Search results for: Gagne’s learning model
19724 The Gasoil Hydrofining Kinetics Constants Identification
Authors: C. Patrascioiu, V. Matei, N. Nicolae
Abstract:
The paper describes the experiments and the kinetic parameters calculus of the gasoil hydrofining. They are presented experimental results of gasoil hidrofining using Mo and promoted with Ni on aluminum support catalyst. The authors have adapted a kinetic model gasoil hydrofining. Using this proposed kinetic model and the experimental data they have calculated the parameters of the model. The numerical calculus is based on minimizing the difference between the experimental sulf concentration and kinetic model estimation.Keywords: hydrofining, kinetic, modeling, optimization
Procedia PDF Downloads 43819723 A Mean–Variance–Skewness Portfolio Optimization Model
Authors: Kostas Metaxiotis
Abstract:
Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.Keywords: evolutionary algorithms, portfolio optimization, skewness, stock selection
Procedia PDF Downloads 20019722 The Best Methods of Motivating and Encouraging the Students to Study: A Case Study
Authors: Mahmoud I. Syam, Osama K. El-Hafy
Abstract:
With lack of student motivation, there will be a little or no real learning in the class and this directly effects student achievement and test scores. Some students are naturally motivated to learn, but many students are not motivated, they do care little about learning and need their instructors to motivate them. Thus, motivating students is part of the instructor’s job. It’s a tough task to motivate students and make them have more attention and enthusiasm. As a part of this research, a questionnaire has been distributed among a sample of 155 students out of 1502 students from Foundation Program at Qatar University. The questionnaire helped us to determine some methods to motivate the students and encourage them to study such as variety of teaching activities, encouraging students to participate during the lectures, creating intense competition between the students, using instructional technology, not using grades as a threat and respecting the students and treating them in a good manner. Accordingly, some hypotheses are tested and some recommendations are presented.Keywords: learning, motivating, student, teacher, testing hypotheses
Procedia PDF Downloads 47419721 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning
Authors: Madhawa Basnayaka, Jouni Paltakari
Abstract:
Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.Keywords: artificial intelligence, chipless RFID, deep learning, machine learning
Procedia PDF Downloads 5119720 Validating Condition-Based Maintenance Algorithms through Simulation
Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile
Abstract:
Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning
Procedia PDF Downloads 12719719 Developing a Total Quality Management Model Using Structural Equation Modeling for Indonesian Healthcare Industry
Authors: Jonny, T. Yuri M. Zagloel
Abstract:
This paper is made to present an Indonesian Healthcare model. Currently, there are nine TQM (Total Quality Management) practices in healthcare industry. However, these practices are not integrated yet. Therefore, this paper aims to integrate these practices as a model by using Structural Equation Modeling (SEM). After administering about 210 questionnaires to various stakeholders of this industry, a LISREL program was used to evaluate the model's fitness. The result confirmed that the model is fit because the p-value was about 0.45 or above required 0.05. This has signified that previously mentioned of nine TQM practices are able to be integrated as an Indonesian healthcare model.Keywords: healthcare, total quality management (TQM), structural equation modeling (SEM), linear structural relations (LISREL)
Procedia PDF Downloads 29519718 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method
Authors: Shiyin He, Zheng Huang
Abstract:
In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet
Procedia PDF Downloads 19219717 Investigating the Dimensions of Perceived Attributions in Making Sense of Failure: An Exploratory Study of Lebanese Entrepreneurs
Authors: Ghiwa Dandach
Abstract:
By challenging the anti-failure bias and contributing to the theoretical territory of the attribution theory, this thesis develops a comprehensive process for entrepreneurial learning from failure. The practical implication of the findings suggests assisting entrepreneurs (current, failing, and nascent) in effectively anticipating and reflecting upon failure. Additionally, the process is suggested to enhance the level of institutional and private (accelerators and financers) support provided to entrepreneurs, the implications of which may improve future opportunities for entrepreneurial success. Henceforth, exploring learning from failure is argued to impact the potential survival of future ventures, subsequently revitalizing the economic contribution of entrepreneurship. This learning process can be enhanced with the cognitive development of causal ascriptions for failure, which eventually impacts learning outcomes. However, the mechanism with which entrepreneurs make sense of failure, reflect on the journey, and transform experience into knowledge is still under-researched. More specifically, the cognitive process of failure attribution is under-explored, majorly in the context of developing economies, calling for a more insightful understanding on how entrepreneurs ascribe failure. Responding to the call for more thorough research in such cultural contexts, this study expands the understanding of the dimensions of failure attributions as perceived by entrepreneurs and the impact of these dimensions on learning outcomes in the Lebanese context. The research adopted the exploratory interpretivism paradigm and collected data from interviews with industry experts first, followed by narratives of entrepreneurs using the qualitative multimethod approach. The holistic and categorical content analysis of narratives, preceded by the thematic analysis of interviews, unveiled how entrepreneurs ascribe failure by developing minor and major dimensions of each failure attribution. The findings have also revealed how each dimension impacts the learning from failure when accompanied by emotional resilience. The thesis concludes that exploring in-depth the dimensions of failure attributions significantly determines the level of learning generated. They are moving beyond the simple categorisation of ascriptions as primary internal or external unveiled how learning may occur with each attribution at the individual, venture, and ecosystem levels. This has further accentuated that a major internal attribution of failure combined with a minor external attribution generated the highest levels of transformative and double-loop learning, emphasizing the role of personal blame and responsibility on enhancing learning outcomes.Keywords: attribution, entrepreneurship, reflection, sense-making, emotions, learning outcomes, failure, exit
Procedia PDF Downloads 22819716 A Research on Flipped-Classroom Teaching Model in English for Academic Purpose Teaching
Authors: Li Shuang
Abstract:
With rigid teaching procedures and limited academic performance assessment methods, traditional teaching model stands in the way of college English reform in China, which features EAP (English for Academic Purpose) teaching. Flipped-classroom teaching, which has been extensively applied to science subjects teaching, however, covers the shortage of traditional teaching model in EAP teaching, via creatively inverting traditional teaching procedures. Besides, the application of flipped-classroom teaching model in EAP teaching also proves that this new teaching philosophy is not confined to science subjects teaching; it goes perfectly well with liberal-arts subjects teaching. Data analysis, desk research survey, and comparative study are referred to in the essay so as to prove its feasibility and advantages in EAP teaching.Keywords: EAP, traditional teaching method, flipped-classroom teaching model, teaching model design
Procedia PDF Downloads 31219715 Neural Network Based Compressor Flow Estimator in an Aircraft Vapor Cycle System
Authors: Justin Reverdi, Sixin Zhang, Serge Gratton, Said Aoues, Thomas Pellegrini
Abstract:
In Vapor Cycle Systems, the flow sensor plays a key role in different monitoring and control purposes. However, physical sensors can be expensive, inaccurate, heavy, cumbersome, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor based on other standard sensors is a good alternative. In this paper, a data-driven model using a Convolutional Neural Network is proposed to estimate the flow of the compressor. To fit the model to our dataset, we tested different loss functions. We show in our application that a Dynamic Time Warping based loss function called DILATE leads to better dynamical performance than the vanilla mean squared error (MSE) loss function. DILATE allows choosing a trade-off between static and dynamic performance.Keywords: deep learning, dynamic time warping, vapor cycle system, virtual sensor
Procedia PDF Downloads 14719714 Application of Deep Learning in Top Pair and Single Top Quark Production at the Large Hadron Collider
Authors: Ijaz Ahmed, Anwar Zada, Muhammad Waqas, M. U. Ashraf
Abstract:
We demonstrate the performance of a very efficient tagger applies on hadronically decaying top quark pairs as signal based on deep neural network algorithms and compares with the QCD multi-jet background events. A significant enhancement of performance in boosted top quark events is observed with our limited computing resources. We also compare modern machine learning approaches and perform a multivariate analysis of boosted top-pair as well as single top quark production through weak interaction at √s = 14 TeV proton-proton Collider. The most relevant known background processes are incorporated. Through the techniques of Boosted Decision Tree (BDT), likelihood and Multlayer Perceptron (MLP) the analysis is trained to observe the performance in comparison with the conventional cut based and count approachKeywords: top tagger, multivariate, deep learning, LHC, single top
Procedia PDF Downloads 11219713 Random Access in IoT Using Naïve Bayes Classification
Authors: Alhusein Almahjoub, Dongyu Qiu
Abstract:
This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.Keywords: random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation
Procedia PDF Downloads 14619712 A Game-Based Product Modelling Environment for Non-Engineer
Authors: Guolong Zhong, Venkatesh Chennam Vijay, Ilias Oraifige
Abstract:
In the last 20 years, Knowledge Based Engineering (KBE) has shown its advantages in product development in different engineering areas such as automation, mechanical, civil and aerospace engineering in terms of digital design automation and cost reduction by automating repetitive design tasks through capturing, integrating, utilising and reusing the existing knowledge required in various aspects of the product design. However, in primary design stages, the descriptive information of a product is discrete and unorganized while knowledge is in various forms instead of pure data. Thus, it is crucial to have an integrated product model which can represent the entire product information and its associated knowledge at the beginning of the product design. One of the shortcomings of the existing product models is a lack of required knowledge representation in various aspects of product design and its mapping to an interoperable schema. To overcome the limitation of the existing product model and methodologies, two key factors are considered. First, the product model must have well-defined classes that can represent the entire product information and its associated knowledge. Second, the product model needs to be represented in an interoperable schema to ensure a steady data exchange between different product modelling platforms and CAD software. This paper introduced a method to provide a general product model as a generative representation of a product, which consists of the geometry information and non-geometry information, through a product modelling framework. The proposed method for capturing the knowledge from the designers through a knowledge file provides a simple and efficient way of collecting and transferring knowledge. Further, the knowledge schema provides a clear view and format on the data that needed to be gathered in order to achieve a unified knowledge exchange between different platforms. This study used a game-based platform to make product modelling environment accessible for non-engineers. Further the paper goes on to test use case based on the proposed game-based product modelling environment to validate the effectiveness among non-engineers.Keywords: game-based learning, knowledge based engineering, product modelling, design automation
Procedia PDF Downloads 15619711 DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations
Authors: Xiao Zhou, Jianlin Cheng
Abstract:
A single amino acid mutation can have a significant impact on the stability of protein structure. Thus, the prediction of protein stability change induced by single site mutations is critical and useful for studying protein function and structure. Here, we presented a deep learning network with the dropout technique for predicting protein stability changes upon single amino acid substitution. While using only protein sequence as input, the overall prediction accuracy of the method on a standard benchmark is >85%, which is higher than existing sequence-based methods and is comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results demonstrate that deep learning is a promising technique for protein stability prediction. The good performance of this sequence-based method makes it a valuable tool for predicting the impact of mutations on most proteins whose experimental structures are not available. Both the downloadable software package and the user-friendly web server (DNpro) that implement the method for predicting protein stability changes induced by amino acid mutations are freely available for the community to use.Keywords: bioinformatics, deep learning, protein stability prediction, biological data mining
Procedia PDF Downloads 47219710 Analytical Model to Predict the Shear Capacity of Reinforced Concrete Beams Externally Strengthened with CFRP Composites Conditions
Authors: Rajai Al-Rousan
Abstract:
This paper presents a proposed analytical model for predicting the shear strength of reinforced concrete beams strengthened with CFRP composites as external reinforcement. The proposed analytical model can predict the shear contribution of CFRP composites of RC beams with an acceptable coefficient of correlation with the tested results. Based on the comparison of the proposed model with the published well-known models (ACI model, Triantafillou model, and Colotti model), the ACI model had a wider range of 0.16 to 10.08 for the ratio between tested and predicted ultimate shears at failure. Also, an acceptable range of 0.27 to 2.78 for the ratio between tested and predicted ultimate shears by the Triantafillou model. Finally, the best prediction (the ratio between the tested and predicted ones) of the ultimate shear capacity is observed by using Colotti model with a range of 0.20 to 1.78. Thus, the contribution of the CFRP composites as external reinforcement can be predicted with high accuracy by using the proposed analytical model.Keywords: predicting, shear capacity, reinforced concrete, beams, strengthened, externally, CFRP composites
Procedia PDF Downloads 23019709 Promoting Teaching and Learning Structures Based on Innovation and Entrepreneurship in Valahia University of Targoviste
Authors: Gabriela Teodorescu, Ioana Daniela Dulama
Abstract:
In an ever-changing society, the education system needs to constantly evolve to meet market demands. During its 30 years of existence, Valahia University of Targoviste (VUT) tried to offer its students a series of teaching-learning schemes that would prepare them for a remarkable career. In VUT, the achievement of performance through innovation can be analyzed by reference to several key indicators (i.e., university climate, university resources, and innovative methods applied to classes), but it is possible to differentiate between activities in the classic format: participate to courses; interactive seminars and tutorials; laboratories, workshops, project-based learning; entrepreneurial activities, through simulated enterprises; mentoring activities. Thus, VUT has implemented over time a series of schemes and projects based on innovation and entrepreneurship, and in this paper, some of them will be briefly presented. All these schemes were implemented by facilitating an effective dialog with students and the opportunity to listen to their views at all levels of the University and in all fields of study, as well as by developing a partnership with students to set out priority areas. VUT demonstrates innovation and entrepreneurial capacity through its new activities for higher education, which will attract more partnerships and projects dedicated to students.Keywords: Romania, project-based learning, entrepreneurial activities, simulated enterprises
Procedia PDF Downloads 16419708 Effect of Drying on the Concrete Structures
Authors: A. Brahma
Abstract:
The drying of hydraulics materials is unavoidable and conducted to important spontaneous deformations. In this study, we show that it is possible to describe the drying shrinkage of the high-performance concrete by a simple expression. A multiple regression model was developed for the prediction of the drying shrinkage of the high-performance concrete. The assessment of the proposed model has been done by a set of statistical tests. The model developed takes in consideration the main parameters of confection and conservation. There was a very good agreement between drying shrinkage predicted by the multiple regression model and experimental results. The developed model adjusts easily to all hydraulic concrete types.Keywords: hydraulic concretes, drying, shrinkage, prediction, modeling
Procedia PDF Downloads 36919707 Attitudes of Saudi Students Attending the English Programmes of the Royal Commission for Jubail and Yanbu toward Using Computer-Assisted Language Learning
Authors: Sultan Ahmed Arishi
Abstract:
The objective of the study was to investigate the attitude of the Saudi students attending the English Language programmes of the Royal Commission for Jubail towards using CALL, as well as to discover whether computer-assisted teaching is useful and valuable for students in learning English. Data were collected with the help of interviews and survey questionnaires. The outcomes of the investigation showed that students had a positive attitude towards CALL. Moreover, the listening skills of the students had the most substantial effect on students learning English through CALL. Unexpectedly, the teaching staff, equipment, curriculum, or even a student's poor English background was a distinct barrier that attributed to any weaknesses of using CALL, or in other words, all these factors were of a similar attitude.Keywords: CALL, teaching aids, teaching technology, teaching English with technology, teaching English in Saudi Arabia
Procedia PDF Downloads 14719706 Parametric Study of Vertical Diffusion Stills for Water Desalination
Authors: A. Seleem, M. Mortada, M. El-Morsi, M. Younan
Abstract:
Diffusion stills have been effective in water desalination. The present work represents a model of the distillation process by using vertical single-effect diffusion stills. A semi-analytical model has been developed to model the process. A software computer code using Engineering Equation Solver EES software has been developed to solve the equations of the developed model. An experimental setup has been constructed, and used for the validation of the model. The model is also validated against former literature results. The results obtained from the present experimental test rig, and the data from the literature, have been compared with the results of the code to find its best range of validity. In addition, a parametric analysis of the system has been developed using the model to determine the effect of operating conditions on the system's performance. The dominant parameters that affect the productivity of the still are the hot plate temperature that ranges from (55-90 °C) and feed flow rate in range of (0.00694-0.0211 kg/m2-s).Keywords: analytical model, solar distillation, sustainable water systems, vertical diffusion still
Procedia PDF Downloads 40619705 Development of Instructional Material Using Scientific Approach to Make the Nature of Science (NOS) and Critical Thinking Explicit on Chemical Bonding and Intermolecular Forces Topics
Authors: Ivan Ashif Ardhana, Intan Mahanani
Abstract:
Chemistry education tends to change from triplet representation among macroscopic, microscopic, and symbolic to tetrahedron shape. This change set the aspect of human element on the top of learning. Meaning that students are expected to solve the problems involving the ethic, morality, and humanity through the class. Ability to solve the problems connecting either theories or applications is called scientific literacy which have been implemented in curriculum 2013 implicitly. Scientific literacy has an aspect of nature science and critical thinking. Both can be integrated to learning using scientific approach and scientific inquiry. Unfortunately, students’ ability of scientific literacy in Indonesia is far from expectation. A survey from PISA had proven it. Scientific literacy of Indonesian students is always at bottom five position from 2002 till 2012. Improving a scientific literacy needs many efforts against them. Developing an instructional material based on scientific approach is one kind of that efforts. Instructional material contains both aspect of nature of science and critical thinking which is instructed explicitly to improve the students’ understanding about science. Developing goal is to produce a prototype and an instructional material using scientific approach whose chapter is chemical bonding and intermolecular forces for high school students grade ten. As usual, the material is subjected to get either quantitative mark or suggestion through validation process using validation sheet instrument. Development model is adapted from 4D model containing four steps. They are define, design, develop, and disseminate. Nevertheless, development of instructional material had only done until third step. The final step wasn’t done because of time, cost, and energy limitations. Developed instructional material had been validated by four validators. They are coming from chemistry lecture and high school’s teacher which two at each. The result of this development research shown the average of quantitative mark of students’ book is 92.75% with very proper in criteria. Given at same validation process, teacher’s guiding book got the average mark by 96.98%, similar criteria with students’ book. Qualitative mark including both comments and suggestions resulted from validation process were used as consideration for the revision. The result concluded us how the instructional materials using scientific approach to explicit nature of science and critical thinking on the topic of chemical bonding and intermolecular forces are very proper if they are used at learning activity.Keywords: critical thinking, instructional material, nature of science, scientific literacy
Procedia PDF Downloads 26619704 Empirical Evaluation of Game Components Based on Learning Theory: A Preliminary Study
Authors: Seoi Lee, Dongjoo Chin, Heewon Kim
Abstract:
Gamification refers to a technique that applies game elements to non-gaming elements, such as education and exercise, to make people more engaged in these behaviors. The purpose of this study was to identify effective elements in gamification for changing human behaviors. In order to accomplish this purpose, a survey based on learning theory was developed, especially for assessing antecedents and consequences of behaviors, and 8 popular and 8 unpopular games were selected for comparison. A total of 407 adult males and females were recruited via crowdsourcing Internet marketplace and completed the survey, which consisted of 19 questions for antecedent and 14 questions for consequences. Results showed no significant differences in consequence questions between popular and unpopular games. For antecedent questions, popular games are superior to unpopular games in character customization, play type selection, a sense of belonging, patch update cycle, and influence or dominance. This study is significant in that it reveals the elements of gamification based on learning theory. Future studies need to empirically validate whether these factors affect behavioral change.Keywords: gamification, learning theory, antecedent, consequence, behavior change, behaviorism
Procedia PDF Downloads 22419703 Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines
Authors: Alexander Guzman Urbina, Atsushi Aoyama
Abstract:
The sustainability of traditional technologies employed in energy and chemical infrastructure brings a big challenge for our society. Making decisions related with safety of industrial infrastructure, the values of accidental risk are becoming relevant points for discussion. However, the challenge is the reliability of the models employed to get the risk data. Such models usually involve large number of variables and with large amounts of uncertainty. The most efficient techniques to overcome those problems are built using Artificial Intelligence (AI), and more specifically using hybrid systems such as Neuro-Fuzzy algorithms. Therefore, this paper aims to introduce a hybrid algorithm for risk assessment trained using near-miss accident data. As mentioned above the sustainability of traditional technologies related with energy and chemical infrastructure constitutes one of the major challenges that today’s societies and firms are facing. Besides that, the adaptation of those technologies to the effects of the climate change in sensible environments represents a critical concern for safety and risk management. Regarding this issue argue that social consequences of catastrophic risks are increasing rapidly, due mainly to the concentration of people and energy infrastructure in hazard-prone areas, aggravated by the lack of knowledge about the risks. Additional to the social consequences described above, and considering the industrial sector as critical infrastructure due to its large impact to the economy in case of a failure the relevance of industrial safety has become a critical issue for the current society. Then, regarding the safety concern, pipeline operators and regulators have been performing risk assessments in attempts to evaluate accurately probabilities of failure of the infrastructure, and consequences associated with those failures. However, estimating accidental risks in critical infrastructure involves a substantial effort and costs due to number of variables involved, complexity and lack of information. Therefore, this paper aims to introduce a well trained algorithm for risk assessment using deep learning, which could be capable to deal efficiently with the complexity and uncertainty. The advantage point of the deep learning using near-miss accidents data is that it could be employed in risk assessment as an efficient engineering tool to treat the uncertainty of the risk values in complex environments. The basic idea of using a Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines is focused in the objective of improve the validity of the risk values learning from near-miss accidents and imitating the human expertise scoring risks and setting tolerance levels. In summary, the method of Deep Learning for Neuro-Fuzzy Risk Assessment involves a regression analysis called group method of data handling (GMDH), which consists in the determination of the optimal configuration of the risk assessment model and its parameters employing polynomial theory.Keywords: deep learning, risk assessment, neuro fuzzy, pipelines
Procedia PDF Downloads 29319702 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source
Authors: Zdeněk Veselý, Milan Honner, Jiří Mach
Abstract:
The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. The complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from the 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on the temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.Keywords: computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source
Procedia PDF Downloads 39619701 Overcoming Challenges of Teaching English as a Foreign Language in Technical Classrooms: A Case Study at TVTC College of Technology
Authors: Sreekanth Reddy Ballarapu
Abstract:
The perception of the whole process of teaching and learning is undergoing a drastic and radical change. More and more student-centered, pragmatic, and flexible approaches are gradually replacing teacher-centered lecturing and structural-syllabus instruction. The issue of teaching English as a Foreign language is no exception in this regard. The traditional Present-Practice-Produce (P-P-P) method of teaching English is overtaken by Task-Based Teaching which is a subsidiary branch of Communicative Language Teaching. At this juncture this article strongly tries to convey that - Task-based learning, has an advantage over other traditional methods of teaching. All teachers of English must try to customize their texts into productive tasks, apply them, and evaluate the students as well as themselves. Task Based Learning is a double edged tool which can enhance the performance of both the teacher and the taught. The sample for this case study is a class of 35 students from Semester III - Network branch at TVTC College of Technology, Adhum - Kingdom of Saudi Arabia. The students are high school passed out and aged between 19-21years.For the present study the prescribed textbook Technical English 1 by David Bonamy was used and a number of language tasks were chalked out during the pre- task stage and the learners were made to participate voluntarily and actively. The Action Research methodology was adopted within the dual framework of Communicative Language Teaching and Task-Based Learning. The different tools such as questionnaires, feedback and interviews were used to collect data. This study provides information about various techniques of Communicative Language Teaching and Task Based Learning and focuses primarily on the advantages of using a Task Based Learning approach. This article presents in detail the objectives of the study, the planning and implementation of the action research, the challenges encountered during the execution of the plan, and the pedagogical outcome of this project. These research findings serve two purposes: first, it evaluates the effectiveness of Task Based Learning and, second, it empowers the teacher's professionalism in designing and implementing the tasks. In the end, the possibility of scope for further research is presented in brief.Keywords: action research, communicative language teaching, task based learning, perception
Procedia PDF Downloads 24019700 Facial Recognition Technology in Institutions of Higher Learning: Exploring the Use in Kenya
Authors: Samuel Mwangi, Josephine K. Mule
Abstract:
Access control as a security technique regulates who or what can access resources. It is a fundamental concept in security that minimizes risks to the institutions that use access control. Regulating access to institutions of higher learning is key to ensure only authorized personnel and students are allowed into the institutions. The use of biometrics has been criticized due to the setup and maintenance costs, hygiene concerns, and trepidations regarding data privacy, among other apprehensions. Facial recognition is arguably a fast and accurate way of validating identity in order to guard protected areas. It guarantees that only authorized individuals gain access to secure locations while requiring far less personal information whilst providing an additional layer of security beyond keys, fobs, or identity cards. This exploratory study sought to investigate the use of facial recognition in controlling access in institutions of higher learning in Kenya. The sample population was drawn from both private and public higher learning institutions. The data is based on responses from staff and students. Questionnaires were used for data collection and follow up interviews conducted to understand responses from the questionnaires. 80% of the sampled population indicated that there were many security breaches by unauthorized people, with some resulting in terror attacks. These security breaches were attributed to stolen identity cases, where staff or student identity cards were stolen and used by criminals to access the institutions. These unauthorized accesses have resulted in losses to the institutions, including reputational damages. The findings indicate that security breaches are a major problem in institutions of higher learning in Kenya. Consequently, access control would be beneficial if employed to curb security breaches. We suggest the use of facial recognition technology, given its uniqueness in identifying users and its non-repudiation capabilities.Keywords: facial recognition, access control, technology, learning
Procedia PDF Downloads 12819699 Spatial Mental Imagery in Students with Visual Impairments when Learning Literal and Metaphorical Uses of Prepositions in English as a Foreign Language
Authors: Natalia Sáez, Dina Shulfman
Abstract:
There is an important research gap regarding accessible pedagogical techniques for teaching foreign languages to adults with visual impairments. English as a foreign language (EFL), in particular, is needed in many countries to expand occupational opportunities and improve living standards. Within EFL research, teaching and learning prepositions have only recently gained momentum, considering that they constitute one of the most difficult structures to learn in a foreign language and are fundamental for communicating about spatial relations in the world, both on the physical and imaginary levels. Learning to use prepositions would not only facilitate communication when referring to the surrounding tangible environment but also when conveying ideas about abstract topics (e.g., justice, love, society), for which students’ sociocultural knowledge about space could play an important role. By potentiating visually impaired students’ ability to construe mental spatial imagery, this study made efforts to explore pedagogical techniques that cater to their strengths, helping them create new worlds by welcoming and expanding their sociocultural funds of knowledge as they learn to use English prepositions. Fifteen visually impaired adults living in Chile participated in the study. Their first language was Spanish, and they were learning English at the intermediate level of proficiency in an EFL workshop at La Biblioteca Central para Ciegos (The Central Library for the Blind). Within this workshop, a series of activities and interviews were designed and implemented with the intention of uncovering students’ spatial funds of knowledge when learning literal/physical uses of three English prepositions, namely “in,” “at,” and “on”. The activities and interviews also explored whether students used their original spatial funds of knowledge when learning metaphorical uses of these prepositions and if their use of spatial imagery changed throughout the learning activities. Over the course of approximately half a year, it soon became clear that the students construed mental images of space when learning both literal/physical and metaphorical uses of these prepositions. This research could inform a new approach to inclusive language education using pedagogical methods that are relevant and accessible to students with visual impairments.Keywords: EFL, funds of knowledge, prepositions, spatial cognition, visually impaired students
Procedia PDF Downloads 8319698 Relationship between Right Brain and Left Brain Dominance and Intonation Learning
Authors: Mohammad Hadi Mahmoodi, Soroor Zekrati
Abstract:
The aim of this study was to investigate the relationship between hemispheric dominance and intonation learning of Iranian EFL students. In order to gain this goal, 52 female students from three levels of beginner, elementary and intermediate in Paradise Institute, and 18 male university students at Bu-Ali Sina University constituted the sample. In order to assist students learn the correct way of applying intonation to their everyday speech, the study proposed an interactive approach and provided students with visual aid through which they were able to see the intonation pattern on computer screen using 'Speech Analyzer' software. This software was also used to record subjects’ voice and compare them with the original intonation pattern. Edinburg Handedness Questionnaire (EHD), which ranges from –100 for strong left-handedness to +100 for strong right-handedness was used to indicate the hemispheric dominance of each student. The result of an independent sample t-test indicated that girls learned intonation pattern better than boys, and that right brained students significantly outperformed the left brained ones. Using one-way ANOVA, a significant difference between three proficiency levels was also found. The posthoc Scheffer test showed that the exact difference was between intermediate and elementary, and intermediate and beginner levels, but no significant difference was observed between elementary and beginner levels. The findings of the study might provide researchers with some helpful implications and useful directions for future investigation into the domain of the relationship between mind and second language learning.Keywords: intonation, hemispheric dominance, visual aid, language learning, second language learning
Procedia PDF Downloads 51919697 The Multi-Sensory Teaching Practice for Primary Music Classroom in China
Authors: Xiao Liulingzi
Abstract:
It is important for using multi-sensory teaching in music learning. This article aims to provide knowledge in multi-sensory learning and teaching music in primary school. For primary school students, in addition to the training of basic knowledge and skills of music, students' sense of participation and creativity in music class are the key requirements, especially the flexibility and dynamics in music class, so that students can integrate into music and feel the music. The article explains the multi-sensory sense in music learning, the differences between multi-sensory music teaching and traditional music teaching, and music multi-sensory teaching in primary schools in China.Keywords: multi-sensory, teaching practice, primary music classroom, China
Procedia PDF Downloads 14119696 Enhancing Students’ Academic Engagement in Mathematics through a “Concept+Language Mapping” Approach
Authors: Jodie Lee, Lorena Chan, Esther Tong
Abstract:
Hong Kong students face a unique learning environment. Starting from the 2010/2011 school year, The Education Bureau (EDB) of the Government of the Hong Kong Special Administrative Region implemented the fine-tuned Medium of Instruction (MOI) arrangements for secondary schools. Since then, secondary schools in Hong Kong have been given the flexibility to decide the most appropriate MOI arrangements for their schools and under the new academic structure for senior secondary education, particularly on the compulsory part of the mathematics curriculum. In 2019, Hong Kong Diploma of Secondary Education Examination (HKDSE), over 40% of school day candidates attempted the Mathematics Compulsory Part examination in the Chinese version while the rest took the English version. Moreover, only 14.38% of candidates sat for one of the extended Mathematics modules. This results in a serious of intricate issues to students’ learning in post-secondary education programmes. It is worth to note that when students further pursue to an higher education in Hong Kong or even oversea, they may facing substantial difficulties in transiting learning from learning mathematics in their mother tongue in Chinese-medium instruction (CMI) secondary schools to an English-medium learning environment. Some students understood the mathematics concepts were found to fail to fulfill the course requirements at college or university due to their learning experience in secondary study at CMI. They are particularly weak in comprehending the mathematics questions when they are doing their assessment or attempting the test/examination. A government funded project was conducted with the aims of providing integrated learning context and language support to students with a lower level of numeracy and/or with CMI learning experience. By introducing this “integrated concept + language mapping approach”, students can cope with the learning challenges in the compulsory English-medium mathematics and statistics subjects in their tertiary education. Ultimately, in the hope that students can enhance their mathematical ability, analytical skills, and numerical sense for their lifelong learning. The “Concept + Language Mapping “(CLM) approach was adopted and tried out in the bridging courses for students with a lower level of numeracy and/or with CMI learning experiences. At the beginning of each class, a pre-test was conducted, and class time was then devoted to introducing the concepts by CLM approach. For each concept, the key thematic items and their different semantic relations are presented using graphics and animations via the CLM approach. At the end of each class, a post-test was conducted. Quantitative data analysis was performed to study the effect on students’ learning via the CLM approach. Stakeholders' feedbacks were collected to estimate the effectiveness of the CLM approach in facilitating both content and language learning. The results based on both students’ and lecturers’ feedback indicated positive outcomes on adopting the CLM approach to enhance the mathematical ability and analytical skills of CMI students.Keywords: mathematics, Concept+Language Mapping, level of numeracy, medium of instruction
Procedia PDF Downloads 8319695 A Deep Learning Approach to Online Social Network Account Compromisation
Authors: Edward K. Boahen, Brunel E. Bouya-Moko, Changda Wang
Abstract:
The major threat to online social network (OSN) users is account compromisation. Spammers now spread malicious messages by exploiting the trust relationship established between account owners and their friends. The challenge in detecting a compromised account by service providers is validating the trusted relationship established between the account owners, their friends, and the spammers. Another challenge is the increase in required human interaction with the feature selection. Research available on supervised learning (machine learning) has limitations with the feature selection and accounts that cannot be profiled, like application programming interface (API). Therefore, this paper discusses the various behaviours of the OSN users and the current approaches in detecting a compromised OSN account, emphasizing its limitations and challenges. We propose a deep learning approach that addresses and resolve the constraints faced by the previous schemes. We detailed our proposed optimized nonsymmetric deep auto-encoder (OPT_NDAE) for unsupervised feature learning, which reduces the required human interaction levels in the selection and extraction of features. We evaluated our proposed classifier using the NSL-KDD and KDDCUP'99 datasets in a graphical user interface enabled Weka application. The results obtained indicate that our proposed approach outperformed most of the traditional schemes in OSN compromised account detection with an accuracy rate of 99.86%.Keywords: computer security, network security, online social network, account compromisation
Procedia PDF Downloads 120