Search results for: unsaturated freezing soil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3239

Search results for: unsaturated freezing soil

749 Settlement Analysis of Axially Loaded Bored Piles: A Case History

Authors: M. Mert, M. T. Ozkan

Abstract:

Pile load tests should be applied to check the bearing capacity calculations and to determine the settlement of the pile corresponding to test load. Strain gauges can be installed into pile in order to determine the shaft resistance of the piles for every soil layer respectively. Detailed results can be obtained by means of strain gauges placed at certain levels into test piles. In the scope of this study, pile load test data obtained from two different projects are examined.  Instrumented static pile load tests were applied on totally 7 test bored piles of different diameters (80 cm, 150 cm, and 200 cm) and different lengths (between 30-76 m) in two different project site. Settlement analysis of test piles is done by using some of load transfer methods and finite element method. Plaxis 3D which is a three-dimensional finite element program is also used for settlement analysis of the test piles. In this study, firstly bearing capacity of test piles are determined and compared with strain gauge data which is required for settlement analysis. Then, settlement values of the test piles are estimated by using load transfer methods developed in recent years and finite element method. The aim of this study is to show similarities and differences between the results obtained from settlement analysis methods and instrumented pile load tests.

Keywords: failure, finite element method, monitoring and instrumentation, pile, settlement

Procedia PDF Downloads 167
748 Characterization of Fateh Sagar Wetland and Its Catchment Area at Udaipur City, (Raj.) India, Using High Resolution Data

Authors: Parul Bhalla, Sarvesh Palria

Abstract:

Wetlands are areas of land that are either temporarily or permanently covered by water. Wetlands exhibit enormous diversity according to their genesis, geographical location, water regime and chemistry, dominant plants and soil or sediment characteristics. The spatial and temporal characteristics of wetland in terms of turbidity and aquatic vegetation could serve as guiding tool, in conservation prioritization of wetlands. The aquatic vegetation in the wetland is an indicator of the trophic status of the wetland which has a bearing on the water quality, the turbidity level in any wetland is indicative of the quality of the water in it. To conserve and manage wetland resources, it is important to have inventory of wetland and its catchment. Fateh Sagar wetland in Udaipur city is the one of the important wetland for tourism industry and other economic activities in the region. Realizing the importance of the wetland, the present study has been taken up with the specific objective of delineation and characterization of Fateh Sagar wetland in terms of turbidity and aquatic vegetation, using high resolution satellite data such as Cartosat and LISS IV multi-temporal data, which will efficiently bring out the changes in water spread and quality parameters. The catchment of wetland has been also characterized for various features. The study leads in to takes necessary steps to conserve the wetland and its resources.

Keywords: aquatic vegetation, catchment, turbidity status, wetland

Procedia PDF Downloads 403
747 Isolation, Identification and Characterization of 1,2-Dichlorobenzene Degrading Bacteria from Consortium

Authors: Ge Cui, Mei Fang Chien, Chihiro Inoue

Abstract:

In this research, enrichment culture using an inorganic liquid medium collected soil contaminated with 1,2-dichlorobenzene (1,2-DCB) in Sendai, Japan, was added 1,2-DCB as the sole carbon source to create a stable consortium. The purpose of this research is to analysis dominant microorganisms in the stable consortium and enzyme system which play a role in the degradation of DCBs. The consortium is now at 30 generation and is still being cultured. By the result of PCR-DGGE and clone library, two bacteria are dominant. The bacteria named sk1 was isolated. 40mg/l of 1,2-DCB and 40mg/l of 1,4-DCB were completely degraded after 32 hours and 50 hours, respectively, but no degradation occurred in the case of 1,3-DCB. By PCR, tecA1 (α-subunit of DCB dioxygenase) gene which plays a role degrading DCB to DCB dihydrodiol, and tecB (dehydrogenase) gene which plays a role degrading DCB dihydrodiol to dichlorocatechol were amplified from strain sk1. Bacteria named sk100 was also isolated. 40mg/l of 1,2-DCB was completely degraded after 32 hours, but no degradation occurred in case of 1,3-DCB and 1,4-DCB. By the result of the catalytic core region of dioxygenase amplified by PCR, gene played a role degrading DCB was analyzed. The results of this study concluded that the isolated strains which have not been reported are able to degrade 1,2-DCB stably, and the characterization of degradation and the genomic analysis which is now in progress is helpful to have an overall view of this microbial degradation.

Keywords: DCB, 1, 2-DCB degrading strains, DCB dioxygenase, enrichment culture

Procedia PDF Downloads 204
746 Use of Carica papaya as a Bio-Sorbent for Removal of Heavy Metals in Wastewater

Authors: W. E. Igwegbe, B. C. Okoro, J. C. Osuagwu

Abstract:

The study was aimed at assessing the effectiveness of reducing the concentrations of heavy metals in waste water using Pawpaw (Carica papaya) wood as a bio-sorbent. The heavy metals considered include; zinc, cadmium, lead, copper, iron, selenium, nickel, and manganese. The physiochemical properties of carica papaya stem were studied. The experimental sample was obtained from a felled trunk of matured pawpaw tree. Waste water for experimental use was prepared by dissolving soil samples collected from a dump site at Owerri, Imo state in water. The concentration of each metal remaining in solution as residual metal after bio-sorption was determined using Atomic absorption Spectrometer. The effects of ph, contact time and initial heavy metal concentration were studied in a batch reactor. The results of Spectrometer test showed that there were different functional groups detected in the carica papaya stem biomass. Optimum bio-sorption occurred at pH 5.9 with 5g/100ml solution of bio-sorbent. The results of the study showed that the treated wastewater is fit for irrigation purpose based on Canada wastewater quality guideline for the protection of Agricultural standard. This approach thus provides a cost effective and environmentally friendly option for treating waste water.

Keywords: biomass, bio-sorption, Carica papaya, heavy metal, wastewater

Procedia PDF Downloads 371
745 Assessment of Land Use and Land Cover Change in Lake Ol Bolossat Catchment, Nyandarua County, Kenya

Authors: John Wangui, Charles Gachene, Stephen Mureithi, Boniface Kiteme

Abstract:

Land use changes caused by demographic, natural variability, economic, technological and policy factors affect the goods and services derived from an ecosystem. In the past few decades, Lake Ol Bolossat catchment in Nyandarua County Kenya has been facing challenges of land cover changes threatening its capacity to perform ecosystems functions and adversely affecting communities and ecosystems downstream. This study assessed land cover changes in the catchment for a period of twenty eight years (from 1986 to 2014). Analysis of three Landsat images i.e. L5 TM 1986, L5 TM 1995 and L8 OLI/TIRS 2014 was done using ERDAS 9.2 software. The results show that dense forest, cropland and area under water increased by 27%, 29% and 3% respectively. On the other hand, open forest, dense grassland, open grassland, bushland and shrubland decreased by 3%, 3%, 11%, 26% and 1% respectively during the period under assessment. The lake was noted to have increased due to siltation caused by soil erosion causing a reduction in Lake’s depth and consequently causing temporary flooding of the wetland. The study concludes that the catchment is under high demographic pressure which would lead to resource use conflicts and therefore formulation of mitigation measures is highly recommended.

Keywords: land cover, land use change, land degradation, Nyandarua, Remote sensing

Procedia PDF Downloads 369
744 Modeling Continuous Flow in a Curved Channel Using Smoothed Particle Hydrodynamics

Authors: Indri Mahadiraka Rumamby, R. R. Dwinanti Rika Marthanty, Jessica Sjah

Abstract:

Smoothed particle hydrodynamics (SPH) was originally created to simulate nonaxisymmetric phenomena in astrophysics. However, this method still has several shortcomings, namely the high computational cost required to model values with high resolution and problems with boundary conditions. The difficulty of modeling boundary conditions occurs because the SPH method is influenced by particle deficiency due to the integral of the kernel function being truncated by boundary conditions. This research aims to answer if SPH modeling with a focus on boundary layer interactions and continuous flow can produce quantifiably accurate values with low computational cost. This research will combine algorithms and coding in the main program of meandering river, continuous flow algorithm, and solid-fluid algorithm with the aim of obtaining quantitatively accurate results on solid-fluid interactions with the continuous flow on a meandering channel using the SPH method. This study uses the Fortran programming language for modeling the SPH (Smoothed Particle Hydrodynamics) numerical method; the model is conducted in the form of a U-shaped meandering open channel in 3D, where the channel walls are soil particles and uses a continuous flow with a limited number of particles.

Keywords: smoothed particle hydrodynamics, computational fluid dynamics, numerical simulation, fluid mechanics

Procedia PDF Downloads 131
743 Effects of Deficit Watering and Potassium Fertigation on Growth and Yield Response of Cassava

Authors: Daniel O. Wasonga, Jouko Kleemola, Laura Alakukku, Pirjo Makela

Abstract:

Cassava (Manihot esculenta Crantz) is a major food crop for millions of people in the tropics. Growth and yield of cassava in the arid-tropics are seriously constrained by intermittent water deficit and low soil K content. Therefore, experiments were conducted to investigate the effects of interaction between water deficit and K fertigation on growth and yield response of biofortified cassava at early growth phase. Yellow cassava cultivar was grown under controlled glasshouse conditions in 5-L pots containing 1.7 kg of pre-fertilized potting mix. Plants were watered daily for 30 days after planting. Treatments were three watering levels (30%, severe water deficit; 60%, mild water deficit; 100%, well-watered), on which K (0.01, 1, 4, 16 and 32 mM) was split. Plants were harvested at 90 days after planting. Leaf area was smallest in plants grown with 30% watering and 0.01 mM K, and largest in plants grown with 100% watering and 32 mM K. Leaf, root, and total dry mass decreased in water-stressed plants. However, dry mass was markedly higher when plants were grown with 16 mM K under all watering levels in comparison to other K concentrations. The highest leaf, root and total dry mass were in plants with 100% watering and 16 mM K. In conclusion, K improved the growth of plants under water deficit and thus, K application on soils with low moisture and low K may improve the productivity of cassava.

Keywords: dry mass, interaction, leaf area, Manihot esculenta

Procedia PDF Downloads 117
742 Non-Isothermal Stationary Laminar Oil Flow Numerical Simulation

Authors: Daniyar Bossinov

Abstract:

This paper considers a non-isothermal stationary waxy crude oil flow in a two-dimensional axisymmetric pipe with the transition of a Newtonian fluid to a non-Newtonian fluid. The viscosity and yield stress of waxy crude oil are highly dependent on temperature changes. During the hot pumping of waxy crude oil through a buried pipeline, a non-isothermal flow occurs due to heat transfer to the surrounding soil. This leads to a decrease in flow temperature, an increase in viscosity, the appearance of yield stress, the crystallization of wax, and the deposition of solid particles on the pipeline's inner wall. The deposition of oil solid particles reduces a pipeline flow area and leads to the appearance of a stagnant zone with thermal insulation in the near-wall area. Waxy crude oil properties change. A Newtonian fluid at low temperatures transits to a non-Newtonian fluid. The one-dimensional modeling of a non-isothermal waxy crude oil flow in a two-dimensional axisymmetric pipeline by traditional averaging of temperature and velocity over the pipeline cross-section does not allow for explaining a physics phenomenon. Therefore, in this work, a two-dimensional flow model and the heat transfer of waxy oil are constructed. The calculated data show the transition of a Newtonian fluid to a non-Newtonian fluid due to the heat exchange of waxy oil with the environment.

Keywords: non-isothermal laminar flow, waxy crude oil, stagnant zone, yield stress

Procedia PDF Downloads 26
741 Application of Remote Sensing Technique on the Monitoring of Mine Eco-Environment

Authors: Haidong Li, Weishou Shen, Guoping Lv, Tao Wang

Abstract:

Aiming to overcome the limitation of the application of traditional remote sensing (RS) technique in the mine eco-environmental monitoring, in this paper, we first classified the eco-environmental damages caused by mining activities and then introduced the principle, classification and characteristics of the Light Detection and Ranging (LiDAR) technique. The potentiality of LiDAR technique in the mine eco-environmental monitoring was analyzed, particularly in extracting vertical structure parameters of vegetation, through comparing the feasibility and applicability of traditional RS method and LiDAR technique in monitoring different types of indicators. The application situation of LiDAR technique in extracting typical mine indicators, such as land destruction in mining areas, damage of ecological integrity and natural soil erosion. The result showed that the LiDAR technique has the ability to monitor most of the mine eco-environmental indicators, and exhibited higher accuracy comparing with traditional RS technique, specifically speaking, the applicability of LiDAR technique on each indicator depends on the accuracy requirement of mine eco-environmental monitoring. In the item of large mine, LiDAR three-dimensional point cloud data not only could be used as the complementary data source of optical RS, Airborne/Satellite LiDAR could also fulfill the demand of extracting vertical structure parameters of vegetation in large areas.

Keywords: LiDAR, mine, ecological damage, monitoring, traditional remote sensing technique

Procedia PDF Downloads 397
740 Sustained-Release Persulfate Tablets for Groundwater Remediation

Authors: Yu-Chen Chang, Yen-Ping Peng, Wei-Yu Chen, Ku-Fan Chen

Abstract:

Contamination of soil and groundwater has become a serious and widespread environmental problem. In this study, sustained-release persulfate tablets were developed using persulfate powder and a modified cellulose binder for organic-contaminated groundwater remediation. Conventional cement-based persulfate-releasing materials were also synthesized for the comparison. The main objectives of this study were to: (1) evaluate the release rates of the remedial tablets; (2) obtain the optimal formulas of the tablets; and (3) evaluate the effects of the tablets on the subsurface environment. The results of batch experiments show that the optimal parameter for the preparation of the persulfate-releasing tablet was persulfate:cellulose = 1:1 (wt:wt) with a 5,000 kg F/cm2 of pressure application. The cellulose-based persulfate tablet was able to release 2,030 mg/L of persulfate per day for 10 days. Compared to cement-based persulfate-releasing materials, the persulfate release rates of the cellulose-based persulfate tablets were much more stable. Moreover, since the tablets are soluble in water, no waste will be produced in the subsurface. The results of column tests show that groundwater flow would shorten the release time of the tablets. This study successfully developed unique persulfate tablets based on green remediation perspective. The efficacy of the persulfate-releasing tablets on the removal of organic pollutants needs to be further evaluated. The persulfate tablets are expected to be applied for site remediation in the future.

Keywords: sustained-release persulfate tablet, modified cellulose, green remediation, groundwater

Procedia PDF Downloads 290
739 Landslide Study Using Unmanned Aerial Vehicle and Resistivity Survey at Bkt Kukus, Penang Island, Malaysia

Authors: Kamal Bahrin Jaafar

Abstract:

The study area is located at Bukit Kukus, Penang where the construction of twin road project in ongoing. A landslide event has occurred on 19th October 2018, which causes fatal deaths. The purpose of this study is to figure out the causes of failure, the estimated volume of failure, and its balance. The study comprises of unmanned aerial vehicle (UAV) sensing and resistivity survey. The resistivity method includes spreading three lines of 200m length resistivity survey with the depth of penetration in the subsurface not exceeding 35m. The result of UAV shows the current view of the site condition. Based on resistivity result, the dominant layer in the study area consists of residual soil/filling material with a thickness of more than 35m. Three selected cross sections from construction drawing are overlain with the current cross sections to understand more on the condition of the subsurface profile. By comparison, there is a difference between past and present topography. The combination of result from the previous data and current condition shows the calculated volume of failure is 85,000 m³, and its balance is 50,000 m³. In conclusion, the failure occurs since the contractor has conducted the construction works without following the construction drawing supplied by the consultant. Besides, the cause of failure is triggered by the geology condition, such as a fault that should be considered prior to the commencement of work.

Keywords: UAV, landslide, resistivity survey, cause of failure

Procedia PDF Downloads 114
738 Numerical Verification of a Backfill-Rectangular Tank-Fluid System

Authors: Ramazan Livaoğlu, Tufan Çakır

Abstract:

The performance of rectangular tanks during earthquakes has been observed to depend significantly on the existence of water in the container and the presence of the backfill acting on tank wall. Therefore, in design of rectangular tanks, the topics of fluid-structure-backfill interactions and determination of modal characteristics of the interaction system have traditionally been one of the great theoretical and practical controversy. Although finite element method has been and will continue to be used to a significant extent in treating the response of the system, experimental verification of numerical models remains prerequisite for their adoption and reliable application in practice. Thus, in this study, the numerical and experimental investigations were performed on the backfill-exterior wall-fluid interaction system. Firstly, three dimensional finite element model (3D-FEM) was developed to acquire modal frequencies and mode shapes of the system by means of ANSYS. Secondly, a series of in-situ tests were fulfilled to define modal characteristics of same system to determine the applicability of the FEM to a real physical situation under field conditions. Finally, comparing the theoretical predictions from the model to results from experimental measurement, a close agreement was found between theory and experiment. Thus, it can be easily stated that experimental verification provides strong support for the use of proposed model in further investigations.

Keywords: fluid-structure interaction, modal analysis, rectangular tank, soil structure interaction

Procedia PDF Downloads 392
737 Enhancement of the Corrosion Resistance of Fastening System of Ballasted ‎Railway in Sandy Desert by Using Nano-Coating

Authors: Milad Alizadeh Galdiani, Navid Sabet, Mohamad Ali Mohit, Fatemeh Palizdar

Abstract:

Railway as one of the most important transportation modes, passes through ‎various areas with different conditions ‎inevitably, and in many countries such as ‎China, United States, Australia, and Iran, it passes through sandy ‎desert areas. One ‎of the main problems in these areas is the movement of sand, causing various ‎damages ‎to ballasted railway track such as corrosion in the railway fastening system. ‎The soil composition of some desert areas like Fahraj in Iran consists of sand ‎and ‎salt. Due to the movement of sand and corrosive ions of salt, the fastening system ‎of the railway is ‎corroded, which, in turn, reduces the thickness of the components ‎and their life span.‎ In this research, the Nano-coating for fastening system of ‎the railway is ‎introduced, and its performance has been investigated in both ‎laboratory and field tests. The Nano-coating of ‎the fastening system consists of zinc-rich, epoxy, polyurethane, and additive, which is produced through ‎Nano ‎technology. This layer covers the surface of the fastening system and ‎prohibits the chemical reactions, which result in ‎corrosion. The results of ‎Electrochemical Impedance Spectroscopy (EIS) ‎indicate that corrosion resistance ‎increases 315 times by using nano-coating, salt spray test results demonstrate that ‎nano-coated components remained intact after 1000 hours.‎

Keywords: ballasted railway, Nano-coating, railway fastening system, sandy desert

Procedia PDF Downloads 126
736 Hydrological Modelling to Identify Critical Erosion Areas in Gheshlagh Dam Basin

Authors: Golaleh Ghaffari

Abstract:

A basin sediment yield refers to the amount of sediment exported by a basin over a period of time, which will enter a reservoir located at the downstream limit of the basin. The Soil and Water Assessment Tool (SWAT, 2008) was used to hydrology and sediment transport modeling at daily and monthly time steps within the Gheshlagh dam basin in north-west of Iran. The SWAT model and Geographic Information System (GIS) techniques were applied to evaluate basin hydrology and sediment yield using historical flow and sediment data and to identify and prioritize critical sub-basins based on sediment transport. The results of this study indicated that simulated daily discharge and sediment values matched the observed values satisfactorily. The model predicted that mean annual basin precipitation for the total study period (413 mm) was partitioned in to evapotranspiration (36%), percolation/groundwater recharge (21%) and stream water (25%), yielding 18% surface runoff. Potential source areas of erosion were also identified with the model. The range of the annual contributing erosive zones varied spatially from 0.1 to 103 t/ha according to the slope and land use at the basin scale. Also the fifteen sub basins create the 60% of the total sediment yield between the all (102) sub basins. The results of the study indicated that SWAT can be a useful tool for assessing hydrology and sediment yield response of the watersheds in the region.

Keywords: erosion, Gheshlagh dam, sediment yield, SWAT

Procedia PDF Downloads 523
735 Effect of Moisture Content Compaction in the Geometry Definition of Earth Dams

Authors: Julian B. García, Virginie Q. R. Pinto, André P. Assis

Abstract:

This paper presents numerical flow and slope stability simulations in three typical sections of earth dams built in tropical regions, two homogeneous with different slope inclinations, and the other one heterogeneous with impermeable core. The geotechnical material parameters used in this work were obtained from a lab testing of physical characterization, compaction, consolidation, variable load permeability and saturated triaxial type CD for compacted soil samples with standard proctor energy at optimum moisture content (23%), optimum moisture content + 2% and optimum moisture content +5%. The objective is to analyze the general behavior of earth dams built in rainy regions where optimum moisture is exceeded. The factor of safety is satisfactory for the three sections compacted in all moisture content during the stages of operation and end of construction. On The other hand, the rapid drawdown condition is the critical phase for homogeneus dams configuration, the factor of safety obtained were unsatisfactory. In general, the heterogeneous dam behavior is more efficient due to the fact that the slopes are made up of gravel, which favors the dissipation of pore pressures during the rapid drawdown. For the critical phase, the slopes should have lower inclinations of the upstream and downstream slopes to guarantee stability, although it increases the costs.

Keywords: earth dams, flow, moisture content, slope stability

Procedia PDF Downloads 189
734 Characterization of Biosurfactants Produced by Bacteria Degrading Gasoline

Authors: Ikram Kamal, Mohamed Blaghen

Abstract:

Biosurfactants are amphiphilic biological compounds consisting of hydrophobic and hydrophilic domains produced extracellularly or as part of the cell membrane by a variety of yeast, bacteria and filamentous fungi. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity, and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. Currently, the main application is for enhancement of oil recovery and hydrocarbon bioremediation due to their biodegradability and low critical micelle concentration (CMC). The use of biosurfactants has also been proposed for various industrial applications, such as in food additives, cosmetics, detergent formulations and in combinations with enzymes for wastewater treatment. In this study, we have investigated the potential of bacterial strains: Mannheimia haemolytica, Burkholderia cepacia and Serratia ficaria were collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test, and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition, a GC/MS was used to separate and identify different biosurfactants purified.

Keywords: biosurfactants, Mannheimia haemolytica, biodegradability, Burkholderia cepacia, Serratia ficaria

Procedia PDF Downloads 257
733 Assessment of Land Surface Temperature Using Satellite Remote Sensing

Authors: R. Vidhya, M. Navamuniyammal M. Sivakumar, S. Reeta

Abstract:

The unplanned urbanization affects the environment due to pollution, conditions of the atmosphere, decreased vegetation and the pervious and impervious soil surface. Considered to be a cumulative effect of all these impacts is the Urban Heat Island. In this paper, the urban heat island effect is studied for the Chennai city, TamilNadu, South India using satellite remote sensing data. LANDSAT 8 OLI and TIRS DATA acquired on 9th September 2014 were used to Land Surface Temperature (LST) map, vegetation fraction map, Impervious surface fraction, Normalized Difference Water Index (NDWI), Normalized Difference Building Index (NDBI) and Normalized Difference Vegetation Index (NDVI) map. The relationship among LST, Vegetation fraction, NDBI, NDWI, and NDVI was calculated. The Chennai city’s Urban Heat Island effect is significant, and the results indicate LST has strong negative correlation with the vegetation present and positive correlation with NDBI. The vegetation is the main factor to control urban heat island effect issues in urban area like Chennai City. This study will help in developing measures to land use planning to reduce the heat effects in urban area based on remote sensing derivatives.

Keywords: land surface temperature, brightness temperature, emissivity, vegetation index

Procedia PDF Downloads 274
732 Nitrogen Uptake of Different Safflower (Carthamus tinctorius L.) Genotypes at Different Growth Stages in Semi-Arid Conditions

Authors: Zehra Aytac, Nurdilek Gulmezoglu

Abstract:

Safflower has been grown for centuries for many purposes worldwide. Especially it is important for the orange-red dye from its petal and for its high-quality oil obtained from the seeds. The crop is high adaptable to areas with insufficient rainfall and poor soil conditions. The plant has a deep taproot that can draw moisture and plant nutrients from deep to the subsoil. The research was carried out to study the nitrogen (N) uptake of different safflower cultivars and lines at different stages of growth and different plant parts in the experimental field of Faculty of Agriculture, Eskişehir Osmangazi University under semi-arid conditions. Different safflower cultivars and lines of varied origins were used as the material. The cultivars and lines were planted in a Randomized Complete Block Design with three replications. Two different growth stages (flowering and harvest) and three different plant parts (head, stem+leaf and seed) were determined. The nitrogen concentration of different plant parts was determined by the Kjeldahl method. Statistical analysis were performed by analysis of variance for each growth stage and plant parts taking a level of p < 0.05 and p < 0.01 as significant according to the LSD test. As a result, N concentration showed significant differences among different plant parts and different growth stages for different safflower genotypes of varied origins.

Keywords: Carthamus tinctorius L., growth stages, head N, leaf N, N uptake, seed N, Safflower

Procedia PDF Downloads 224
731 Development of Heating Elements Based on Fe₂O₃ Reduction Products by Waste Active Sludge

Authors: Abigail Parra Parra, Jorge L. Morelos Hernandez, Pedro A. Marquez Agilar, Marina Vlasova, Jesus Colin De La Cruz

Abstract:

Carbothermal reduction of metal oxides is widely used both in metallurgical processes and in the production of oxygen-free refractory ceramics. As a rule, crushed coke and graphite are used as a reducing agent. The products of carbonization of organic compounds are among the innovative reducing agents. The aim of this work was to study the process of reduction of iron oxide (hematite) down to iron by waste active sludge (WAS) carbonization products. WAS was chosen due to the accumulation of a large amount of this type of waste, soil pollution, and the relevance of the development of technologies for its disposal. The studies have shown that the temperature treatment of mixtures WAS-Fe₂O₃ in the temperature range 900-1000 ºC for 1-5 hours under oxygen deficiency is described by the following scheme: WAS + Fe₂O₃→ C,CO + Fe₂O₃→ C + FexO → Fe (amorphous and crystalline). During the heat treatment of the mixtures, strong samples are formed. The study of the electrical conductive properties of such samples showed that, depending on the ratio of the components in the initial mixtures, it is possible to change the values of electrical resistivity from 5.6 Ω‧m to 151.6 Ω‧m When a current is passed through the samples, they are heated from 240 to 378ºC. Thus, based on WAS-Fe₂O₃ mixtures, heating elements can be created that can be used to heat ceramics and concrete.

Keywords: Fe₂O₃, reduction, waste activate sludge, electroconductivity

Procedia PDF Downloads 137
730 Investigating Reservior Sedimentation Control in the Conservation of Water

Authors: Mosupi Ratshaa

Abstract:

Despite years of diligent study, sedimentation is still undoubtedly the most severe technical problem faced by the dam industry. The problem of sedimentation build-up and its removal should be the focus as an approach to remedy this. The world's reservoirs lose about 1% of their storage capacity yearly to sedimentation, what this means is that 1% of water that could be stored is lost the world-over. The increase in population means that the need for water also increases and, therefore, the loss due to sedimentation is of great concern especially to the conservation of water. When it comes to reservoir sedimentation, the thought of water conservation comes with soil conservation since this increasing sediment that takes the volume meant for water is being lost from dry land. For this reason, reservoir sediment control is focused on reducing sediment entering the reservoir and reducing sediment within the reservoir. There are many problems with sediment control such as the difficulty to predict settling patterns, inability to greatly reduce the sediment volume entering the river flow which increases the reservoirs trap efficiency just to mention a few. Notably reservoirs are habitats for flora and fauna, the process of removing sediment from these reservoirs damages this ecosystem so there is an ethical point to be considered in this section. This paper looks at the methods used to control the sedimentation of reservoirs and their effects to the ecosystem in the aim of reducing water losses due to sedimentation. Various control measures which reduce sediment entering the reservoir such as Sabo dams or Check dams along with measures which emphasize the reduction in built-up settled sediment such as flushing will be reviewed all with the prospect of conservation.

Keywords: sedimentation, conservation, ecosystem, flushing

Procedia PDF Downloads 336
729 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model

Authors: Aminah Muchdar, Nuraeni, Eddy

Abstract:

The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.

Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE

Procedia PDF Downloads 180
728 Research and Innovation Centre

Authors: Krasimir Ivanov, Tonyo Tonev, Nguyen Nguyen, Alexander Peltekov, Anyo Mitkov

Abstract:

Maize is among the most economically important crops and at the same time one of the most sensitive to soil deficiency in zinc. In this paper, the impact of the foliar zinc application in the form of zinc hydroxy nitrate suspension on the micro and macro elements partitioning in maize leaves and grain was studied during spring maize season, 2017. The impact of the foliar zinc fertilization on the grain yield and quality was estimated too. The experiment was performed by the randomized block design with 8 variants in 3 replications. Seven suspension solutions whit different Zn concentration were used, including ZnO suspension and zinc hydroxyl nitrate alone or nixed with other nutrients. Fertilization and irrigation were the same for all variants. The Zn content and the content of selected micro (Cu, Fe) and macro (Ca, Mg, P and K) elements in maize leaves were determined two weeks after the first spraying (5-6 sheets), two weeks after the second spraying (9-10 sheets) and after harvesting. It was concluded that the synthesized zinc hydroxy nitrate demonstrates potential as the long-term foliar fertilizer. A significant (p < 0.05) effect of zinc accumulation in maize leaves by foliar zinc application during the first growth stage was found, followed by its reutilization to other plants organs during the second growth stage. Significant export of Cu, P, and K from lower and middle leaves was observed. The content of Ca and Mg remains constant in the whole longevity period, while the content of Fe decreases sharply.

Keywords: foliar fertilization, zinc hydroxy nitrate, maize, zinc

Procedia PDF Downloads 166
727 Lessons Learnt from Moment Magnitude 7.8 Gorkha, Nepal Earthquake

Authors: Narayan Gurung, Fawu Wang, Ranjan Kumar Dahal

Abstract:

Nepal is highly prone to earthquakes and has witnessed at least one major earthquake in 80 to 90 years interval. The Gorkha earthquake, that measured 7.8 RS in magnitude and struck Nepal on 25th April 2015, after 81 years since Mw 8.3 Nepal Bihar earthquake in 1934, was the largest earthquake after Mw 8.3 Nepal Bihar earthquake. In this paper, an attempt has been made to highlight the lessons learnt from the MwW 7.8 Gorkha (Nepal) earthquake. Several types of damage patterns in buildings were observed for reinforced concrete buildings, as well as for unreinforced masonry and adobe houses in the earthquake of 25 April 2015. Many field visits in the affected areas were conducted, and thus, associated failure and damage patterns were identified and analyzed. Damage patterns in non-engineered buildings, middle and high-rise buildings, commercial complexes, administrative buildings, schools and other critical facilities are also included from the affected districts. For most buildings, the construction and structural deficiencies have been identified as the major causes of failure; however, topography, local soil amplification, foundation settlement, liquefaction associated damages and buildings built in hazard-prone areas were also significantly observed for the failure or damages to buildings and hence are reported. Finally, the lessons learnt from Mw 7.8 Gorkha (Nepal) earthquake are presented in order to mitigate impacts of future earthquakes in Nepal.

Keywords: Gorkha earthquake, reinforced concrete structure, Nepal, lesson learnt

Procedia PDF Downloads 202
726 Strain Softening of Soil under Cyclic Loading

Authors: Kobid Panthi, Suttisak Soralump, Suriyon Prempramote

Abstract:

In June 27, 2014 slope movement was observed in upstream side of Khlong Pa Bon Dam, Thailand. The slide did not have any major catastrophic impact on the dam structure but raised a very important question; why did the slide occur after 10 years of operation? Various site investigations (Bore Hole Test, SASW, Echo Sounding, and Geophysical Survey), laboratory analysis and numerical modelling using SIGMA/W and SLOPE/W were conducted to determine the cause of slope movement. It was observed that the dam had undergone the greatest differential drawdown in its operational history in the year 2014 and was termed as the major cause of movement. From the laboratory tests, it was found that the shear strength of clay had decreased with a period of time and was near its residual value. The cyclic movement of water, i.e., reservoir filling and emptying was coined out to be the major cause for the reduction of shear strength. The numerical analysis was carried out using a modified cam clay (MCC) model to determine the strain softening behavior of the clay. The strain accumulation was observed in the slope with each reservoir cycle triggering the slope failure in 2014. It can be inferred that if there was no major drawdown in 2014, the slope would not have failed but eventually would have failed after a long period of time. If there was no major drawdown in 2014, the slope would not have failed. However, even if there hadn’t been a drawdown, it would have failed eventually in the long run.

Keywords: slope movement, strain softening, residual strength, modified cam clay

Procedia PDF Downloads 132
725 Chemical Analysis and Cytotoxic Evaluation of Asphodelus Aestivus Brot. Flowers

Authors: Mai M. Farid, Mona El-Shabrawy, Sameh R. Hussein, Ahmed Elkhateeb, El-Said S. Abdel-Hameed, Mona M. Marzouk

Abstract:

Asphodelus aestivus Brot. Is a wild plant distributed in Egypt and is considered one of the five Asphodelus spp. from the family Asphodelaceae; it grows in dry grasslands and on rocky or sandy soil. The chemical components of A. aestivus flowers extract were analyzed using different chromatographic and spectral techniques and led to the isolation of two anthraquinones identified as emodin and emodin-O-glucoside. In addition to, five flavonoid compounds;kaempferol,Kaempferol-3-O-glucoside,Apigenin-6-C-glucoside-7-O-glucoside (Saponarine), luteolin 7-O-β-glucopyranoside, Isoorientin-O-malic acid which is a new compound in nature. The LC-ESI-MS/MS analysis of the flower extract of A. aestivus led to the identification of twenty- two compounds characterized by the presence of flavones, flavonols, and flavone C-glycosides. While GC/MS analysis led to the identification of 24 compounds comprising 98.32% of the oil, the major components of the oil were 9, 12, 15-Octadecatrieoic acid methyl ester 28.72%, and 9, 12-Octadecadieroic acid (Z, Z)-methyl ester 19.96%. In vitro cytotoxic activity of the aqueous methanol extract of A. aestivus flowers against HEPG2, HCT-116, MCF-7, and A549 culture was examined and showed moderate inhibition (62.3±1.1)% on HEPG2 cell line followed by (36.8±0.2)% inhibition on HCT-116 and a weak inhibition (5.7± 0.0.2) on MCF-7 cell line followed by (4.5± 0.4) % inhibition on A549 cell line and this is considered the first cytotoxic report of A. aestivus flowers.

Keywords: Anthraquinones, Asphodelus aestivus, Cytotoxic activity, Flavonoids, LC-ESI-MS/MS

Procedia PDF Downloads 222
724 Assessment of Spatial and Vertical Distribution of Heavy Metals in the Mid Sand Bars of Brahmaputra River in Assam, India

Authors: Vijay Meena, Arup Kumar Sarma, Chandan Mahanta

Abstract:

The environment has been getting contaminated by anthropogenic processes including those that discharge heavy metals to air, soil and water. The present work emphasizes the spatial distribution and vertical profile of six heavy metals (Cu, Zn, Mn, Ni, Fe, Cr) in three layers of mid sand bars (bed surface layer, 50 cm and 100 cm depth) at 42 sampling stations covering around 600 km stretch of the Brahmaputra River, India. Heavy metal analysis was conducted on the sample collected from mid-sand bars in the river stretch to examine the impact of dredging for various hydrological operations in the future. Sediment quality was assessed by calculating six different indices viz., EF, CF, CD, PLI, Igeo, and PERI. In all sediment layers, heavy metal concentrations have been observed to be the same as listed, Fe > Mn > Zn > Ni > Cr > Cu in μg/g. The average concentration of Cu, Mn, and Fe was found in the middle layer while Zn, Ni, and Cr were in the Surface layer. EF indicates higher enrichment in reach 2 which is likely to be due to anthropogenic sources of industrial and urbanized effluents. The sediment of the mid-sand bar was generally found moderately polluted possessing low risk to aquatic lives and the environment. Suggesting, Dredging can be possible in the future. An examination of correlation matrices, principal components analysis, and cluster analyses indicated that these heavy metals possess similar anthropogenic origins for their enrichment.

Keywords: heavy metal contamination, risk assessment, anthropogenic impacts, sediment

Procedia PDF Downloads 97
723 Three-Dimensional CFD Modeling of Flow Field and Scouring around Bridge Piers

Authors: P. Deepak Kumar, P. R. Maiti

Abstract:

In recent years, sediment scour near bridge piers and abutment is a serious problem which causes nationwide concern because it has resulted in more bridge failures than other causes. Scour is the formation of scour hole around the structure mounted on and embedded in erodible channel bed due to the erosion of soil by flowing water. The formation of scour hole around the structures depends upon shape and size of the pier, depth of flow as well as angle of attack of flow and sediment characteristics. The flow characteristics around these structures change due to man-made obstruction in the natural flow path which changes the kinetic energy of the flow around these structures. Excessive scour affects the stability of the foundation of the structure by the removal of the bed material. The accurate estimation of scour depth around bridge pier is very difficult. The foundation of bridge piers have to be taken deeper and to provide sufficient anchorage length required for stability of the foundation. In this study, computational model simulations using a 3D Computational Fluid Dynamics (CFD) model were conducted to examine the mechanism of scour around a cylindrical pier. Subsequently, the flow characteristics around these structures are presented for different flow conditions. Mechanism of scouring phenomenon, the formation of vortex and its consequent effect is discussed for a straight channel. Effort was made towards estimation of scour depth around bridge piers under different flow conditions.

Keywords: bridge pier, computational fluid dynamics, multigrid, pier shape, scour

Procedia PDF Downloads 296
722 Protective Efficacy of Curcuma Aromatica Leaf Extract on Liver of Arsenic Intoxicated Albino Rats

Authors: Priya Bajaj, Baby Tabassum

Abstract:

Arsenic is a poisonous metalloid, naturally occurring in soil, air, rocks and ground water. This dreadful metalloid commonly exists as inorganic compound, arsenic trioxide. WHO permitted maximum limit for arsenic in water is 0.01 mg/L, but some affected areas show ground water level of arsenic up to 3 mg/L even. Ground water arsenic pollution has created a number of health problems, viz. keratosis, melanosis, lesions and even skin cancers. The key objective of our nested study was to characterize arsenic induced hepatotoxicity and to find out some herbal protection against it. For the purpose, we selected albino rat (Rattus norvegicus) as model for arsenic induced liver injury and wild turmeric (Curcuma aromatica) leaf extract as remedy for it. The study was performed at acute (1 day) and subacute (7, 14 & 21 days) levels. The LD50 estimated for arsenic trioxide was 14.98 mg/kg body weight. In our investigation, we observed a significant restoration of altered hepatic lipid, cholesterol, protein and glycogen contents as well as liver weight, body-weight and hepato-somatic index by Curcuma aromatica leaf extract before arsenic intoxication. The results reveal excellent protective efficacy of Curcuma aromatica leaf extract that further can be exploited in remediation programme in heavy metal affected areas.

Keywords: arsenic, Curcuma aromatica, glycogen, lipids

Procedia PDF Downloads 255
721 Isolation and Identification of Novel Escherichia Marmotae Spp.: Their Enzymatic Biodegradation of Zearalenone and Deep-oxidation of Deoxynivalenol

Authors: Bilal Murtaza, Xiaoyu Li, Liming Dong, Muhammad Kashif Saleemi, Gen Li, Bowen Jin, Lili Wang, Yongping Xu

Abstract:

Fusarium spp. produce numerous mycotoxins, such as zearalenone (ZEN), deoxynivalenol (DON), and its acetylated compounds, 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON) (15-ADON). In a co-culture system, the soil-derived Escherichia marmotae strain degrades ZEN and DON into 3-keto-DON and DOM-1 via enzymatic deep-oxidation. When pure mycotoxins were subjected to Escherichia marmotae in culture flasks, degradation, and detoxification were also attained. DON and ZEN concentrations, ambient pH, incubation temperatures, bacterium concentrations, and the impact of acid treatment on degradation were all evaluated. The results of the ELISA and high-performance liquid chromatography-electrospray ionization-high resolution mass spectrometry (HPLC-ESI-HRMS) tests demonstrated that the concentration of mycotoxins exposed to Escherichia marmotae was significantly lower than the control. ZEN levels were reduced by 43.9%, while zearalenone sulfate ([M/z 397.1052 C18H21O8S1) was discovered as a derivative of ZEN converted by microbes to a less toxic molecule. Furthermore, Escherichia marmotae appeared to metabolize DON 35.10% into less toxic derivatives (DOM-1 at m/z 281 of [DON - O]+ and 3-keto-DON at m/z 295 of [DON - 2H]+). These results show that Escherichia marmotae can reduce Fusarium mycotoxins production, degrade pure mycotoxins, and convert them to less harmful compounds, opening up new possibilities for study and innovation in mycotoxin detoxification.

Keywords: mycotoxins, zearalenone, deoxynivalenol, bacterial degradation

Procedia PDF Downloads 99
720 An Experimental Study of the Influence of Particle Breakage on the Interface Friction Angle and Shear Strength of Carbonate Sands

Authors: Ruben Dario Tovar-Valencia, Eshan Ganju, Fei Han, Monica Prezzi, Rodrigo Salgado

Abstract:

Particle breakage occurs even in strong silica sand particles. There is compelling evidence that suggests that particle breakage causes changes in several properties such as permeability, peak strength, dilatancy and critical state friction angle. Current pile design methods that are based on soil properties do not account for particle breakage that occurs during driving or jacking of displacement piles. This may lead to significant overestimation of pile capacity in sands dominated by particles susceptible to breakage, such as carbonate sands. The objective of this paper is to study the influence of shear displacement on particle breakage and friction angle of carbonate sands, and to furthermore quantify the change in friction angle observed with different levels of particle breakage. To study the phenomenon of particle breakage, multiple ring shear tests have been performed at different levels of vertical confinement on a thoroughly characterized carbonate sand to find i) the shear displacement necessary to reach stable friction angles and ii) the effect of particle breakage on the mobilized friction angle of the tested sand. The findings of this study can potentially be used to update the current pile design methods by developing a friction angle which is a function of shear displacement and breakage characteristics of the sand instead of being a constant value.

Keywords: breakage, carbonate sand, friction angle, pile design, ring shear test

Procedia PDF Downloads 304