition. In addition, the incidence of adverse events in patients at risk for malnutrition is significantly higher.

Keywords: malnutrition, nutritional risk screening, surgery, nursing, orthopedic nurse

Procedia PDF Downloads 99
3416 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

Authors: Ying Su, Morgan C. Wang

Abstract:

Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).

Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis

Procedia PDF Downloads 105
3415 Flood Early Warning and Management System

Authors: Yogesh Kumar Singh, T. S. Murugesh Prabhu, Upasana Dutta, Girishchandra Yendargaye, Rahul Yadav, Rohini Gopinath Kale, Binay Kumar, Manoj Khare

Abstract:

The Indian subcontinent is severely affected by floods that cause intense irreversible devastation to crops and livelihoods. With increased incidences of floods and their related catastrophes, an Early Warning System for Flood Prediction and an efficient Flood Management System for the river basins of India is a must. Accurately modeled hydrological conditions and a web-based early warning system may significantly reduce economic losses incurred due to floods and enable end users to issue advisories with better lead time. This study describes the design and development of an EWS-FP using advanced computational tools/methods, viz. High-Performance Computing (HPC), Remote Sensing, GIS technologies, and open-source tools for the Mahanadi River Basin of India. The flood prediction is based on a robust 2D hydrodynamic model, which solves shallow water equations using the finite volume method. Considering the complexity of the hydrological modeling and the size of the basins in India, it is always a tug of war between better forecast lead time and optimal resolution at which the simulations are to be run. High-performance computing technology provides a good computational means to overcome this issue for the construction of national-level or basin-level flash flood warning systems having a high resolution at local-level warning analysis with a better lead time. High-performance computers with capacities at the order of teraflops and petaflops prove useful while running simulations on such big areas at optimum resolutions. In this study, a free and open-source, HPC-based 2-D hydrodynamic model, with the capability to simulate rainfall run-off, river routing, and tidal forcing, is used. The model was tested for a part of the Mahanadi River Basin (Mahanadi Delta) with actual and predicted discharge, rainfall, and tide data. The simulation time was reduced from 8 hrs to 3 hrs by increasing CPU nodes from 45 to 135, which shows good scalability and performance enhancement. The simulated flood inundation spread and stage were compared with SAR data and CWC Observed Gauge data, respectively. The system shows good accuracy and better lead time suitable for flood forecasting in near-real-time. To disseminate warning to the end user, a network-enabled solution is developed using open-source software. The system has query-based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. System effectively facilitates the management of post-disaster activities caused due to floods, like displaying spatial maps of the area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of the damage.

Keywords: flood, modeling, HPC, FOSS

Procedia PDF Downloads 89
3414 Estimation of Fourier Coefficients of Flux Density for Surface Mounted Permanent Magnet (SMPM) Generators by Direct Search Optimization

Authors: Ramakrishna Rao Mamidi

Abstract:

It is essential for Surface Mounted Permanent Magnet (SMPM) generators to determine the performance prediction and analyze the magnet’s air gap flux density wave shape. The flux density wave shape is neither a pure sine wave or square wave nor a combination. This is due to the variation of air gap reluctance between the stator and permanent magnets. The stator slot openings and the number of slots make the wave shape highly complicated. To reduce the complexity of analysis, approximations are made to the wave shape using Fourier analysis. In contrast to the traditional integration method, the Fourier coefficients, an and bn, are obtained by direct search method optimization. The wave shape with optimized coefficients gives a wave shape close to the desired wave shape. Harmonics amplitudes are worked out and compared with initial values. It can be concluded that the direct search method can be used for estimating Fourier coefficients for irregular wave shapes.

Keywords: direct search, flux plot, fourier analysis, permanent magnets

Procedia PDF Downloads 216
3413 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence

Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar

Abstract:

This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.

Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves

Procedia PDF Downloads 196
3412 Determination of Elastic Constants for Scots Pine Grown in Turkey Using Ultrasound

Authors: Ergun Guntekin

Abstract:

This study investigated elastic constants of scots pine (Pinus sylvestris L.) grown in Turkey by means of ultrasonic waves. Three Young’s modulus, three shear modulus and six Poisson ratios were determined at constant moisture content (12 %). Three longitudinal and six shear wave velocities propagating along the principal axes of anisotropy, and additionally, three quasi-shear wave velocities at 45° with respect to the principal axes of anisotropy were measured using EPOCH 650 ultrasonic flaw detector. The measured average longitudinal wave velocities for the sapwood in L, R, T directions were 4795, 1713 and 1117 m/s, respectively. The measured average shear wave velocities ranged from 682 to 1382 m/s. The measured quasi-shear wave velocities varied between 642 and 1280 m/s. The calculated average modulus of elasticity values for the sapwood in L, R, T directions were 11913, 1565 and 663 N/mm2, respectively. The calculated shear modulus in LR, LT and RT planes were 1031, 541, 415 N/mm2. Comparing with available literature, the predicted elastic constants are acceptable.

Keywords: elastic constants, prediction, Scots pine, ultrasound

Procedia PDF Downloads 279
3411 Representative Concentration Pathways Approach on Wolbachia Controlling Dengue Virus in Aedes aegypti

Authors: Ida Bagus Mandhara Brasika, I Dewa Gde Sathya Deva

Abstract:

Wolbachia is recently developed as the natural enemy of Dengue virus (DENV). It inhibits the replication of DENV in Aedes aegypti. Both DENV and its vector, Aedes aegypty, are sensitive to climate factor especially temperature. The changing of climate has a direct impact on temperature which means changing the vector transmission. Temperature has been known to effect Wolbachia density as it has an ideal temperature to grow. Some scenarios, which are known as Representative Concentration Pathways (RCPs), have been developed by Intergovernmental Panel on Climate Change (IPCC) to predict the future climate based on greenhouse gases concentration. These scenarios are applied to mitigate the future change of Aedes aegypti migration and how Wolbachia could control the virus. The prediction will determine the schemes to release Wolbachia-injected Aedes aegypti to reduce DENV transmission.

Keywords: Aedes aegypti, climate change, dengue virus, Intergovernmental Panel on Climate Change, representative concentration pathways, Wolbachia

Procedia PDF Downloads 300
3410 A Dynamic Approach for Evaluating the Climate Change Risks on Building Performance

Authors: X. Lu, T. Lu, S. Javadi

Abstract:

A simple dynamic approach is presented for analyzing thermal and moisture dynamics of buildings, which is of particular relevance to understanding climate change impacts on buildings, including assessment of risks and applications of resilience strategies. With the goal to demonstrate the proposed modeling methodology, to verify the model, and to show that wooden materials provide a mechanism that can facilitate the reduction of moisture risks and be more resilient to global warming, a wooden church equipped with high precision measurement systems was taken as a test building for full-scale time-series measurements. Sensitivity analyses indicate a high degree of accuracy in the model prediction regarding the indoor environment. The model is then applied to a future projection of climate indoors aiming to identify significant environmental factors, the changing temperature and humidity, and effective response to the climate change impacts. The paper suggests that wooden building materials offer an effective and resilient response to anticipated future climate changes.

Keywords: dynamic model, forecast, climate change impact, wooden structure, buildings

Procedia PDF Downloads 151
3409 Influence of Mothers’ Knowledge, Attitude and Behavior on Diet and Physical Activity of Their Pre-School Children: A Cross-Sectional Study from a Semi-Urban Area of Nepal

Authors: Natalia Oli, Abhinav Vaidya, Katja Pahkala, Gabriele Eiben, Alexandra Krettek

Abstract:

The nutritional transition towards a high fat and energy dense diet, decreasing physical activity level, and poor cardiovascular health knowledge contributes to a rising burden of cardiovascular diseases in Nepal. Dietary and physical activity behaviors are formed early in life and influenced by family, particularly by mothers in the social context of Nepal. The purpose of this study was to explore knowledge, attitude and behavior of mothers regarding diet and physical activity of their pre-school children. Cross-sectional study was conducted in the semi-urban area of Duwakot and Jhaukhel communities near the capital Kathmandu. Between August and November 2014, nine trained enumerators interviewed all mothers having children aged 2 to 7 years in their homes. Questionnaire contained information about mothers’ socio-demographic characteristics; their knowledge, attitude, and behavior regarding diet and physical activity as well as their children’s diet and physical activity. Knowledge, attitude and behavior responses were scored. SPSS version 22.0 was used for data analyses. Out of the 1,052 eligible mothers, 962 consented to participate in the study. The mean age was 28.9 ± 4.5 years. The majority of them (73%) were housewives. Mothers with higher education and income had higher knowledge, attitude, and behavior scores (All p < 0.001) whereas housewives and farmers had low knowledge score (p < 0.001). They, along with laborers, also exhibited lower attitude (p<0.001) and behavior scores (p < 0.001). Children’s diet score increased with mothers’ level of education (p <0.001) and income (p=0.041). Their physical activity score, however, declined with increasing level of their mothers’ education (p < 0.001) and income (p < 0.001). Children’s overall behavior score correlated poorly with mothers’ knowledge (r = 0.009, p=0.003), attitude (r =0.012, p=0.001), and behavior (r = 0.007, p= 0.008). Such poor correlation can be due to existence of the barriers among mothers. Mothers reported such barriers as expensive healthy food, difficulty to give up favorite food, taste preference of others family members and lack of knowledge on healthy food. Barriers for physical activity were lack of leisure time, lack of parks and playgrounds, being busy by caring for children and old people, feeling lazy and embarrassed in front of others. Additionally, among the facilitators for healthy lifestyle, mentioned by mothers, were better information, family eating healthy food and supporting physical activity, advice of medical personnel regarding healthy lifestyle and own ill health. The study demonstrated poor correlation of mothers’ knowledge and attitude with children’s behavior regarding diet and physical activity. Hence improving mothers’ knowledge or attitude may not be enough to improve dietary and physical activity habits of their children. Barriers and facilitators that affect mothers’ practices towards their children should also be addressed due to future intervention.

Keywords: attitude, behavior, diet, knowledge, mothers, physical activity

Procedia PDF Downloads 288
3408 Systems Integrated Approach to Improve the Design and Construction of Green Buildings

Authors: Saleh Hayat

Abstract:

Efficiency, productivity and sustainability are important factors for structure and the application of processes in green building. Various previous studies have addressed efficiency, productivity and sustainability separately. This research study aims to investigate the implications of these three factors taking together. Frequency analysis and the ranking techniques are carried out to explore the connection between these factors. The interconnection matrix has been developed and functional grouping is made based upon data from expert opinion and field professionals. The existence of a relationship, the type of relationship and the scaled impact have been drawn. Additionally, a system diagram has been developed to show the variable correlation. The results of expert opinion show that efficiency, productivity and sustainability have a stronger impact on green buildings.

Keywords: efficiency, green building, productivity, sustainability

Procedia PDF Downloads 140
3407 Kinematic Hardening Parameters Identification with Respect to Objective Function

Authors: Marina Franulovic, Robert Basan, Bozidar Krizan

Abstract:

Constitutive modelling of material behaviour is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behaviour of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behaviour modelling.

Keywords: genetic algorithm, kinematic hardening, material model, objective function

Procedia PDF Downloads 333
3406 Spatial Pattern of Environmental Noise Levels and Auditory Ailments in Abeokuta Metropolis, Southwestern Nigeria

Authors: Olusegun Oguntoke, Aramide Y. Tijani, Olayide R. Adetunji

Abstract:

Environmental noise has become a major threat to the quality of human life, and it is generally more severe in cities. This study assessed the level of environmental noise, mapped the spatial pattern at different times of the day and examined the association with morbidity of auditory ailments in Abeokuta metropolis. The entire metropolis was divided into 80 cells (areas) of 1000 m by 1000 m; out of which 33 were randomly selected for noise levels assessment. Portable noise meter (AR824) was used to measure noise level, and Global Positioning System (Garmin GPS-72H) was employed to take the coordinates of the sample sites for mapping. Risk map of the noise levels was produced using Kriging interpolation techniques based on the spatial spread of measured noise values across the study area. Data on cases of hearing impairments were collected from four major hospitals in the city. Data collected from field measurements and medical records were subjected to descriptive (frequency and percentage) and inferential (mean, ANOVA and correlation) statistics using SPSS (version 20.0). ArcMap 10.1 was employed for spatial analysis and mapping. Results showed mean noise levels range at morning (42.4 ± 4.14 – 88.2 ± 15.1 dBA), afternoon (45.0 ± 6.72– 86.4 ± 12.5 dBA) and evening (51.0 ± 6.55–84.4 ± 5.19 dBA) across the study area. The interpolated maps identified Kuto, Okelowo, Isale-Igbein, and Sapon as high noise risk areas. These are the central business district and nucleus of Abeokuta metropolis where commercial activities, high traffic volume, and clustered buildings exist. The monitored noise levels varied significantly among the sampled areas in the morning, afternoon and evening (p < 0.05). A significant correlation was found between diagnosed cases of auditory ailments and noise levels measured in the morning (r=0.39 at p < 0.05). Common auditory ailments found across the metropolis included impaired hearing (25.8%), tinnitus (16.4%) and otitis (15.0%). The most affected age groups were between 11-30 years while the male gender had more cases of hearing impairments (51.2%) than the females. The study revealed that environmental noise levels exceeded the recommended standards in the morning, afternoon and evening in 60.6%, 61% and 72.7% of the sampled areas respectively. Summarily, environmental noise in the study area is high and contributes to the morbidity of auditory ailments. Areas identified as hot spots of noise pollution should be avoided in the location of noise sensitive activities while environmental noise monitoring should be included as part of the mandate of the regulatory agencies in Nigeria.

Keywords: noise pollution, associative analysis, auditory impairment, urban, human exposure

Procedia PDF Downloads 144
3405 An Experimental Investigation on the Droplet Behavior Impacting a Hot Surface above the Leidenfrost Temperature

Authors: Khaleel Sami Hamdan, Dong-Eok Kim, Sang-Ki Moon

Abstract:

An appropriate model to predict the size of the droplets resulting from the break-up with the structures will help in a better understanding and modeling of the two-phase flow calculations in the simulation of a reactor core loss-of-coolant accident (LOCA). A droplet behavior impacting on a hot surface above the Leidenfrost temperature was investigated. Droplets of known size and velocity were impacted to an inclined plate of hot temperature, and the behavior of the droplets was observed by a high-speed camera. It was found that for droplets of Weber number higher than a certain value, the higher the Weber number of the droplet the smaller the secondary droplets. The COBRA-TF model over-predicted the measured secondary droplet sizes obtained by the present experiment. A simple model for the secondary droplet size was proposed using the mass conservation equation. The maximum spreading diameter of the droplets was also compared to previous correlations and a fairly good agreement was found. A better prediction of the heat transfer in the case of LOCA can be obtained with the presented model.

Keywords: break-up, droplet, impact, inclined hot plate, Leidenfrost temperature, LOCA

Procedia PDF Downloads 399
3404 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature

Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon

Abstract:

Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.

Keywords: deep-learning, altimetry, sea surface temperature, forecast

Procedia PDF Downloads 90
3403 The Relationship between the Personality Traits and Self-Compassion with Psychological Well-Being in Iranian College Students

Authors: Abdolamir Gatezadeh, Rezvan K. A. Mohamamdi, Arash Jelodari

Abstract:

It has been well established that personality traits and self-compassion are associated with psychological well-being. Thus, the current research aimed to investigate the underlying mechanisms in a collectivist culture. Method: One hundred and fifty college students were chosen and filled out Ryff's Psychological Well-Being Scale, the NEO Personality Inventory, and Neff's Self-Compassion Scale. Results: The results of correlation analysis showed that there were significant relationships between the personality traits (neuroticism, extraversion, agreeableness, and conscientiousness) and self-compassion (self-kindness, isolation, mindfulness, and the total score of self-compassion) with psychological well-being. The regression analysis showed that neuroticism, extraversion, and conscientiousness significantly predicted psychological well-being. Discussion and conclusion: The cultural implications and future orientations have been discussed.

Keywords: college students, personality traits, psychological well-being, self-compassion

Procedia PDF Downloads 216
3402 The Affect of Ethnic Minority People: A Prediction by Gender and Marital Status

Authors: A. K. M. Rezaul Karim, Abu Yusuf Mahmud, S. H. Mahmud

Abstract:

The study aimed to investigate whether the affect (experience of feeling or emotion) of ethnic minority people can be predicted by gender and marital status. Toward this end, positive affect and negative affect of 103 adult indigenous persons were measured. Analysis of data in multiple regressions demonstrated that both gender and marital status are significantly associated with positive affect (Gender: β=.318, p < .001; Marital status: β=.201, p < .05), but not with negative affect. Results indicated that the indigenous males have 0.32 standard deviations increased positive affect as compared to the indigenous females and that married individuals have 0.20 standard deviations increased positive affect as compared to their unmarried counterparts. These findings advance our understanding that gender and marital status inequalities in the experience of emotion are not specific to the mainstream society; rather it is a generalized picture of all societies. In general, men possess more positive affect than females; married persons possess more positive affect than the unmarried persons.

Keywords: positive affect, negative affect, ethnic minority, gender, marital status

Procedia PDF Downloads 448
3401 An Analytical Survey of Construction Changes: Gaps and Opportunities

Authors: Ehsan Eshtehardian, Saeed Khodaverdi

Abstract:

This paper surveys the studies on construction change and reveals some of the potential future works. A full-scale investigation of change literature, including change definitions, types, causes and effects, and change management systems, is accomplished to explore some of the coming change trends. It is tried to pick up the critical works in each section to deduct a true timeline of construction changes. The findings show that leaping from best practice guides in late 1990s and generic process models in the early 2000s to very advanced modeling environments in the mid-2000s and the early 2010s have made gaps along with opportunities for change researchers in order to develop some more easy and applicable models. Another finding is that there is a compelling similarity between the change and risk prediction models. Therefore, integrating these two concepts, specifically from proactive management point of view, may lead to a synergy and help project teams avoid rework. Also, the findings show that exploitation of cause-effect relationship models, in order to facilitate the dispute resolutions, seems to be an interesting field for future works.

Keywords: construction change, change management systems, dispute resolutions, change literature

Procedia PDF Downloads 295
3400 Developing an Accurate AI Algorithm for Histopathologic Cancer Detection

Authors: Leah Ning

Abstract:

This paper discusses the development of a machine learning algorithm that accurately detects metastatic breast cancer (cancer has spread elsewhere from its origin part) in selected images that come from pathology scans of lymph node sections. Being able to develop an accurate artificial intelligence (AI) algorithm would help significantly in breast cancer diagnosis since manual examination of lymph node scans is both tedious and oftentimes highly subjective. The usage of AI in the diagnosis process provides a much more straightforward, reliable, and efficient method for medical professionals and would enable faster diagnosis and, therefore, more immediate treatment. The overall approach used was to train a convolution neural network (CNN) based on a set of pathology scan data and use the trained model to binarily classify if a new scan were benign or malignant, outputting a 0 or a 1, respectively. The final model’s prediction accuracy is very high, with 100% for the train set and over 70% for the test set. Being able to have such high accuracy using an AI model is monumental in regard to medical pathology and cancer detection. Having AI as a new tool capable of quick detection will significantly help medical professionals and patients suffering from cancer.

Keywords: breast cancer detection, AI, machine learning, algorithm

Procedia PDF Downloads 91
3399 The Role of Banks Funding and Promoting the Foreign Trade: Case of Turkey

Authors: Mikail Altan

Abstract:

International trust takes first place in the development of foreign trade in the country. They see an important role in ensuring that trust. Various payment methods that are developed in the banking system provide fast and reliable way to execution and promote foreign trade by financing the foreign trade. In this study, we investigate the influence of bank on foreign trade in Turkey. 26 years of data for 1990-2015 period have been used in this study. After correlation analysis, a simple regression model was established. Payment methods that are developed in the banking system make a positive contribution in Turkey’s foreign trade volume. In addition, the export of Turkey was affected positively more than import’s by these payment methods.

Keywords: banks, export, foreign trade, import

Procedia PDF Downloads 358
3398 First Principle Calculations of Magnetic and Electronic Properties of Double Perovskite Ba2MnMoO6

Authors: B. Bouadjemi, S. Bentata, W. Benstaali, A. Souidi, A. Abbad, T. Lantri, Z. Aziz, A. Zitouni

Abstract:

The electronic and magnetic structures of double perovskite Ba2MnMoO6 are systematically investigated using the first principle method of the Full Potential Linear Augmented Plane Waves Plus the Local Orbitals (FP-LAPW+LO) within the Local Spin Density Approximation (LSDA) and the Generalized Gradient Approximation (GGA). In order to take into account the strong on-site Coulomb interaction, we included the Hubbard correlation terms: LSDA+U and GGA+U approaches. Whereas half-metallic ferromagnetic character is observed due to dominant Mn spin-up and Mo spin-down contributions insulating ground state is obtained. The LSDA+U and GGA+U calculations yield better agreement with the theoretical and the experimental results than LSDA and GGA do.

Keywords: electronic structure, double perovskite, first principles, Ba2MnMoO6, half-metallic

Procedia PDF Downloads 441
3397 Investigation about Structural and Optical Properties of Bulk and Thin Film of 1H-CaAlSi by Density Functional Method

Authors: M. Babaeipour, M. Vejdanihemmat

Abstract:

Optical properties of bulk and thin film of 1H-CaAlSi for two directions (1,0,0) and (0,0,1) were studied. The calculations are carried out by Density Functional Theory (DFT) method using full potential. GGA approximation was used to calculate exchange-correlation energy. The calculations are performed by WIEN2k package. The results showed that the absorption edge is shifted backward 0.82eV in the thin film than the bulk for both directions. The static values of the real part of dielectric function for four cases were obtained. The static values of the refractive index for four cases are calculated too. The reflectivity graphs have shown an intensive difference between the reflectivity of the thin film and the bulk in the ultraviolet region.

Keywords: 1H-CaAlSi, absorption, bulk, optical, thin film

Procedia PDF Downloads 518
3396 Estimation of Stress Intensity Factors from near Crack Tip Field

Authors: Zhuang He, Andrei Kotousov

Abstract:

All current experimental methods for determination of stress intensity factors are based on the assumption that the state of stress near the crack tip is plane stress. Therefore, these methods rely on strain and displacement measurements made outside the near crack tip region affected by the three-dimensional effects or by process zone. In this paper, we develop and validate an experimental procedure for the evaluation of stress intensity factors from the measurements of the out-of-plane displacements in the surface area controlled by 3D effects. The evaluation of stress intensity factors is possible when the process zone is sufficiently small, and the displacement field generated by the 3D effects is fully encapsulated by K-dominance region.

Keywords: digital image correlation, stress intensity factors, three-dimensional effects, transverse displacement

Procedia PDF Downloads 615
3395 Correlation between Sleeping Disturbance and Academic Achievement in University Female Students

Authors: Amel Fayed, Shaden AlSubaih, Nouf Al-Qahtani, Asmaa Gosty, Asma Aljuhaimi

Abstract:

Introduction: Sleep difficulties are vastly predominant among adults and affect different aspects of their life. Many literatures found out that females are more liable to suffer from sleeping problems. College students are typical example of people dealing with daily pressure and stress to fulfill the daily tasks and responsibilities. In addition to their ultimate goal of achieving excellent academic records which require their full concentration and effort. Consequently, many of them start complaining of sleep deprivations which can undesirably affect their academic achievements. This study was aiming to investigate how prevalent is sleeping disorders among different colleges in the university and its relation their academic achievements. Methods: A cross-sectional study of female university students at Princess Norah Bint Abdulrahman University using self-administered questionnaire was conducted. Insomnia Severity Index (ISI) was used to assess different grades of insomnia. Students were requested to answer the questions evaluating their sleeping habits over the last two weeks. Participants reported their latest Grade Point Average (GPA). According to ISI, insomnia severity is reported as ‘No clinically significant’, ‘Subthreshold ‘,’ Clinical moderate insomnia’ and ‘Clinical severe’. Results: In the current study, 228 students participated; 172(75.4%) from medical colleges and 56 (24.6%) from non-medical colleges. About 80% of them claimed to have never taken any medications to help them sleep while only three students confirmed their regular use of sleep-inducing medications. About 16% of the students drink milk or other hot drinks to help them fall asleep. None of the students was suspected of having obstructive sleep apnea or apparent psychiatric disorder. According to ISI, 182 (79.8%) students suffered from subthreshold insomnia, 37 (16.2%) had clinical insomnia (moderate severity) and 9 (3.9%) of students had sleeping problems of non-clinically significance level. However, none of students was found to have severe clinical insomnia. Clinical moderate insomnia was reported in 15.1% of medical students and 19.6% of non-medical students. Moreover, about 82% of medical students suffered from subthreshold insomnia compared to 73.2% of non-medical students. This difference was not statistically significant (P=0.24). About 63% of medical students and 48% of non-medical students believed that high percentage of their colleagues are suffering from insomnias (p-value 0.08) The association between GPA and insomnia revealed that; 19.5% of low GPA group compared to 9.3% of high GPA group had clinical moderate insomnia. This association was not statistically significant (p=0.15). The correlation between the GPA and the ISI score was negative but not conclusive (r=-0.08, p-value = 0.29). More than 92% of all students agreed that sleeping problems affect their academic achievement to varying degrees. Conclusion: our results suggest that insomnia is commonly prevalent among female university students and might affect the students’ achievement. This study provides preliminary data about the quality of sleep among medical and non-medical university students which may be used to promote the healthy sleeping habits among female students.

Keywords: academic achievement, females, insomnia, university student

Procedia PDF Downloads 331
3394 Analysis of Patient No-Shows According to Health Conditions

Authors: Sangbok Lee

Abstract:

There has been much effort on process improvement for outpatient clinics to provide quality and acute care to patients. One of the efforts is no-show analysis or prediction. This work analyzes patient no-shows along with patient health conditions. The health conditions refer to clinical symptoms that each patient has, out of the followings; hyperlipidemia, diabetes, metastatic solid tumor, dementia, chronic obstructive pulmonary disease, hypertension, coronary artery disease, myocardial infraction, congestive heart failure, atrial fibrillation, stroke, drug dependence abuse, schizophrenia, major depression, and pain. A dataset from a regional hospital is used to find the relationship between the number of the symptoms and no-show probabilities. Additional analysis reveals how each symptom or combination of symptoms affects no-shows. In the above analyses, cross-classification of patients by age and gender is carried out. The findings from the analysis will be used to take extra care to patients with particular health conditions. They will be forced to visit clinics by being informed about their health conditions and possible consequences more clearly. Moreover, this work will be used in the preparation of making institutional guidelines for patient reminder systems.

Keywords: healthcare system, no show analysis, process improvment, statistical data analysis

Procedia PDF Downloads 233
3393 The Effect of the Proportion of Carbon on the Corrosion Rate of Carbon-Steel

Authors: Abdulmagid A. Khattabi, Ahmed A. Hablous, Mofied M. Elnemry

Abstract:

The carbon steel is of one of the most common mineral materials used in engineering and industrial applications in order to have access to the required mechanical properties, especially after the change of carbon ratio, but this may lead to stimulate corrosion. It has been used in models of solids with different carbon ratios such as 0.05% C, 0.2% C, 0.35% C, 0.5% C, and 0.65% C and have been studied using three testing durations which are 4 weeks, 6 weeks, and 8 weeks and among different corrosion environments such as atmosphere, fresh water, and salt water. This research is for the purpose of finding the effect of the carbon content on the corrosion resistance of steels in different corrosion medium by using the weight loss technique as a function of the corrosion resistance. The results that have been obtained through this research shows that a correlation can be made between corrosion rates and steel's carbon content, and the corrosion resistance decreases with the increase in carbon content.

Keywords: proportion of carbon in the steel, corrosion rate, erosion, corrosion resistance in carbon-steel

Procedia PDF Downloads 606
3392 Genetic Analysis of Iron, Phosphorus, Potassium and Zinc Concentration in Peanut

Authors: Ajay B. C., Meena H. N., Dagla M. C., Narendra Kumar, Makwana A. D., Bera S. K., Kalariya K. A., Singh A. L.

Abstract:

The high-energy value, protein content and minerals makes peanut a rich source of nutrition at comparatively low cost. Basic information on genetics and inheritance of these mineral elements is very scarce. Hence, in the present study inheritance (using additive-dominance model) and association of mineral elements was studied in two peanut crosses. Dominance variance (H) played an important role in the inheritance of P, K, Fe and Zn in peanut pods. Average degree of dominance for most of the traits was greater than unity indicating over dominance for these traits. Significant associations were also observed among mineral elements both in F2 and F3 generations but pod yield had no associations with mineral elements (with few exceptions). Di-allele/bi-parental mating could be followed to identify high yielding and mineral dense segregates.

Keywords: correlation, dominance variance, mineral elements, peanut

Procedia PDF Downloads 413
3391 Evaluation of Cooperative Hand Movement Capacity in Stroke Patients Using the Cooperative Activity Stroke Assessment

Authors: F. A. Thomas, M. Schrafl-Altermatt, R. Treier, S. Kaufmann

Abstract:

Stroke is the main cause of adult disability. Especially upper limb function is affected in most patients. Recently, cooperative hand movements have been shown to be a promising type of upper limb training in stroke rehabilitation. In these movements, which are frequently found in activities of daily living (e.g. opening a bottle, winding up a blind), the force of one upper limb has to be equally counteracted by the other limb to successfully accomplish a task. The use of standardized and reliable clinical assessments is essential to evaluate the efficacy of therapy and the functional outcome of a patient. Many assessments for upper limb function or impairment are available. However, the evaluation of cooperative hand movement tasks are rarely included in those. Thus, the aim of this study was (i) to develop a novel clinical assessment (CASA - Cooperative Activity Stroke Assessment) for the evaluation of patients’ capacity to perform cooperative hand movements and (ii) to test its inter- and interrater reliability. Furthermore, CASA scores were compared to current gold standard assessments for upper extremity in stroke patients (i.e. Fugl-Meyer Assessment, Box & Blocks Test). The CASA consists of five cooperative activities of daily living including (1) opening a jar, (2) opening a bottle, (3) open and closing of a zip, (4) unscrew a nut and (5) opening a clipbox. Here, the goal is to accomplish the tasks as fast as possible. In addition to the quantitative rating (i.e. time) which is converted to a 7-point scale, also the quality of the movement is rated in a 4-point scale. To test the reliability of CASA, fifteen stroke subjects were tested within a week twice by the same two raters. Intra-and interrater reliability was calculated using the intraclass correlation coefficient (ICC) for total CASA score and single items. Furthermore, Pearson-correlation was used to compare the CASA scores to the scores of Fugl-Meyer upper limb assessment and the box and blocks test, which were assessed in every patient additionally to the CASA. ICC scores of the total CASA score indicated an excellent- and single items established a good to excellent inter- and interrater reliability. Furthermore, the CASA score was significantly correlated to the Fugl-Meyer and Box & Blocks score. The CASA provides a reliable assessment for cooperative hand movements which are crucial for many activities of daily living. Due to its non-costly setup, easy and fast implementation, we suggest it to be well suitable for clinical application. In conclusion, the CASA is a useful tool in assessing the functional status and therapy related recovery in cooperative hand movement capacity in stroke patients.

Keywords: activitites of daily living, clinical assessment, cooperative hand movements, reliability, stroke

Procedia PDF Downloads 319
3390 CFD Simulation for Flow Behavior in Boiling Water Reactor Vessel and Upper Pool under Decommissioning Condition

Authors: Y. T. Ku, S. W. Chen, J. R. Wang, C. Shih, Y. F. Chang

Abstract:

In order to respond the policy decision of non-nuclear homes, Tai Power Company (TPC) will provide the decommissioning project of Kuosheng Nuclear power plant (KSNPP) to meet the regulatory requirement in near future. In this study, the computational fluid dynamics (CFD) methodology has been employed to develop a flow prediction model for boiling water reactor (BWR) with upper pool under decommissioning stage. The model can be utilized to investigate the flow behavior as the vessel combined with upper pool and continuity cooling system. At normal operating condition, different parameters are obtained for the full fluid area, including velocity, mass flow, and mixing phenomenon in the reactor pressure vessel (RPV) and upper pool. Through the efforts of the study, an integrated simulation model will be developed for flow field analysis of decommissioning KSNPP under normal operating condition. It can be expected that a basis result for future analysis application of TPC can be provide from this study.

Keywords: CFD, BWR, decommissioning, upper pool

Procedia PDF Downloads 267
3389 Comparison of the Effectiveness of Tree Algorithms in Classification of Spongy Tissue Texture

Authors: Roza Dzierzak, Waldemar Wojcik, Piotr Kacejko

Abstract:

Analysis of the texture of medical images consists of determining the parameters and characteristics of the examined tissue. The main goal is to assign the analyzed area to one of two basic groups: as a healthy tissue or a tissue with pathological changes. The CT images of the thoracic lumbar spine from 15 healthy patients and 15 with confirmed osteoporosis were used for the analysis. As a result, 120 samples with dimensions of 50x50 pixels were obtained. The set of features has been obtained based on the histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and Haar wavelet. As a result of the image analysis, 290 descriptors of textural features were obtained. The dimension of the space of features was reduced by the use of three selection methods: Fisher coefficient (FC), mutual information (MI), minimization of the classification error probability and average correlation coefficients between the chosen features minimization of classification error probability (POE) and average correlation coefficients (ACC). Each of them returned ten features occupying the initial place in the ranking devised according to its own coefficient. As a result of the Fisher coefficient and mutual information selections, the same features arranged in a different order were obtained. In both rankings, the 50% percentile (Perc.50%) was found in the first place. The next selected features come from the co-occurrence matrix. The sets of features selected in the selection process were evaluated using six classification tree methods. These were: decision stump (DS), Hoeffding tree (HT), logistic model trees (LMT), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). In order to assess the accuracy of classifiers, the following parameters were used: overall classification accuracy (ACC), true positive rate (TPR, classification sensitivity), true negative rate (TNR, classification specificity), positive predictive value (PPV) and negative predictive value (NPV). Taking into account the classification results, it should be stated that the best results were obtained for the Hoeffding tree and logistic model trees classifiers, using the set of features selected by the POE + ACC method. In the case of the Hoeffding tree classifier, the highest values of three parameters were obtained: ACC = 90%, TPR = 93.3% and PPV = 93.3%. Additionally, the values of the other two parameters, i.e., TNR = 86.7% and NPV = 86.6% were close to the maximum values obtained for the LMT classifier. In the case of logistic model trees classifier, the same ACC value was obtained ACC=90% and the highest values for TNR=88.3% and NPV= 88.3%. The values of the other two parameters remained at a level close to the highest TPR = 91.7% and PPV = 91.6%. The results obtained in the experiment show that the use of classification trees is an effective method of classification of texture features. This allows identifying the conditions of the spongy tissue for healthy cases and those with the porosis.

Keywords: classification, feature selection, texture analysis, tree algorithms

Procedia PDF Downloads 178