Search results for: artificial stock market
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5901

Search results for: artificial stock market

3411 Stimulus-Dependent Polyrhythms of Central Pattern Generator Hardware

Authors: Le Zhao, Alain Nogaret

Abstract:

We have built universal Central Pattern Generator (CPG) hardware by interconnecting Hodgkin-Huxley neurons with reciprocally inhibitory synapses. We investigate the dynamics of neuron oscillations as a function of the time delay between current steps applied to individual neurons. We demonstrate stimulus dependent switching between spiking polyrhythms and map the phase portraits of the neuron oscillations to reveal the basins of attraction of the system. We experimentally study the dependence of the attraction basins on the network parameters: the neuron response time and the strength of inhibitory connections.

Keywords: central pattern generator, winnerless competition principle, artificial neural networks, synapses

Procedia PDF Downloads 475
3410 Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples

Authors: Ahmed S. Fayed, Umima M. Mansour

Abstract:

Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (Bubalus bubalis) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe2+, Mn2+ and Zn2+, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor’s response. For sensor 1, β-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-β-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10-7-10-2 M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe2+, Mn2+ and Zn2+) in CM using the three sensors, the samples were analyzed for the three cations and also Cu2+ by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn2+ composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows.

Keywords: PVC Sensors, buffalo-cows, cyclodextrins, atomic absorption spectrophotometry, artificial insemination, OVSynch protocol

Procedia PDF Downloads 219
3409 Usage of Internet Technology in Financial Education and Financial Inclusion by Students of Economics Universities

Authors: B. Frączek

Abstract:

The paper analyses the usage of the Internet by university students in Visegrad Countries (4V Countries) who study economic fields in their formal and informal financial education and captures the areas of untapped potential of Internet in educational processes. Higher education and training, technological readiness, and the financial market development are in the group of pillars, that are key for efficiency driven economies. These three pillars have become an inspiration to the research on using the Internet in the financial education among economic university students as the group of the best educated people in finance. The financial education is a process that allows for improving the level of financial literacy. In turn, the financial literacy it is the set of financial knowledge, skills, awareness and patterns influencing the financial decisions. The level of financial literacy influences the level of financial well-being of individuals, determines the scale of saving of households and at the same time gives the greater chance for sustainable and more predictable development of the financial market with the positive impact on economy. The financial literacy is necessary for each group of society but its appropriate level is desirable especially in respect of economics students as future participants of financial markets as well as the experts and advisors in financial decision making. The low level of financial literacy is the great problem of many target groups in both developing and developed countries and the financial education is seen as the best way of improving this situation. Also the financial inclusion plays the special role in enhancing the level of financial literacy in the aspect of education by practice as well as due to interrelation between level of financial literacy and degree of financial inclusion. Despite many initiatives under financial education, the level of financial literacy is still very low. Scientists still search for new ways of solving this problem. One of the proposal is more effective usage of the new technology in financial education, especially the Internet, because of the growing popularity of e-learning and the increasing number of Internet users, especially among young people who are called the Generation Net. Due to special role of the university students studying the economics fields for the future financial markets, students of four universities from Visegrad Countries (Czech Republic, Hungary, Poland and Slovakia) were invited to participate in the survey. The aim of the article is to present the level and ways of using the Internet technology in financial education and indicating the so far unused or underused opportunities.

Keywords: financial education, financial inclusion, financial literacy, internet and university education

Procedia PDF Downloads 314
3408 A Systematic Review on Orphan Drugs Pricing, and Prices Challenges

Authors: Seyran Naghdi

Abstract:

Background: Orphan drug development is limited by very high costs attributed to the research and development and small size market. How health policymakers address this challenge to consider both supply and demand sides need to be explored for directing the policies and plans in the right way. The price is an important signal for pharmaceutical companies’ profitability and the patients’ accessibility as well. Objective: This study aims to find out the orphan drugs' price-setting patterns and approaches in health systems through a systematic review of the available evidence. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) approach was used. MedLine, Embase, and Web of Sciences were searched via appropriate search strategies. Through Medical Subject Headings (MeSH), the appropriate terms for pricing were 'cost and cost analysis', and it was 'orphan drug production', and 'orphan drug', for orphan drugs. The critical appraisal was performed by the Joanna-Briggs tool. A Cochrane data extraction form was used to obtain the data about the studies' characteristics, results, and conclusions. Results: Totally, 1,197 records were found. It included 640 hits from Embase, 327 from Web of Sciences, and 230 MedLine. After removing the duplicates, 1,056 studies remained. Of them, 924 studies were removed in the primary screening phase. Of them, 26 studies were included for data extraction. The majority of the studies (>75%) are from developed countries, among them, approximately 80% of the studies are from European countries. Approximately 85% of evidence has been produced in the recent decade. Conclusions: There is a huge variation of price-setting among countries, and this is related to the specific pharmacological market structure and the thresholds that governments want to intervene in the process of pricing. On the other hand, there is some evidence on the availability of spaces to reduce the very high costs of orphan drugs development through an early agreement between pharmacological firms and governments. Further studies need to focus on how the governments could incentivize the companies to agree on providing the drugs at lower prices.

Keywords: orphan drugs, orphan drug production, pricing, costs, cost analysis

Procedia PDF Downloads 163
3407 On the Absence of BLAD, CVM, DUMPS and BC Autosomal Recessive Mutations in Stud Bulls of the Local Alatau Cattle Breed of the Republic of Kazakhstan

Authors: Yessengali Ussenbekov, Valery Terletskiy, Orik Zhanserkenova, Shynar Kasymbekova, Indira Beyshova, Aitkali Imanbayev, Almas Serikov

Abstract:

Currently, there are 46 hereditary diseases afflicting cattle with known molecular genetic diagnostic methods developed for them. Genetic anomalies frequently occur in the Holstein cattle breeds from American and Canadian bloodlines. The data on the incidence of BLAD, CVM, DUMPS and BC autosomal recessive lethal mutations in pedigree animals are discordant, the detrimental allele incidence rates are high for the Holstein cattle breed, whereas the incidence rates of these mutations are low in some breeds or they are completely absent. Data were obtained on the basis of frozen semen of stud bulls. DNA was extracted from the semen with the DNA-Sorb-B extraction kit. The lethal mutation in the genes CD18, SLC35A3, UMP and ASS of Alatau stud bulls (N=124) was detected by polymerase chain reaction and RFLP analysis. It was established that stud bulls of the local Alatau breed were not carriers of the BLAD, CVM, DUMPS, and BC detrimental mutations. However, with a view to preventing the dissemination of hereditary diseases it is recommended to monitor the pedigree stock using molecular genetic methods.

Keywords: PCR, autosomal recessive point mutation, BLAD, CVM, DUMPS, BC, stud bulls

Procedia PDF Downloads 443
3406 Tracing Graduates of Vocational Schools with Transnational Mobility Experience: Conclusions and Recommendations from Poland

Authors: Michal Pachocki

Abstract:

This study investigates the effects of mobility in the context of a different environment and work culture through analysing the learners perception of their international work experience. Since this kind of professional training abroad is becoming more popular in Europe, mainly due to the EU funding opportunities, it is of paramount importance to assess its long-term impact on educational and career paths of former students. Moreover, the tracer study aimed at defining what professional, social and intercultural competencies were gained or developed by the interns and to which extent those competences proved to be useful meeting the labor market requirements. Being a populous EU member state which actively modernizes its vocational education system (also with European funds), Poland can serve as an illustrative case study to investigate the above described research problems. However, the examined processes are most certainly universal, wherever mobility is included in the learning process. The target group of this research was the former mobility participants and the study was conducted using quantitative and qualitative methods, such as the online survey with over 2 600 questionnaires completed by the former mobility participants; -individual in-depth interviews (IDIs) with 20 Polish graduates already present in the labour market; - 5 focus group interviews (FGIs) with 60 current students of the Polish vocational schools, who have recently returned from the training abroad. As the adopted methodology included a data triangulation, the collected findings have also been supplemented with data obtained by the desk research (mainly contextual information and statistical summary of mobility implementation). The results of this research – to be presented in full scope within the conference presentation – include the participants’ perception of their work mobility. The vast majority of graduates agrees that such an experience has had a significant impact on their professional careers and claims that they would recommend training abroad to persons who are about to enter the labor market. Moreover, in their view, such form of practical training going beyond formal education provided them with an opportunity to try their hand in the world of work. This allowed them – as they accounted for them – to get acquainted with a work system and context different from the ones experienced in Poland. Although the work mobility becomes an important element of the learning process in the growing number of Polish schools, this study reveals that many sending institutions suffer from a lack of the coherent strategy for planning domestic and foreign training programmes. Nevertheless, the significant number of graduates claims that such a synergy improves the quality of provided training. Despite that, the research proved that the transnational mobilities exert an impact on their future careers and personal development. However, such impact is, in their opinion, dependant on other factors, such as length of the training period, the nature and extent of work, recruitment criteria and the quality of organizational arrangement and mentoring provided to learners. This may indicate the salience of the sending and receiving institutions organizational capacity to deal with mobility.

Keywords: learning mobility, transnational training, vocational education and training graduates, tracer study

Procedia PDF Downloads 96
3405 Characters of Developing Commercial Employment Sub-Centres and Employment Density in Ahmedabad City

Authors: Bhaumik Patel, Amit Gotecha

Abstract:

Commercial centres of different hierarchy and sizes play a vital role in the growth and development of the city. Economic uncertainty and demand for space leads to more urban sprawl and emerging more commercial spaces. The study was focused on the understanding of various indicators affecting the commercial development that can help to solve many issues related to commercial urban development and can guide for future employment growth centre development, Accessibility, Infrastructure, Planning and development regulations and Market forces. The aim of the study was to review characteristics and identifying employment density of Commercial Employment Sub-centres by achieving objectives Understanding various employment sub-centres, Identifying characteristics and deriving behaviour of employment densities and Evaluating and comparing employment sub-centres for the Ahmedabad city. Commercial employment sub-centres one in old city (Kalupur), second in highly developed commercial (C.G.road-Ashram road) and third in the latest developing commercial area (Prahladnagar) were identified by distance from city centre, Land use diversity, Access to Major roads and Public transport, Population density in proximity, Complimentary land uses in proximity and Land price. Commercial activities were categorised into retail, wholesale and service sector and sub categorised into various activities. From the study, Time period of establishment of the unit is a critical parameter for commercial activity, building height, and land-use diversity. Employment diversity is also one parameter for the commercial centre. The old city has retail, wholesale and trading and higher commercial density concerning units and employment both. Prahladnagar area functioned as commercial due to market pressure and developed as more units rather than a requirement. Employment density is higher in the centre of the city, as far as distance increases from city centre employment density and unit density decreases. Characters of influencing employment density and unit density are distance from city centre, development type, establishment time period, building density, unit density, public transport accessibility and road connectivity.

Keywords: commercial employment sub-centres, employment density, employment diversity, unit density

Procedia PDF Downloads 142
3404 Accelerated Aging of Photopolymeric Material Used in Flexography

Authors: S. Mahovic Poljacek, T. Tomasegovic, T. Cigula, D. Donevski, R. Szentgyörgyvölgyi, S. Jakovljevic

Abstract:

In this paper, a degradation of the photopolymeric material (PhPM), used as printing plate in the flexography reproduction technique, caused by accelerated aging has been observed. Since the basis process for production of printing plates from the PhPM is a radical cross-linking process caused by exposing to UV wavelengths, the assumption was that improper storage or irregular handling of the PhPM plate can change the surface and structure characteristics of the plates. Results have shown that the aging process causes degradation in the structure and changes in the surface of the PhPM printing plate.

Keywords: aging process, artificial treatment, flexography, photopolymeric material (PhPM)

Procedia PDF Downloads 349
3403 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends

Authors: Zheng Yuxun

Abstract:

This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.

Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis

Procedia PDF Downloads 51
3402 Choosing the Green Energy Option: A Willingness to Pay Study of Metro Manila Residents for Solar Renewable Energy

Authors: Paolo Magnata

Abstract:

The energy market in the Philippines remains to have one of the highest electricity rates in the region averaging at US$0.16/kWh (PHP6.89/kWh), excluding VAT, as opposed to the overall energy market average of US$0.13/kWh. The movement towards renewable energy, specifically solar energy, will pose as an expensive one with the country’s energy sector providing Feed-in-Tariff rates as high as US$0.17/kWh (PHP8.69/kWh) for solar energy power plants. Increasing the share of renewables at the current state of the energy regulatory background would yield a three-fold increase in residential electricity bills. The issue lies in the uniform charge that consumers bear regardless of where the electricity is sourced resulting in rates that only consider costs and not the consumers. But if they are given the option to choose where their electricity comes from, a number of consumers may potentially choose economically costlier sources of electricity due to higher levels of utility coupled with the willingness to pay of consuming environmentally-friendly sourced electricity. A contingent valuation survey was conducted to determine their willingness-to-pay for solar energy on a sample that was representative of Metro Manila to elicit their willingness-to-pay and a Single Bounded Dichotomous Choice and Double Bounded Dichotomous Choice analysis was used to estimate the amount they were willing to pay. The results showed that Metro Manila residents are willing to pay a premium on top of their current electricity bill amounting to US$5.71 (PHP268.42) – US$9.26 (PHP435.37) per month which is approximately 0.97% - 1.29% of their monthly household income. It was also discovered that besides higher income of households, a higher level of self-perceived knowledge on environmental awareness significantly affected the likelihood of a consumer to pay the premium. Shifting towards renewable energy is an expensive move not only for the government because of high capital investment but also to consumers; however, the Green Energy Option (a policy mechanism which gives consumers the option to decide where their electricity comes from) can potentially balance the shift of the economic burden by transitioning from a uniformly charged electricity rate to equitably charging consumers based on their willingness to pay for renewably sourced energy.

Keywords: contingent valuation, dichotomous choice, Philippines, solar energy

Procedia PDF Downloads 343
3401 From Industry 4.0 to Agriculture 4.0: A Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability

Authors: Angelo Corallo, Maria Elena Latino, Marta Menegoli

Abstract:

Agri-food value chain involves various stakeholders with different roles. All of them abide by national and international rules and leverage marketing strategies to advance their products. Food products and related processing phases carry with it a big mole of data that are often not used to inform final customer. Some data, if fittingly identified and used, can enhance the single company, and/or the all supply chain creates a math between marketing techniques and voluntary traceability strategies. Moreover, as of late, the world has seen buying-models’ modification: customer is careful on wellbeing and food quality. Food citizenship and food democracy was born, leveraging on transparency, sustainability and food information needs. Internet of Things (IoT) and Analytics, some of the innovative technologies of Industry 4.0, have a significant impact on market and will act as a main thrust towards a genuine ‘4.0 change’ for agriculture. But, realizing a traceability system is not simple because of the complexity of agri-food supply chain, a lot of actors involved, different business models, environmental variations impacting products and/or processes, and extraordinary climate changes. In order to give support to the company involved in a traceability path, starting from business model analysis and related business process a Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability was conceived. Studying each process task and leveraging on modeling techniques lead to individuate information held by different actors during agri-food supply chain. IoT technologies for data collection and Analytics techniques for data processing supply information useful to increase the efficiency intra-company and competitiveness in the market. The whole information recovered can be shown through IT solutions and mobile application to made accessible to the company, the entire supply chain and the consumer with the view to guaranteeing transparency and quality.

Keywords: agriculture 4.0, agri-food suppy chain, industry 4.0, voluntary traceability

Procedia PDF Downloads 147
3400 DFT Study of Hoogsteen-Type Base Pairs

Authors: N. Amraoui, D. Hammoutene

Abstract:

We have performed a theoretical study using dispersion-corrected Density Functional Methods to evaluate a variety of artificial nucleobases as candidates for metal-mediated Hoogsteen-type base pairs. We focus on A-M-T Hoogsteen-type base pair with M=Co(II), Ru(I), Ni(I). All calculations are performed using (ADF 09) program. Metal-mediated Hoogsteen-type base pairs are studied as drug candidates, their geometry optimizations are performed at ZORA/TZ2P/BLYP-D level. The molecular geometries and different energies as total energies, coordination energies, Pauli interactions, orbital interactions and electrostatic energies are determined.

Keywords: chemistry, biology, density functional method, orbital interactions

Procedia PDF Downloads 284
3399 A Framework for Event-Based Monitoring of Business Processes in the Supply Chain Management of Industry 4.0

Authors: Johannes Atug, Andreas Radke, Mitchell Tseng, Gunther Reinhart

Abstract:

In modern supply chains, large numbers of SKU (Stock-Keeping-Unit) need to be timely managed, and any delays in noticing disruptions of items often limit the ability to defer the impact on customer order fulfillment. However, in supply chains of IoT-connected enterprises, the ERP (Enterprise-Resource-Planning), the MES (Manufacturing-Execution-System) and the SCADA (Supervisory-Control-and-Data-Acquisition) systems generate large amounts of data, which generally glean much earlier notice of deviations in the business process steps. That is, analyzing these streams of data with process mining techniques allows the monitoring of the supply chain business processes and thus identification of items that deviate from the standard order fulfillment process. In this paper, a framework to enable event-based SCM (Supply-Chain-Management) processes including an overview of core enabling technologies are presented, which is based on the RAMI (Reference-Architecture-Model for Industrie 4.0) architecture. The application of this framework in the industry is presented, and implications for SCM in industry 4.0 and further research are outlined.

Keywords: cyber-physical production systems, event-based monitoring, supply chain management, RAMI (Reference-Architecture-Model for Industrie 4.0)

Procedia PDF Downloads 236
3398 RNA-Seq Analysis of Coronaviridae Family and SARS-Cov-2 Prediction Using Proposed ANN

Authors: Busra Mutlu Ipek, Merve Mutlu, Ahmet Mutlu

Abstract:

Novel coronavirus COVID-19, which has recently influenced the world, poses a great threat to humanity. In order to overcome this challenging situation, scientists are working on developing effective vaccine against coronavirus. Many experts and researchers have also produced articles and done studies on this highly important subject. In this direction, this special topic was chosen for article to make a contribution to this area. The purpose of this article is to perform RNA sequence analysis of selected virus forms in the Coronaviridae family and predict/classify SARS-CoV-2 (COVID-19) from other selected complete genomes in coronaviridae family using proposed Artificial Neural Network(ANN) algorithm.

Keywords: Coronaviridae family, COVID-19, RNA sequencing, ANN, neural network

Procedia PDF Downloads 144
3397 Using Neural Networks for Click Prediction of Sponsored Search

Authors: Afroze Ibrahim Baqapuri, Ilya Trofimov

Abstract:

Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). Click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture of solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First, we compare ANN with respect to other popular machine learning models being used for this task. Then we go on to combine ANN with MatrixNet (proprietary implementation of boosted trees) and evaluate the performance of the system as a whole. The results show that our approach provides a significant improvement over existing models.

Keywords: neural networks, sponsored search, web advertisement, click prediction, click-through rate

Procedia PDF Downloads 572
3396 Potential Opportunity and Challenge of Developing Organic Rankine Cycle Geothermal Power Plant in China Based on an Energy-Economic Model

Authors: Jiachen Wang, Dongxu Ji

Abstract:

Geothermal power generation is a mature technology with zero carbon emission and stable power output, which could play a vital role as an optimum substitution of base load technology in China’s future decarbonization society. However, the development of geothermal power plants in China is stagnated for a decade due to the underestimation of geothermal energy and insufficient favoring policy. Lack of understanding of the potential value of base-load technology and environmental benefits is the critical reason for disappointed policy support. This paper proposed a different energy-economic model to uncover the potential benefit of developing a geothermal power plant in Puer, including the value of base-load power generation, and environmental and economic benefits. Optimization of the Organic Rankine Cycle (ORC) for maximum power output and minimum Levelized cost of electricity was first conducted. This process aimed at finding the optimum working fluid, turbine inlet pressure, pinch point temperature difference and superheat degrees. Then the optimal ORC model was sent to the energy-economic model to simulate the potential economic and environmental benefits. Impact of geothermal power plants based on the scenarios of implementing carbon trade market, the direct subsidy per electricity generation and nothing was tested. In addition, a requirement of geothermal reservoirs, including geothermal temperature and mass flow rate for a competitive power generation technology with other renewables, was listed. The result indicated that the ORC power plant has a significant economic and environmental benefit over other renewable power generation technologies when implementing carbon trading market and subsidy support. At the same time, developers must locate the geothermal reservoirs with minimum temperature and mass flow rate of 130 degrees and 50 m/s to guarantee a profitable project under nothing scenarios.

Keywords: geothermal power generation, optimization, energy model, thermodynamics

Procedia PDF Downloads 68
3395 Sufism as Therapy of Terrorism and Extremism with Special Reference to the Teaching of Khawaja Ghulam Fareed and Bulleh Shah

Authors: Arshad Munir, Naseem Akhtar

Abstract:

The determination of the Sufi is to effort towards unity. His main purpose is to bring humanity, separated as it is into so many different units, closer together in the deeper understanding of life. His mission is to bring about brotherhood among races, nations and faiths and to respect one another's faith, scripture and teacher. Sufi is to confer sympathy on these lives, to impart love, compassion and kindheartedness on all creations. The Sufi message is the resonance of the same Divine message which has always come and will always come to inform humanity. It is the continuation of all the pronounced religions which have come at several times and it is amalgamation of them all, which was the wish of all the prophets. Pakistan, who came into being in the name of Islam unfortunately, have linked with terrorism. It is a disgrace that in contemporary day Pakistan, mullahism and the recent cancer of Talibanisation are gradually eating into what had kept us integral as a society. Terrorism has grown-up to develop a prime safety pressure to the area. The terrorism has deadly caused decrease in overseas and local investment, exports, physical infrastructure, and wealth stock ultimately leading to damage of the socio-economic status of Pakistan. Main reasons are ignorance about the actual teaching of Islam both by Muslim and non-Muslim, exploitation by the religious and political influential, sectarianism and extremism, lack of tolerance and broadmindedness and reaction and retortion by the sufferer. The key treatment and therapy of the abovementioned illnesses exist in the messages of Sufism.

Keywords: sufism, love, Pakistan, terrorism

Procedia PDF Downloads 302
3394 Trade Policy Incentives and Economic Growth in Nigeria

Authors: Emmanuel Dele Balogun

Abstract:

This paper analyzes, using descriptive statistics and econometrics data which span the period 1981 to 2014 to gauge the effects of trade policy incentives on economic growth in Nigeria. It argues that the provided incentives penalize economic growth during pre-trade liberalization eras, but stimulated a rapid increase in total factor productivity during the post-liberalization period of 2000 to 2014. The trend analysis shows that Nigeria maintained high tariff walls in economic regulation eras which became low in post liberalization era. The protections were in favor of infant industries, which were mainly appendages of multinationals but against imports of competing food and finished consumer products. The trade openness index confirms the undue exposure of Nigeria’s economy to the vagaries of international market shocks; while banking sector recapitalization and new listing of telecommunications companies deepened the financial markets in post-liberalization era. The structure of economic incentives was biased in favor of construction, trade and services, but against the real sector despite protectionist policies. Total Factor Productivity (TFP) estimates show that the Nigerian economy suffered stagnation in pre-liberalization eras, but experienced rapid growth rates in post-liberalization eras. The regression results relating trade policy incentives to TFP growth rate yielded a significant but negative intercept suggesting that a non-interventionist policy could be detrimental to economic progress, while protective tariff which limits imports of competing products could spur productivity gains in domestic import substitutes beyond factor growth with market liberalization. The main constraint to the effectiveness of trade policy incentives is the failure of benefiting industries to leverage on the domestic factor endowments of the nation. This paper concludes that there is the need to review the current economic transformation strategies urgently with a view to provide policymakers with a better understanding of the most viable options that could make for rapid success.

Keywords: economic growth, macroeconomic incentives, total factor productivity, trade policies

Procedia PDF Downloads 322
3393 Masstige and the New Luxury: An Exploratory Study on Cosmetic Brands Among Black African Woman

Authors: Melanie Girdharilall, Anjli Himraj, Shivan Bhagwandin, Marike Venter De Villiers

Abstract:

The allure of luxury has long been attractive, fashionable, mystifying, and complex. As globalisation and the popularity of social media continue to evolve, consumers are seeking status products. However, in emerging economies like South Africa, where 60% of the country lives in poverty, this desire is often far-fetched and out of reach to most of the consumers. As a result, luxury brands are introducing masstige products: products that are associated with luxury and status but within financial reach to the middle-class consumer. The biggest challenge that this industry faces is the lack of knowledge and expertise on black female’s hair composition and offering products that meet their intricate requirements. African consumers have unique hair types, and global brands often do not accommodate for the complex nature of their hair and their product needs. By gaining insight into this phenomenon, global cosmetic brands can benefit from brand expansion, product extensions, increased brand awareness, brand knowledge, and brand equity. The purpose of this study is to determine how cosmetic brands can leverage the concept of masstige products to cater to the needs of middle-income black African woman. This study explores the 18- to 35-year-old black female cohort, which comprises approximately 17% of the South African population. The black hair care industry in Africa is expected a 6% growth rate over the next 5 years. The study is grounded in Paul’s (2019) 3-phase model for masstige marketing. This model demonstrates that product, promotion, and place strategies play a significant role in masstige value creation and the impact of these strategies on the branding dimensions (brand trust, brand association, brand positioning, brand preference, etc.).More specifically, this theoretical framework encompasses nine stages, or dimensions, that are of critical importance to companies who plan to infiltrate the masstige market. In short, the most critical components to consider are the positioning of the product and its competitive advantage in comparison to competitors. Secondly, advertising appeals and use of celebrities, and lastly, distribution channels such as online or in-store while maintain the exclusivity of the brand. By means of an exploratory study, a qualitative approach was undertaken, and focus groups were conducted among black African woman. The focus groups were voice recorded, transcribed, and analysed using Atlas software. The main themes were identified and used to provide brands with insight and direction for developing a comprehensive marketing mix for effectively entering the masstige market. The findings of this study will provide marketing practitioners with in-depth insight into how to effectively position masstige brands in line with consumer needs. It will give direction to both existing and new brands aiming to enter this market, by giving a comprehensive marketing mix for targeting the growing black hair care industry in Africa.

Keywords: africa, masstige, cosmetics, hard care, black females

Procedia PDF Downloads 85
3392 A Drawing Software for Designers: AutoCAD

Authors: Mayar Almasri, Rosa Helmi, Rayana Enany

Abstract:

This report describes the features of AutoCAD software released by Adobe. It explains how the program makes it easier for engineers and designers and reduces their time and effort spent using AutoCAD. Moreover, it highlights how AutoCAD works, how some of the commands used in it, such as Shortcut, make it easy to use, and features that make it accurate in measurements. The results of the report show that most users of this program are designers and engineers, but few people know about it and find it easy to use. They prefer to use it because it is easy to use, and the shortcut commands shorten a lot of time for them. The feature got a high rate and some suggestions for improving AutoCAD in Aperture, but it was a small percentage, and the highest percentage was that they didn't need to improve the program, and it was good.

Keywords: artificial intelligence, design, planning, commands, autodesk, dimensions

Procedia PDF Downloads 131
3391 The Development and Testing of Greenhouse Comprehensive Environment Control System

Authors: Mohammed Alrefaie, Yaser Miaji

Abstract:

Greenhouses provide a convenient means to grow plants in the best environment. They achieve this by trapping heat from the sunlight and using artificial means to enhance the environment of the greenhouse. This includes controlling factors such as air flow, light intensity and amount of water among others that can have a big impact on plant growth. The aim of the greenhouse is to give maximum yield from plants possible. This report details the development and testing of greenhouse environment control system that can regulate light intensity, airflow and power supply inside the greenhouse. The details of the module development to control these three factors along with results of testing are presented.

Keywords: greenhouse, control system, light intensity, comprehensive environment

Procedia PDF Downloads 482
3390 Effectiveness with Respect to Time-To-Market and the Impacts of Late-Stage Design Changes in Rapid Development Life Cycles

Authors: Parth Shah

Abstract:

The author examines the recent trend where business organizations are significantly reducing their developmental cycle times to stay competitive in today’s global marketspace. The author proposes a rapid systems engineering framework to address late design changes and allow for flexibility (i.e. to react to unexpected or late changes and its impacts) during the product development cycle using a Systems Engineering approach. A System Engineering approach is crucial in today’s product development to deliver complex products into the marketplace. Design changes can occur due to shortened timelines and also based on initial consumer feedback once a product or service is in the marketplace. The ability to react to change and address customer expectations in a responsive and cost-efficient manner is crucial for any organization to succeed. Past literature, research, and methods such as concurrent development, simultaneous engineering, knowledge management, component sharing, rapid product integration, tailored systems engineering processes, and studies on reducing product development cycles all suggest a research gap exist in specifically addressing late design changes due to the shortening of life cycle environments in increasingly competitive markets. The author’s research suggests that 1) product development cycles time scales are now measured in months instead of years, 2) more and more products have interdepended systems and environments that are fast-paced and resource critical, 3) product obsolesce is higher and more organizations are releasing products and services frequently, and 4) increasingly competitive markets are leading to customization based on consumer feedback. The author will quantify effectiveness with respect to success factors such as time-to-market, return-of-investment, life cycle time and flexibility in late design changes by complexity of product or service, number of late changes and ability to react and reduce late design changes.

Keywords: product development, rapid systems engineering, scalability, systems engineering, systems integration, systems life cycle

Procedia PDF Downloads 204
3389 Navigating the Integration of AI in High School Assessment: Strategic Implementation and Ethical Practice

Authors: Loren Clarke, Katie Reed

Abstract:

The integration of artificial intelligence (AI) in high school education assessment offers transformative potential, providing more personalized, timely, and accurate evaluations of student performance. However, the successful adoption of AI-driven assessment systems requires robust change management strategies to navigate the complexities and resistance that often accompany such technological shifts. This presentation explores effective methods for implementing AI in high school assessment, emphasizing the need for strategic planning and stakeholder engagement. Focusing on a case study of a Victorian high school, it will examine the practical steps taken to integrate AI into teaching and learning. This school has developed innovative processes to support academic integrity and foster authentic cogeneration with AI, ensuring that the technology is used ethically and effectively. By creating comprehensive professional development programs for teachers and maintaining transparent communication with students and parents, the school has successfully aligned AI technologies with their existing curricula and assessment frameworks. The session will highlight how AI has enhanced both formative and summative assessments, providing real-time feedback that supports differentiated instruction and fosters a more personalized learning experience. Participants will learn about best practices for managing the integration of AI in high school settings while maintaining a focus on equity and student-centered learning. This presentation aims to equip high school educators with the insights and tools needed to effectively manage the integration of AI in assessment, ultimately improving educational outcomes and preparing students for future success. Methodologies: The research is a case study of a Victorian high school to examine AI integration in assessments, focusing on practical implementation steps, ethical practices, and change management strategies to enhance personalized learning and assessment. Outcomes: This research explores AI integration in high school assessments, focusing on personalized evaluations, ethical use, and change management. A Victorian school case study highlights best practices to enhance assessments and improve student outcomes. Main Contributions: This research contributes by outlining effective AI integration in assessments, showcasing a Victorian school's implementation, and providing best practices for ethical use, change management, and enhancing personalized learning outcomes.

Keywords: artificial intelligence, assessment, curriculum design, teaching and learning, ai in education

Procedia PDF Downloads 21
3388 Kebbi State University of Science and Technology, Aliero, Kebbi State

Authors: Ugbajah Maryjane

Abstract:

The study examined the production of grass cutter and the constraints in Anambra state, Nigeria. Specifically, it described socio-economic characteristics of the respondents, determinants of net farm income and constraints to grass cutter production. Multistage and random sampling methods were used to select 50 respondents for this study. Primary data were collected by means of structured questionnaire. Non-parametric and parametric statistical tools including frequency percentage mean ranking counts, cost and returns and returns and multiple regression were deployed for data analysis. Majority 84% produce on small scale, 64 % had formal education 68% had 3-4 years of farming experience hence small scaled production were common. The income (returns) on investment was used as index of profitability, gross margin (#5,972,280), net farm income (#5,327,055.2) net return on investment (2.5) and return on investment 3.1. Net farm income was significantly influence by stock size and years of farming experience. Grass cutter farmers production problem would be ameliorated by the expression of extension education awareness campaigns to discourage unhealthy practices such as indiscriminant bush burning, use of toxic chemicals as baits, and provision of credits to the farmers.

Keywords: socio-economic factors, profitability, awareness, toxic chemicals, credits

Procedia PDF Downloads 415
3387 Impact of Research-Informed Teaching and Case-Based Teaching on Memory Retention and Recall in University Students

Authors: Durvi Yogesh Vagani

Abstract:

This research paper explores the effectiveness of Research-informed teaching and Case-based teaching in enhancing the retention and recall of memory during discussions among university students. Additionally, it investigates the impact of using Artificial Intelligence (AI) tools on the quality of research conducted by students and its correlation with better recollection. The study hypothesizes that Case-based teaching will lead to greater recall and storage of information. The research gap in the use of AI in educational settings, particularly with actual participants, is addressed by leveraging a multi-method approach. The hypothesis is that the use of AI, such as ChatGPT and Bard, would lead to better retention and recall of information. Before commencing the study, participants' attention levels and IQ were assessed using the Digit Span Test and the Wechsler Adult Intelligence Scale, respectively, to ensure comparability among participants. Subsequently, participants were divided into four conditions, each group receiving identical information presented in different formats based on their assigned condition. Following this, participants engaged in a group discussion on the given topic. Their responses were then evaluated against a checklist. Finally, participants completed a brief test to measure their recall ability after the discussion. Preliminary findings suggest that students who utilize AI tools for learning demonstrate improved grasping of information and are more likely to integrate relevant information into discussions compared to providing extraneous details. Furthermore, Case-based teaching fosters greater attention and recall during discussions, while Research-informed teaching leads to greater knowledge for application. By addressing the research gap in AI application in education, this study contributes to a deeper understanding of effective teaching methodologies and the role of technology in student learning outcomes. The implication of the present research is to tailor teaching methods based on the subject matter. Case-based teaching facilitates application-based teaching, and research-based teaching can be beneficial for theory-heavy topics. Integrating AI in education. Combining AI with research-based teaching may optimize instructional strategies and deepen learning experiences. This research suggests tailoring teaching methods in psychology based on subject matter. Case-based teaching suits practical subjects, facilitating application, while research-based teaching aids understanding of theory-heavy topics. Integrating AI in education could enhance learning outcomes, offering detailed information tailored to students' needs.

Keywords: artificial intelligence, attention, case-based teaching, memory recall, memory retention, research-informed teaching

Procedia PDF Downloads 30
3386 Influence of Chemical Treatment on Elastic Properties of the Band Cotton Crepe 100%

Authors: Bachir Chemani, Rachid Halfaoui, Madani Maalem

Abstract:

The manufacturing technology of band cotton is very delicate and depends to choice of certain parameters such as torsion of warp yarn. The fabric elasticity is achieved without the use of any elastic material, chemical expansion, artificial or synthetic and it’s capable of creating pressures useful for therapeutic treatments.Before use, the band is subjected to treatments of specific preparation for obtaining certain elasticity, however, during its treatment, there are some regression parameters. The dependence of manufacturing parameters on the quality of the chemical treatment was confirmed. The aim of this work is to improve the properties of the fabric through the development of manufacturing technology appropriately. Finally for the treatment of the strip pancake 100% cotton, a treatment method is recommended.

Keywords: elastic, cotton, processing, torsion

Procedia PDF Downloads 387
3385 Concept Mapping of Teachers Regarding Conflict Management

Authors: Tahir Mehmood, Mumtaz Akhter

Abstract:

The global need for conflict management is greater now in the early 21st century than ever before. According to UNESCO, half of the world’s 195 countries will have to expand their stock of educationist significantly, some by tens of thousands, if the goal development targets are desired to achieve. Socioeconomic inequities, political instability, demographic changes and crises such as the HIV/AIDs epidemic have engendered huge shortfalls in teacher supply and low teacher quality in many developing countries. Education serves as back bone in development process. Open learning and distance education programs are serving as pivotal part of development process. It is now clear that ‘bricks and mortar’ approaches to expanding teacher education may not be adequate if the current and projected shortfalls in teacher supply and low teacher quality are to be properly addressed. The study is designed to measure the perceptions of teaching learning community about conflict management with special reference to open and distance learning. It was descriptive study which targeted teachers, students, community members and experts. Data analysis was carried out by using statistical techniques served by SPSS. Findings reflected that audience perceives open and distance learning as change agent and as development tool. It is noticed that target audience has driven prominent performance by using facility of open and distance learning.

Keywords: conflict management, open and distance learning, teachers, students

Procedia PDF Downloads 411
3384 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence

Authors: Muhammad Bilal Shaikh

Abstract:

Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.

Keywords: multimodal AI, computer vision, NLP, mineral processing, mining

Procedia PDF Downloads 68
3383 Analysing the Influence of COVID-19 on Major Agricultural Commodity Prices in South Africa

Authors: D. Mokatsanyane, J. Jansen Van Rensburg

Abstract:

This paper analyses the influence and impact of COVID-19 on major agricultural commodity prices in South Africa. According to a World Bank report, the agricultural sector in South Africa has been unable to reduce the domestic food crisis that has been occurring over the past years, hence the increased rate of poverty, which is currently at 55.5 percent as of April 2020. Despite the significance of this sector, empirical findings concluded that the agricultural sector now accounts for 1.88 percent of South Africa's gross domestic product (GDP). Suggesting that the agricultural sector's contribution to the economy has diminished. Despite the low contribution to GDP, this primary sector continues to play an essential role in the economy. Over the past years, multiple factors have contributed to the soaring commodities prices, namely, climate shocks, biofuel demand, demand and supply shocks, the exchange rate, speculation in commodity derivative markets, trade restrictions, and economic growth. The COVID-19 outbursts have currently disturbed the supply and demand of staple crops. To address the disruption, the government has exempted the agricultural sector from closure and restrictions on movement. The spread of COVID-19 has caused turmoil all around the world, but mostly in developing countries. According to Statistic South Africa, South Africa's economy decreased by seven percent in 2020. Consequently, this has arguably made the agricultural sector the most affected sector since slumped economic growth negatively impacts food security, trade, farm livelihood, and greenhouse gas emissions. South Africa is sensitive to the fruitfulness of global food chains. Restrictions in trade, reinforced sanitary control systems, and border controls have influenced food availability and prices internationally. The main objective of this study is to evaluate the behavior of agricultural commodity prices pre-and during-COVID to determine the impact of volatility drivers on these crops. Historical secondary data of spot prices for the top five major commodities, namely white maize, yellow maize, wheat, soybeans, and sunflower seeds, are analysed from 01 January 2017 to 1 September 2021. The timeframe was chosen to capture price fluctuations between pre-COVID-19 (01 January 2017 to 23 March 2020) and during-COVID-19 (24 March 2020 to 01 September 2021). The Generalised Autoregressive Conditional Heteroscedasticity (GARCH) statistical model will be used to measure the influence of price fluctuations. The results reveal that the commodity market has been experiencing volatility at different points. Extremely high volatility is represented during the first quarter of 2020. During this period, there was high uncertainty, and grain prices were very volatile. Despite the influence of COVID-19 on agricultural prices, the demand for these commodities is still existing and decent. During COVID-19, analysis indicates that prices were low and less volatile during the pandemic. The prices and returns of these commodities were low during COVID-19 because of the government's actions to respond to the virus's spread, which collapsed the market demand for food commodities.

Keywords: commodities market, commodity prices, generalised autoregressive conditional heteroscedasticity (GARCH), Price volatility, SAFEX

Procedia PDF Downloads 174
3382 Students’ Perception of Careers in Shared Services Industry

Authors: Oksana Koval, Stephen Nabareseh

Abstract:

Talent attraction is identified as a top priority between 2015 – 2020 for Shared Service Centers (SSCs) based on an industry-wide studies. Due to market dynamics and the structure of labour force, shared service industries in Eastern and Central Europe strive for qualified graduates with appropriate and unique skills to occupy such job places. The inbuilt interest and course prescriptions undertaken by prospective job seekers determine whether SSCs will eventually admit such professionals. This paper assesses students’ overall perception of careers in the shared services industry and further diagnosis gender impact and influence on the job preferences among students. Questionnaires were distributed among students in the Czech Republic universities using an online mode. Respondents vary by study year, gender, age, course of study, and work preferences. A total of 1283 student responses has been analyzed using Stata data analytics software. It was discovered that over 70% of respondents who are aware of SSCs are quite ignorant of the job opportunities offered by the centers. While majority of respondents are interested in support positions (e.g. procurement specialist, planning specialist, human resource specialist, process improvement specialist and payroll specialist, etc.), around a third of respondents (32.8 percent) will decline a job offer from SSCs. The analysis also revealed that males are more likely than females to seek careers in international companies, hence, tend to be more favorable towards shared service jobs. Females, however, have stronger preferences towards marketing and PR jobs. The research results provide insights into the job aspirations of students interviewed. The findings provide a huge resource for recruitment agencies and shared service industries to renew and redirect their search for talents into SSCs. Based on the fact that great portion of respondents are planning to start their career within 6-12 months, the research provides important highlights for the talent attraction and recruitment strategies in the industry and provides a curriculum direction in academia.

Keywords: Czech Republic labour market, gender, talent attraction, shared service centers, students

Procedia PDF Downloads 229