Search results for: well data integration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26773

Search results for: well data integration

24283 Information Technologies in Human Resources Management - Selected Examples

Authors: A. Karasek

Abstract:

Rapid growth of Information Technologies (IT) has had huge influence on enterprises, and it has contributed to its promotion and increasingly extensive use in enterprises. Information Technologies have to a large extent determined the processes taking place in a enterprise; what is more, IT development has brought the need to adopt a brand new approach to human resources management in an enterprise. The use of IT in Human Resource Management (HRM) is of high importance due to the growing role of information and information technologies. The aim of this paper is to evaluate the use of information technologies in human resources management in enterprises. These practices will be presented in the following areas: Recruitment and selection, development and training, employee assessment, motivation, talent management, personnel service. Results of conducted survey show diversity of solutions applied in particular areas of human resource management. In the future, further development in this area should be expected, as well as integration of individual HRM areas, growing mobile-enabled HR processes and their transfer into the cloud. Presented IT solutions applied in HRM are highly innovative, which is of great significance due to their possible implementation in other enterprises.

Keywords: e-HR, human resources management, HRM practices, HRMS, information technologies

Procedia PDF Downloads 351
24282 Predicting Seoul Bus Ridership Using Artificial Neural Network Algorithm with Smartcard Data

Authors: Hosuk Shin, Young-Hyun Seo, Eunhak Lee, Seung-Young Kho

Abstract:

Currently, in Seoul, users have the privilege to avoid riding crowded buses with the installation of Bus Information System (BIS). BIS has three levels of on-board bus ridership level information (spacious, normal, and crowded). However, there are flaws in the system due to it being real time which could provide incomplete information to the user. For example, a bus comes to the station, and on the BIS it shows that the bus is crowded, but on the stop that the user is waiting many people get off, which would mean that this station the information should show as normal or spacious. To fix this problem, this study predicts the bus ridership level using smart card data to provide more accurate information about the passenger ridership level on the bus. An Artificial Neural Network (ANN) is an interconnected group of nodes, that was created based on the human brain. Forecasting has been one of the major applications of ANN due to the data-driven self-adaptive methods of the algorithm itself. According to the results, the ANN algorithm was stable and robust with somewhat small error ratio, so the results were rational and reasonable.

Keywords: smartcard data, ANN, bus, ridership

Procedia PDF Downloads 167
24281 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality

Authors: Sirilak Areerachakul

Abstract:

Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.

Keywords: artificial neural network, geographic information system, water quality, computer science

Procedia PDF Downloads 343
24280 The Scale of Farms and Development Perspectives in Georgia

Authors: M. Chavleishvili, E. Kharaishvili, G. Erkomaishvili

Abstract:

The article presents the development trends of farms, estimates on the optimal scope of farming, as well as the experience of local and foreign countries in this area. As well, the advantages of small and large farms are discussed; herewith, the scales of farms are compared to the local reality. The study analyzes the results of farm operations and the possibilities of diversification of farms. The indicators of an effective use of land resources and land fragmentation are measured; also, a comparative analysis with other countries is presented, in particular, the measurements of agricultural lands for farming, as well as the indicators of population ensuring. The conducted research shows that most of the farms in Georgia are small and their development is at the initial stage, which outlines that the country has a high resource potential to increase the scale of the farming industry and its full integration into market relations. On the basis of the obtained results, according to the research on the scale of farming in Georgia and the identification of hampering factors of farming development, the conclusions are presented and the relevant recommendations are suggested.

Keywords: farm cooperatives.farms, farm scale, land fragmentation, small and large farms

Procedia PDF Downloads 255
24279 Improving Temporal Correlations in Empirical Orthogonal Function Expansions for Data Interpolating Empirical Orthogonal Function Algorithm

Authors: Ping Bo, Meng Yunshan

Abstract:

Satellite-derived sea surface temperature (SST) is a key parameter for many operational and scientific applications. However, the disadvantage of SST data is a high percentage of missing data which is mainly caused by cloud coverage. Data Interpolating Empirical Orthogonal Function (DINEOF) algorithm is an EOF-based technique for reconstructing the missing data and has been widely used in oceanographic field. The reconstruction of SST images within a long time series using DINEOF can cause large discontinuities and one solution for this problem is to filter the temporal covariance matrix to reduce the spurious variability. Based on the previous researches, an algorithm is presented in this paper to improve the temporal correlations in EOF expansion. Similar with the previous researches, a filter, such as Laplacian filter, is implemented on the temporal covariance matrix, but the temporal relationship between two consecutive images which is used in the filter is considered in the presented algorithm, for example, two images in the same season are more likely correlated than those in the different seasons, hence the latter one is less weighted in the filter. The presented approach is tested for the monthly nighttime 4-km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder SST for the long-term period spanning from 1989 to 2006. The results obtained from the presented algorithm are compared to those from the original DINEOF algorithm without filtering and from the DINEOF algorithm with filtering but without taking temporal relationship into account.

Keywords: data interpolating empirical orthogonal function, image reconstruction, sea surface temperature, temporal filter

Procedia PDF Downloads 324
24278 Achieving Social Sustainability through Architectural Designs for Physically Challenged People: Datascapes Technique

Authors: Fatemeh Zare, Kaveh Bazrafkan, Alireza Bolhari

Abstract:

Quality of life is one of the most recent issues in today's architectural world. It has numerous criteria and has diverse aspects in different nation's cultures. Social sustainability, on the other hand, is frequently a positive attitude which is manifested by integration of human beings and equity of access to fundamental amenities; for instance, transportation, hygienic systems, equal education facilities, etc. This paper demonstrates that achieving desired quality of life is through assurance of sustainable society. Choosing a sustainable approach in every day's life becomes a practical manner and solution for human life. By assuming that an architect is someone who designs people's life by his/her projects, scrutinizing the relationship between quality of life and architectural buildings would reveal hidden criteria through Datascapes technique. This would be enriched when considering this relationship with everyone's basic needs in the society. One the most impressive needs are the particular demands of physically challenged people which are directly examined and discussed.

Keywords: sustainable design, social sustainability, disabled people, datascapes technique

Procedia PDF Downloads 482
24277 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency

Authors: Fanqiang Kong, Chending Bian

Abstract:

In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.

Keywords: hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation

Procedia PDF Downloads 261
24276 Electronic Physical Activity Record (EPAR): Key for Data Driven Physical Activity Healthcare Services

Authors: Rishi Kanth Saripalle

Abstract:

Medical experts highly recommend to include physical activity in everyone’s daily routine irrespective of gender or age as it helps to improve various medical issues or curb potential issues. Simultaneously, experts are also diligently trying to provide various healthcare services (interventions, plans, exercise routines, etc.) for promoting healthy living and increasing physical activity in one’s ever increasing hectic schedules. With the introduction of wearables, individuals are able to keep track, analyze, and visualize their daily physical activities. However, there seems to be no common agreed standard for representing, gathering, aggregating and analyzing an individual’s physical activity data from disparate multiple sources (exercise pans, multiple wearables, etc.). This issue makes it highly impractical to develop any data-driven physical activity applications and healthcare programs. Further, the inability to integrate the physical activity data into an individual’s Electronic Health Record to provide a wholistic image of that individual’s health is still eluding the experts. This article has identified three primary reasons for this potential issue. First, there is no agreed standard, both structure and semantic, for representing and sharing physical activity data across disparate systems. Second, various organizations (e.g., LA fitness, Gold’s Gym, etc.) and research backed interventions and programs still primarily rely on paper or unstructured format (such as text or notes) to keep track of the data generated from physical activities. Finally, most of the wearable devices operate in silos. This article identifies the underlying problem, explores the idea of reusing existing standards, and identifies the essential modules required to move forward.

Keywords: electronic physical activity record, physical activity in EHR EIM, tracking physical activity data, physical activity data standards

Procedia PDF Downloads 282
24275 Developing Pavement Structural Deterioration Curves

Authors: Gregory Kelly, Gary Chai, Sittampalam Manoharan, Deborah Delaney

Abstract:

A Structural Number (SN) can be calculated for a road pavement from the properties and thicknesses of the surface, base course, sub-base, and subgrade. Historically, the cost of collecting structural data has been very high. Data were initially collected using Benkelman Beams and now by Falling Weight Deflectometer (FWD). The structural strength of pavements weakens over time due to environmental and traffic loading factors, but due to a lack of data, no structural deterioration curve for pavements has been implemented in a Pavement Management System (PMS). International Roughness Index (IRI) is a measure of the road longitudinal profile and has been used as a proxy for a pavement’s structural integrity. This paper offers two conceptual methods to develop Pavement Structural Deterioration Curves (PSDC). Firstly, structural data are grouped in sets by design Equivalent Standard Axles (ESA). An ‘Initial’ SN (ISN), Intermediate SN’s (SNI) and a Terminal SN (TSN), are used to develop the curves. Using FWD data, the ISN is the SN after the pavement is rehabilitated (Financial Accounting ‘Modern Equivalent’). Intermediate SNIs, are SNs other than the ISN and TSN. The TSN was defined as the SN of the pavement when it was approved for pavement rehabilitation. The second method is to use Traffic Speed Deflectometer data (TSD). The road network already divided into road blocks, is grouped by traffic loading. For each traffic loading group, road blocks that have had a recent pavement rehabilitation, are used to calculate the ISN and those planned for pavement rehabilitation to calculate the TSN. The remaining SNs are used to complete the age-based or if available, historical traffic loading-based SNI’s.

Keywords: conceptual, pavement structural number, pavement structural deterioration curve, pavement management system

Procedia PDF Downloads 544
24274 Nilsson Model Performance in Estimating Bed Load Sediment, Case Study: Tale Zang Station

Authors: Nader Parsazadeh

Abstract:

The variety of bed sediment load relationships, insufficient information and data, and the influence of river conditions make the selection of an optimum relationship for a given river extremely difficult. Hence, in order to select the best formulae, the bed load equations should be evaluated. The affecting factors need to be scrutinized, and equations should be verified. Also, re-evaluation may be needed. In this research, sediment bed load of Dez Dam at Tal-e Zang Station has been studied. After reviewing the available references, the most common formulae were selected that included Meir-Peter and Muller, using MS Excel to compute and evaluate data. Then, 52 series of already measured data at the station were re-measured, and the sediment bed load was determined. 1. The calculated bed load obtained by different equations showed a great difference with that of measured data. 2. r difference ratio from 0.5 to 2.00 was 0% for all equations except for Nilsson and Shields equations while it was 61.5 and 59.6% for Nilsson and Shields equations, respectively. 3. By reviewing results and discarding probably erroneous measured data measurements (by human or machine), one may use Nilsson Equation due to its r value higher than 1 as an effective equation for estimating bed load at Tal-e Zang Station in order to predict activities that depend upon bed sediment load estimate to be determined. Also, since only few studies have been conducted so far, these results may be of assistance to the operators and consulting companies.

Keywords: bed load, empirical relation ship, sediment, Tale Zang Station

Procedia PDF Downloads 362
24273 An Improved Dynamic Window Approach with Environment Awareness for Local Obstacle Avoidance of Mobile Robots

Authors: Baoshan Wei, Shuai Han, Xing Zhang

Abstract:

Local obstacle avoidance is critical for mobile robot navigation. It is a challenging task to ensure path optimality and safety in cluttered environments. We proposed an Environment Aware Dynamic Window Approach in this paper to cope with the issue. The method integrates environment characterization into Dynamic Window Approach (DWA). Two strategies are proposed in order to achieve the integration. The local goal strategy guides the robot to move through openings before approaching the final goal, which solves the local minima problem in DWA. The adaptive control strategy endows the robot to adjust its state according to the environment, which addresses path safety compared with DWA. Besides, the evaluation shows that the path generated from the proposed algorithm is safer and smoother compared with state-of-the-art algorithms.

Keywords: adaptive control, dynamic window approach, environment aware, local obstacle avoidance, mobile robots

Procedia PDF Downloads 159
24272 Being an English Language Teaching Assistant in China: Understanding the Identity Evolution of Early-Career English Teacher in Private Tutoring Schools

Authors: Zhou Congling

Abstract:

The integration of private tutoring has emerged as an indispensable facet in the acquisition of language proficiency beyond formal educational settings. Notably, there has been a discernible surge in the demand for private English tutoring, specifically geared towards the preparation for internationally recognized gatekeeping examinations, such as IELTS, TOEFL, GMAT, and GRE. This trajectory has engendered an escalating need for English Language Teaching Assistants (ELTAs) operating within the realm of Private Tutoring Schools (PTSs). The objective of this study is to unravel the intricate process by which these ELTAs formulate their professional identities in the nascent stages of their careers as English educators, as well as to delineate their perceptions regarding their professional trajectories. The construct of language teacher identity is inherently multifaceted, shaped by an amalgamation of individual, societal, and cultural determinants, exerting a profound influence on how language educators navigate their professional responsibilities. This investigation seeks to scrutinize the experiential and influential factors that mold the identities of ELTAs in PTSs, particularly post the culmination of their language-oriented academic programs. Employing a qualitative narrative inquiry approach, this study aims to delve into the nuanced understanding of how ELTAs conceptualize their professional identities and envision their future roles. The research methodology involves purposeful sampling and the conduct of in-depth, semi-structured interviews with ten participants. Data analysis will be conducted utilizing Barkhuizen’s Short Story Analysis, a method designed to explore a three-dimensional narrative space, elucidating the intricate interplay of personal experiences and societal contexts in shaping the identities of ELTAs. The anticipated outcomes of this study are poised to contribute substantively to a holistic comprehension of ELTA identity formation, holding practical implications for diverse stakeholders within the private tutoring sector. This research endeavors to furnish insights into strategies for the retention of ELTAs and the enhancement of overall service quality within PTSs.

Keywords: China, English language teacher, narrative inquiry, private tutoring school, teacher identity

Procedia PDF Downloads 56
24271 Integration of an Evidence-Based Medicine Curriculum into Physician Assistant Education: Teaching for Today and the Future

Authors: Martina I. Reinhold, Theresa Bacon-Baguley

Abstract:

Background: Medical knowledge continuously evolves and to help health care providers to stay up-to-date, evidence-based medicine (EBM) has emerged as a model. The practice of EBM requires new skills of the health care provider, including directed literature searches, the critical evaluation of research studies, and the direct application of the findings to patient care. This paper describes the integration and evaluation of an evidence-based medicine course sequence into a Physician Assistant curriculum. This course sequence teaches students to manage and use the best clinical research evidence to competently practice medicine. A survey was developed to assess the outcomes of the EBM course sequence. Methodology: The cornerstone of the three-semester sequence of EBM are interactive small group discussions that are designed to introduce students to the most clinically applicable skills to identify, manage and use the best clinical research evidence to improve the health of their patients. During the three-semester sequence, the students are assigned each semester to participate in small group discussions that are facilitated by faculty with varying background and expertise. Prior to the start of the first EBM course in the winter semester, PA students complete a knowledge-based survey that was developed by the authors to assess the effectiveness of the course series. The survey consists of 53 Likert scale questions that address the nine objectives for the course series. At the end of the three semester course series, the same survey was given to all students in the program and the results from before, and after the sequence of EBM courses are compared. Specific attention is paid to overall performance of students in the nine course objectives. Results: We find that students from the Class of 2016 and 2017 consistently improve (as measured by percent correct responses on the survey tool) after the EBM course series (Class of 2016: Pre- 62% Post- 75%; Class of 2017: Pre- 61 % Post-70%). The biggest increase in knowledge was observed in the areas of finding and evaluating the evidence, with asking concise clinical questions (Class of 2016: Pre- 61% Post- 81%; Class of 2017: Pre- 61 % Post-75%) and searching the medical database (Class of 2016: Pre- 24% Post- 65%; Class of 2017: Pre- 35 % Post-66 %). Questions requiring students to analyze, evaluate and report on the available clinical evidence regarding diagnosis showed improvement, but to a lesser extend (Class of 2016: Pre- 56% Post- 77%; Class of 2017: Pre- 56 % Post-61%). Conclusions: Outcomes identified that students did gain skills which will allow them to apply EBM principles. In addition, the outcomes of the knowledge-based survey allowed the faculty to focus on areas needing improvement, specifically the translation of best evidence into patient care. To address this area, the clinical faculty developed case scenarios that were incorporated into the lecture and discussion sessions, allowing students to better connect the research studies with patient care. Students commented that ‘class discussion and case examples’ contributed most to their learning and that ‘it was helpful to learn how to develop research questions and how to analyze studies and their significance to a potential client’. As evident by the outcomes, the EBM courses achieved the goals of the course and were well received by the students. 

Keywords: evidence-based medicine, clinical education, assessment tool, physician assistant

Procedia PDF Downloads 125
24270 Hierarchical Filtering Method of Threat Alerts Based on Correlation Analysis

Authors: Xudong He, Jian Wang, Jiqiang Liu, Lei Han, Yang Yu, Shaohua Lv

Abstract:

Nowadays, the threats of the internet are enormous and increasing; however, the classification of huge alert messages generated in this environment is relatively monotonous. It affects the accuracy of the network situation assessment, and also brings inconvenience to the security managers to deal with the emergency. In order to deal with potential network threats effectively and provide more effective data to improve the network situation awareness. It is essential to build a hierarchical filtering method to prevent the threats. In this paper, it establishes a model for data monitoring, which can filter systematically from the original data to get the grade of threats and be stored for using again. Firstly, it filters the vulnerable resources, open ports of host devices and services. Then use the entropy theory to calculate the performance changes of the host devices at the time of the threat occurring and filter again. At last, sort the changes of the performance value at the time of threat occurring. Use the alerts and performance data collected in the real network environment to evaluate and analyze. The comparative experimental analysis shows that the threat filtering method can effectively filter the threat alerts effectively.

Keywords: correlation analysis, hierarchical filtering, multisource data, network security

Procedia PDF Downloads 201
24269 Integrated Environmental Management System and Environmental Impact Assessment in Evaluation of Environmental Protective Action

Authors: Moustafa Osman

Abstract:

The paper describes and analyses different good practice examples of protective levels, and initiatives actions (“framework conditions”) and encourages the uptake of environmental management systems (EMSs) to small and medium-sized enterprises (SMEs). Most of industries tend to take EMS as tools leading towards sustainability planning. The application of these tools has numerous environmental obligations that neither suggests decision nor recommends what a company should achieve ultimately. These set up clearly defined criteria to evaluate environmental protective action (EEPA) into sustainability indicators. The physical integration will evaluate how to incorporate traditional knowledge into baseline information, preparing impact prediction, and planning mitigation measures in monitoring conditions. Thereby efforts between the government, industry and community led protective action to concern with present needs for future generations, meeting the goal of sustainable development. The paper discusses how to set out distinct aspects of sustainable indicators and reflects inputs, outputs, and modes of impact on the environment.

Keywords: environmental management, sustainability, indicators, protective action

Procedia PDF Downloads 443
24268 A Review of Methods for Handling Missing Data in the Formof Dropouts in Longitudinal Clinical Trials

Authors: A. Satty, H. Mwambi

Abstract:

Much clinical trials data-based research are characterized by the unavoidable problem of dropout as a result of missing or erroneous values. This paper aims to review some of the various techniques to address the dropout problems in longitudinal clinical trials. The fundamental concepts of the patterns and mechanisms of dropout are discussed. This study presents five general techniques for handling dropout: (1) Deletion methods; (2) Imputation-based methods; (3) Data augmentation methods; (4) Likelihood-based methods; and (5) MNAR-based methods. Under each technique, several methods that are commonly used to deal with dropout are presented, including a review of the existing literature in which we examine the effectiveness of these methods in the analysis of incomplete data. Two application examples are presented to study the potential strengths or weaknesses of some of the methods under certain dropout mechanisms as well as to assess the sensitivity of the modelling assumptions.

Keywords: incomplete longitudinal clinical trials, missing at random (MAR), imputation, weighting methods, sensitivity analysis

Procedia PDF Downloads 415
24267 Embodied Cognition and Its Implications in Education: An Overview of Recent Literature

Authors: Panagiotis Kosmas, Panayiotis Zaphiris

Abstract:

Embodied Cognition (EC) as a learning paradigm is based on the idea of an inseparable link between body, mind, and environment. In recent years, the advent of theoretical learning approaches around EC theory has resulted in a number of empirical studies exploring the implementation of the theory in education. This systematic literature overview identifies the mainstream of EC research and emphasizes on the implementation of the theory across learning environments. Based on a corpus of 43 manuscripts, published between 2013 and 2017, it sets out to describe the range of topics covered under the umbrella of EC and provides a holistic view of the field. The aim of the present review is to investigate the main issues in EC research related to the various learning contexts. Particularly, the study addresses the research methods and technologies that are utilized, and it also explores the integration of body into the learning context. An important finding from the overview is the potential of the theory in different educational environments and disciplines. However, there is a lack of an explicit pedagogical framework from an educational perspective for a successful implementation in various learning contexts.

Keywords: embodied cognition, embodied learning, education, technology, schools

Procedia PDF Downloads 144
24266 Feedback Preference and Practice of English Majors’ in Pronunciation Instruction

Authors: Claerchille Jhulia Robin

Abstract:

This paper discusses the perspective of ESL learners towards pronunciation instruction. It sought to determine how these learners view the type of feedback their speech teacher gives and its impact on their own classroom practice of providing feedback. This study utilized a quantitative-qualitative approach to the problem. The respondents were Education students majoring in English. A survey questionnaire and interview guide were used for data gathering. The data from the survey was tabulated using frequency count and the data from the interview were then transcribed and analyzed. Results showed that ESL learners favor immediate corrective feedback and they do not find any issue in being corrected in front of their peers. They also practice the same corrective technique in their own classroom.

Keywords: ESL, feedback, learner perspective, pronunciation instruction

Procedia PDF Downloads 234
24265 Principles of Sustainable and Affordable Housing Policy for Afghan Refugees Returning to Afghanistan

Authors: Mohammad Saraj Sharifzai, Keisuke Kitagawa, Mohammad Kamil Halimee, Javid Habib, Daishi Sakaguchi

Abstract:

The overall goal of this paper is to examine the suitability and potential of the policies addressing the sustainability and affordability of housing for returnees, and to determine the impact of this policy on housing delivery for Afghan refugees. Housing is a central component of the settlement experience of refugees. A positive housing situation can facilitate many aspects of integration. Unaffordable, and unsafe housing, however, can cause disruptions in the entire settlement process. This paper aims to identify a suite of built forms for housing that is both affordable and environmentally sustainable for Afghan refugees. The result was the development of a framework that enables the assessment of the overall performance of various types of housing development in all zones of the country. There is very little evidence that the present approach of housing provision to the vagaries of market forces has provided affordable housing, especially for Afghan refugees. There is a need to incorporate social housing into the policy to assist people who cannot afford to have their own houses.

Keywords: Afghan refugees, housing policy, affordability, social housing, housing provision, environmental sustainability principles, resettlement

Procedia PDF Downloads 567
24264 Automatic Tagging and Accuracy in Assamese Text Data

Authors: Chayanika Hazarika Bordoloi

Abstract:

This paper is an attempt to work on a highly inflectional language called Assamese. This is also one of the national languages of India and very little has been achieved in terms of computational research. Building a language processing tool for a natural language is not very smooth as the standard and language representation change at various levels. This paper presents inflectional suffixes of Assamese verbs and how the statistical tools, along with linguistic features, can improve the tagging accuracy. Conditional random fields (CRF tool) was used to automatically tag and train the text data; however, accuracy was improved after linguistic featured were fed into the training data. Assamese is a highly inflectional language; hence, it is challenging to standardizing its morphology. Inflectional suffixes are used as a feature of the text data. In order to analyze the inflections of Assamese word forms, a list of suffixes is prepared. This list comprises suffixes, comprising of all possible suffixes that various categories can take is prepared. Assamese words can be classified into inflected classes (noun, pronoun, adjective and verb) and un-inflected classes (adverb and particle). The corpus used for this morphological analysis has huge tokens. The corpus is a mixed corpus and it has given satisfactory accuracy. The accuracy rate of the tagger has gradually improved with the modified training data.

Keywords: CRF, morphology, tagging, tagset

Procedia PDF Downloads 194
24263 Synergistic Effect of Carbon Nanostructures and Titanium Dioxide Nanotubes on the Piezoelectric Property of Polyvinylidene Fluoride

Authors: Deepalekshmi Ponnamma, Erturk Alper, Pradeep Sharma, Mariam Al Ali AlMaadeed

Abstract:

Integrating efficient energy harvesting materials into soft, flexible and eco-friendly substrates could yield significant breakthroughs in wearable and flexible electronics. Here we present a hybrid filler combination of titanium dioxide nanotubes and the carbon nanostructures-carbon nanotubes and reduced graphene oxide- synthesized by hydrothermal method and then introduced into a semi crystalline polymer, polyvinylidene fluoride (PVDF). Simple mixing method is adopted for the PVDF nanocomposite fabrication after ensuring a high interaction among the fillers. The films prepared were mainly tested for the piezoelectric responses and for the mechanical stretchability. The results show that the piezoelectric constant has increased while changing the total filler concentration. We propose integration of these materials in fabricating energy conversion devices useful in flexible and wearable electronics.

Keywords: dielectric property, hydrothermal growth, piezoelectricity, polymer nanocomposite

Procedia PDF Downloads 353
24262 Fostering Enriched Teaching and Learning Experience Using Effective Cyber-Physical Learning Environment

Authors: Shubhakar K., Nachamma S., Judy T., Jacob S. C., Melvin Lee, Kenneth Lo

Abstract:

In recent years, technological advancements have ushered in a new era of education characterized by the integration of technology-enabled devices and online tools. The cyber-physical learning environment (CPLE) is a prime example of this evolution, merging remote cyber participants with in-class learners through immersive technology, interactive digital whiteboards, and online communication platforms like Zoom and MS Teams. This approach transforms the teaching and learning experience into a more seamless, immersive, and inclusive one. This paper outlines the design principles and key features of CPLE that support both teaching and group-based activities. We also explore the key characteristics and potential impact of such environments on educational practices. By analyzing user feedback, we evaluate how technology enhances teaching and learning in a cyber-physical setting, its impact on learning outcomes, user-friendliness, and areas for further enhancement to optimize the teaching and learning environment.

Keywords: cyber-physical class, hybrid teaching, online learning, remote learning, technology enabled learning

Procedia PDF Downloads 37
24261 A Human Activity Recognition System Based on Sensory Data Related to Object Usage

Authors: M. Abdullah, Al-Wadud

Abstract:

Sensor-based activity recognition systems usually accounts which sensors have been activated to perform an activity. The system then combines the conditional probabilities of those sensors to represent different activities and takes the decision based on that. However, the information about the sensors which are not activated may also be of great help in deciding which activity has been performed. This paper proposes an approach where the sensory data related to both usage and non-usage of objects are utilized to make the classification of activities. Experimental results also show the promising performance of the proposed method.

Keywords: Naïve Bayesian, based classification, activity recognition, sensor data, object-usage model

Procedia PDF Downloads 322
24260 Application of Post-Stack and Pre-Stack Seismic Inversion for Prediction of Hydrocarbon Reservoirs in a Persian Gulf Gas Field

Authors: Nastaran Moosavi, Mohammad Mokhtari

Abstract:

Seismic inversion is a technique which has been in use for years and its main goal is to estimate and to model physical characteristics of rocks and fluids. Generally, it is a combination of seismic and well-log data. Seismic inversion can be carried out through different methods; we have conducted and compared post-stack and pre- stack seismic inversion methods on real data in one of the fields in the Persian Gulf. Pre-stack seismic inversion can transform seismic data to rock physics such as P-impedance, S-impedance and density. While post- stack seismic inversion can just estimate P-impedance. Then these parameters can be used in reservoir identification. Based on the results of inverting seismic data, a gas reservoir was detected in one of Hydrocarbon oil fields in south of Iran (Persian Gulf). By comparing post stack and pre-stack seismic inversion it can be concluded that the pre-stack seismic inversion provides a more reliable and detailed information for identification and prediction of hydrocarbon reservoirs.

Keywords: density, p-impedance, s-impedance, post-stack seismic inversion, pre-stack seismic inversion

Procedia PDF Downloads 323
24259 A Data-Driven Monitoring Technique Using Combined Anomaly Detectors

Authors: Fouzi Harrou, Ying Sun, Sofiane Khadraoui

Abstract:

Anomaly detection based on Principal Component Analysis (PCA) was studied intensively and largely applied to multivariate processes with highly cross-correlated process variables. Monitoring metrics such as the Hotelling's T2 and the Q statistics are usually used in PCA-based monitoring to elucidate the pattern variations in the principal and residual subspaces, respectively. However, these metrics are ill suited to detect small faults. In this paper, the Exponentially Weighted Moving Average (EWMA) based on the Q and T statistics, T2-EWMA and Q-EWMA, were developed for detecting faults in the process mean. The performance of the proposed methods was compared with that of the conventional PCA-based fault detection method using synthetic data. The results clearly show the benefit and the effectiveness of the proposed methods over the conventional PCA method, especially for detecting small faults in highly correlated multivariate data.

Keywords: data-driven method, process control, anomaly detection, dimensionality reduction

Procedia PDF Downloads 299
24258 Leveraging Power BI for Advanced Geotechnical Data Analysis and Visualization in Mining Projects

Authors: Elaheh Talebi, Fariba Yavari, Lucy Philip, Lesley Town

Abstract:

The mining industry generates vast amounts of data, necessitating robust data management systems and advanced analytics tools to achieve better decision-making processes in the development of mining production and maintaining safety. This paper highlights the advantages of Power BI, a powerful intelligence tool, over traditional Excel-based approaches for effectively managing and harnessing mining data. Power BI enables professionals to connect and integrate multiple data sources, ensuring real-time access to up-to-date information. Its interactive visualizations and dashboards offer an intuitive interface for exploring and analyzing geotechnical data. Advanced analytics is a collection of data analysis techniques to improve decision-making. Leveraging some of the most complex techniques in data science, advanced analytics is used to do everything from detecting data errors and ensuring data accuracy to directing the development of future project phases. However, while Power BI is a robust tool, specific visualizations required by geotechnical engineers may have limitations. This paper studies the capability to use Python or R programming within the Power BI dashboard to enable advanced analytics, additional functionalities, and customized visualizations. This dashboard provides comprehensive tools for analyzing and visualizing key geotechnical data metrics, including spatial representation on maps, field and lab test results, and subsurface rock and soil characteristics. Advanced visualizations like borehole logs and Stereonet were implemented using Python programming within the Power BI dashboard, enhancing the understanding and communication of geotechnical information. Moreover, the dashboard's flexibility allows for the incorporation of additional data and visualizations based on the project scope and available data, such as pit design, rock fall analyses, rock mass characterization, and drone data. This further enhances the dashboard's usefulness in future projects, including operation, development, closure, and rehabilitation phases. Additionally, this helps in minimizing the necessity of utilizing multiple software programs in projects. This geotechnical dashboard in Power BI serves as a user-friendly solution for analyzing, visualizing, and communicating both new and historical geotechnical data, aiding in informed decision-making and efficient project management throughout various project stages. Its ability to generate dynamic reports and share them with clients in a collaborative manner further enhances decision-making processes and facilitates effective communication within geotechnical projects in the mining industry.

Keywords: geotechnical data analysis, power BI, visualization, decision-making, mining industry

Procedia PDF Downloads 92
24257 An Investigation of E-Government by Using GIS and Establishing E-Government in Developing Countries Case Study: Iraq

Authors: Ahmed M. Jamel

Abstract:

Electronic government initiatives and public participation to them are among the indicators of today's development criteria of the countries. After consequent two wars, Iraq's current position in, for example, UN's e-government ranking is quite concerning and did not improve in recent years, either. In the preparation of this work, we are motivated with the fact that handling geographic data of the public facilities and resources are needed in most of the e-government projects. Geographical information systems (GIS) provide most common tools not only to manage spatial data but also to integrate such type of data with nonspatial attributes of the features. With this background, this paper proposes that establishing a working GIS in the health sector of Iraq would improve e-government applications. As the case study, investigating hospital locations in Erbil is chosen.

Keywords: e-government, GIS, Iraq, Erbil

Procedia PDF Downloads 389
24256 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients

Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori

Abstract:

Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.

Keywords: asthma, datamining, classification, machine learning

Procedia PDF Downloads 447
24255 Application of GPRS in Water Quality Monitoring System

Authors: V. Ayishwarya Bharathi, S. M. Hasker, J. Indhu, M. Mohamed Azarudeen, G. Gowthami, R. Vinoth Rajan, N. Vijayarangan

Abstract:

Identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. The traditional method of water quality testing is to collect samples manually and then send to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. In this project specifies Water quality parameters collected by multi-parameter water quality probe are transmitted to data processing and monitoring center through GPRS wireless communication network of mobile. The multi parameter sensor is directly placed above the water level. The monitoring center consists of GPRS and micro-controller which monitor the data. The collected data can be monitor at any instant of time. In the pollution control board they will monitor the water quality sensor data in computer using Visual Basic Software. The system collects, transmits and processes water quality parameters automatically, so production efficiency and economy benefit are improved greatly. GPRS technology can achieve well within the complex environment of poor water quality non-monitored, and more specifically applicable to the collection point, data transmission automatically generate the field of water analysis equipment data transmission and monitoring.

Keywords: multiparameter sensor, GPRS, visual basic software, RS232

Procedia PDF Downloads 412
24254 Decision Support System in Air Pollution Using Data Mining

Authors: E. Fathallahi Aghdam, V. Hosseini

Abstract:

Environmental pollution is not limited to a specific region or country; that is why sustainable development, as a necessary process for improvement, pays attention to issues such as destruction of natural resources, degradation of biological system, global pollution, and climate change in the world, especially in the developing countries. According to the World Health Organization, as a developing city, Tehran (capital of Iran) is one of the most polluted cities in the world in terms of air pollution. In this study, three pollutants including particulate matter less than 10 microns, nitrogen oxides, and sulfur dioxide were evaluated in Tehran using data mining techniques and through Crisp approach. The data from 21 air pollution measuring stations in different areas of Tehran were collected from 1999 to 2013. Commercial softwares Clementine was selected for this study. Tehran was divided into distinct clusters in terms of the mentioned pollutants using the software. As a data mining technique, clustering is usually used as a prologue for other analyses, therefore, the similarity of clusters was evaluated in this study through analyzing local conditions, traffic behavior, and industrial activities. In fact, the results of this research can support decision-making system, help managers improve the performance and decision making, and assist in urban studies.

Keywords: data mining, clustering, air pollution, crisp approach

Procedia PDF Downloads 427