Search results for: waste activated sludge
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3556

Search results for: waste activated sludge

1096 To Optimise the Mechanical Properties of Structural Concrete by Partial Replacement of Natural Aggregates by Glass Aggregates

Authors: Gavin Gengan, Hsein Kew

Abstract:

Glass from varying recycling processes is considered a material that can be used as aggregate. Waste glass is available from different sources and has been used in the construction industry over the last decades. This current study aims to use recycled glass as a partial replacement for conventional aggregate materials. The experimental programme was designed to optimise the mechanical properties of structural concrete made with recycled glass aggregates (GA). NA (natural aggregates) was partially substituted by GA in a mix design of concrete of 30N/mm2 in proportions of 10%, 20%, and 25% 30%, 40%, and 50%. It was found that with an increasing proportion of GA, there is a decline in compressive strength. The optimum percentage replacement of NA by GA is 25%. The heat of hydration was also investigated with thermocouples placed in the concrete. This revealed an early acceleration of hydration heat in glass concrete, resulting from the thermal properties of glass. The gain in the heat of hydration and the better bonding of glass aggregates together with the pozzolanic activity of the finest glass particles caused the concrete to develop early age and long-term strength higher than that of control concrete

Keywords: concrete, compressive strength, glass aggregates, heat of hydration, pozzolanic

Procedia PDF Downloads 208
1095 Education in Technology for Sustainable Development Applied to School Gardens

Authors: Sara Blanc, José V. Benlloch-Dualde, Laura Grindei, Ana C. Torres, Angélica Monteiro

Abstract:

This paper presents a study that leads a new experience by introducing digital learning applied to a case study focused on primary and secondary school garden-based education. The approach represents an example of interaction among different education and research agents at different countries and levels, such as universities, public and private research, and schools, to get involved in the implementation of education for sustainable development that will make students become more sensible to natural environment, more responsible for their consumption, more aware about waste reduction and recycling, more conscious of the sustainable use of natural resources and, at the same time, more ‘digitally competent’. The experience was designed attending to the European digital education context and OECD directives in transversal skills education. The paper presents the methodology carried out in the study as well as outcomes obtained from experience.

Keywords: school gardens, primary education, secondary education, science technology and innovation in education, digital learning, sustainable development goals, university, knowledge transference

Procedia PDF Downloads 118
1094 Applications of Green Technology and Biomimicry in Civil Engineering with a Maglev Car Elevator

Authors: Sameer Ansari, Suhas Nitsure

Abstract:

Biomimicry has made a big move into the built environment by adapting nature's solutions to human designs and inventions. We can examine numerous aspects of the built environment right from generating energy, fed by rainwater and powered by sun to over all land use impacts. This paper discusses the potential of a man made building which will work for the welfare of humans and reduce the impact of the harmful environment on us which we ourselves created for us. Building services inspired by nature such as building walls from homeostasis in organisms, natural ventilation from termites, artificial aggregates from natural aggregates, solar panels from photosynthesis and building structure itself compared to tree as a cantilever. Environmental services such as using CO2 as a feedstock for construction related activities, using Ornilux glasses and  saving birds from collision with buildings, using prefabricated steel for fast building members- save time and also negligible waste as no formwork is used. Maglev inspired car elevators in building which is unique and giving all together new direction to technology.

Keywords: biomimicry, green technology, maglev car elevator, civil engineering

Procedia PDF Downloads 576
1093 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto ɤ-Alumina and Bio-Char

Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain

Abstract:

Climate change has becoming a global environmental issue that may trigger irreversible changes in the environment with catastrophic consequences for human, animals and plants on our planet. Methane, carbon dioxide and nitrous oxide are the greenhouse gases (GHG) and as the main factor that significantly contributes to the global warming. Mainly carbon dioxide be produced and released to atmosphere by thermal industrial and power generation sectors. Methane is dominant component of natural gas releases significant of thermal heat, and the gaseous pollutants when homogeneous thermal combustion takes place at high temperature. Heterogeneous catalytic Combustion (HCC) principle is promising technologies towards environmental friendly energy production should be developed to ensure higher yields with lower pollutants gaseous emissions and perform complete combustion oxidation at moderate temperature condition as comparing to homogeneous high thermal combustion. Hence the principle has become a very interesting alternative total oxidation for the treatment of pollutants gaseous emission especially NOX product formation. Noble metals are dispersed on a support-porous HCC such as γ- Al2O3, TiO2 and ThO2 to increase thermal stability of catalyst and to increase to effectiveness of catalytic combustion. Support-porous HCC material to be selected based on factors of the surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. γ- Al2O3 with high catalytic activity and can last longer life of catalyst, is commonly used as the support for Pd catalyst at low temperatures. Sustainable and renewable support-material of bio-mass char was derived from agro-industrial waste material and used to compare with those the conventional support-porous material. The abundant of biomass wastes generated in palm oil industries is one potential source to convert the wastes into sustainable material as replacement of support material for catalysts. Objective of this study was to compare the kinetic rate of reaction the combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc) support derived from shell kernel. The 2wt% Pd was prepared using incipient wetness impregnation method and the HCC performance was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. Material characterization was determined using TGA, SEM, and BET surface area. The methane porous-HCC conversion was carried out by online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature is prepared 2wt% Pd/Bc > calcined 2wt% Pd/ Al2O3 > prepared 2wt% Pd/ Al2O3 > calcined 2wt% Pd/Bc. Hence the usage of agro-industrial bio-mass waste material can enhance the sustainability principle.

Keywords: catalytic-combustion, environmental, support-bio-char material, sustainable and renewable material

Procedia PDF Downloads 389
1092 Inventory Optimization in Restaurant Supply Chain Outlets

Authors: Raja Kannusamy

Abstract:

The research focuses on reducing food waste in the restaurant industry. A study has been conducted on the chain of retail restaurant outlets. It has been observed that the food wastages are due to the inefficient inventory management systems practiced in the restaurant outlets. The major food items which are wasted more in quantity are being selected across the retail chain outlets. A moving average forecasting method has been applied for the selected food items so that their future demand could be predicted accurately and food wastage could be avoided. It has been found that the moving average prediction method helps in predicting forecasts accurately. The demand values obtained from the moving average method have been compared to the actual demand values and are found to be similar with minimum variations. The inventory optimization technique helps in reducing food wastage in restaurant supply chain outlets.

Keywords: food wastage, restaurant supply chain, inventory optimisation, demand forecasting

Procedia PDF Downloads 91
1091 Risk of Plastic Shrinkage Cracking in Recycled Aggregate Concrete

Authors: M. Eckert, M. Oliveira

Abstract:

The intensive use of natural aggregates, near cities and towns, associated to the increase of the global population, leads to its depletion and increases the transport distances. The uncontrolled deposition of construction and demolition waste in landfills and city outskirts, causes pollution and takes up space. The use of recycled aggregates in concrete preparation would contribute to mitigate the problem. However, it arises the problem that the high water absorption of recycled aggregate decreases the bleeding rate of concrete, and when this gets lower than the evaporation rate, plastic shrinkage cracking occurs. This phenomenon can be particularly problematic in hot and windy curing environments. Cracking facilitates the flow of liquid and gas into concrete which attacks the reinforcement and degrades the concrete. These factors reduce the durability of concrete structures and consequently the lifetime of buildings. A ring test was used, cured in a wind tunnel, to evaluate the plastic shrinkage cracking sensitivity of recycled aggregate concrete, in order to implement preventive means to control this phenomenon. The role of several aggregate properties on the concrete segregation and cracking mechanisms were also discussed.

Keywords: recycled aggregate, plastic shrinkage cracking, wind tunnel, durability

Procedia PDF Downloads 421
1090 Adsorption of Malachite Green Dye onto Industrial Waste Materials: Full Factorial Design

Authors: Semra Çoruh, Yusuf Tibet

Abstract:

Dyes are widely used in industries such as textiles, paper, paints, leather, rubber, plastics, cosmetics, food, and drug etc, to color their products. Due to their chemical structures, dyes are resistant to fading on exposure to light, water and many chemicals and, therefore, are difficult to be decolorized once released into the aquatic environment. Many of the organic dyes are hazardous and may affect aquatic life and even the food chain. This study deals with the adsorption of malachite green dye onto fly ash and red mud. The effects of experimental factors (adsorbent dosage, initial concentration, pH and temperature) on the adsorption process were examined by using 24 full factorial design. The results were statistically analyzed by using the student’s t-test, analysis of variance (ANOVA) and an F-test to define important experimental factors and their levels. A regression model that considers the significant main and interaction effects was suggested. The results showed that initial dye concentration an pH is the most significant factor that affects the removal of malachite green.

Keywords: malachite green, adsorption, red mud, fly ash, full factorial design

Procedia PDF Downloads 476
1089 Liver Regeneration of Small in situ Injury

Authors: Ziwei Song, Junjun Fan, Jeremy Teo, Yang Yu, Yukun Ma, Jie Yan, Shupei Mo, Lisa Tucker-Kellogg, Peter So, Hanry Yu

Abstract:

Liver is the center of detoxification and exposed to toxic metabolites all the time. It is highly regenerative after injury, with the ability to restore even after 70% partial hepatectomy. Most of the previous studies were using hepatectomy as injury models for liver regeneration study. There is limited understanding of small-scale liver injury, which can be caused by either low dose drug consumption or hepatocyte routine metabolism. Although these small in situ injuries do not cause immediate symptoms, repeated injuries will lead to aberrant wound healing in liver. Therefore, the cellular dynamics during liver regeneration is critical for our understanding of liver regeneration mechanism. We aim to study the liver regeneration of small-scale in situ liver injury in transgenic mice labeling actin (Lifeact-GFP). Previous studies have been using sample sections and biopsies of liver, which lack real-time information. In order to trace every individual hepatocyte during the regeneration process, we have developed and optimized an intravital imaging system that allows in vivo imaging of mouse liver for consecutive 5 days, allowing real-time cellular tracking and quantification of hepatocytes. We used femtosecond-laser ablation to make controlled and repeatable liver injury model, which mimics the real-life small in situ liver injury. This injury model is the first case of its kind for in vivo study on liver. We found that small-scale in situ liver injury is repaired by the coordination of hypertrophy and migration of hepatocytes. Hypertrophy is only transient at initial phase, while migration is the main driving force to complete the regeneration process. From cellular aspect, Akt/mTOR pathway is activated immediately after injury, which leads to transient hepatocyte hypertrophy. From mechano-sensing aspect, the actin cable, formed at apical surface of wound proximal hepatocytes, provides mechanical tension for hepatocyte migration. This study provides important information on both chemical and mechanical signals that promote liver regeneration of small in situ injury. We conclude that hypertrophy and migration play a dominant role at different stages of liver regeneration.

Keywords: hepatocyte, hypertrophy, intravital imaging, liver regeneration, migration

Procedia PDF Downloads 205
1088 Crystalline Structure of Starch Based Nano Composites

Authors: Farid Amidi Fazli, Afshin Babazadeh, Farnaz Amidi Fazli

Abstract:

In contrast with literal meaning of nano, researchers have been achieving mega adventures in this area and every day more nanomaterials are being introduced to the market. After long time application of fossil-based plastics, nowadays accumulation of their waste seems to be a big problem to the environment. On the other hand, mankind has more attention to safety and living environment. Replacing common plastic packaging materials with degradable ones that degrade faster and convert to non-dangerous components like water and carbon dioxide have more attractions; these new materials are based on renewable and inexpensive sources of starch and cellulose. However, the functional properties of them do not suitable for packaging. At this point, nanotechnology has an important role. Utilizing of nanomaterials in polymer structure will improve mechanical and physical properties of them; nanocrystalline cellulose (NCC) has this ability. This work has employed a chemical method to produce NCC and starch bio nanocomposite containing NCC. X-Ray Diffraction technique has characterized the obtained materials. Results showed that applied method is a suitable one as well as applicable one to NCC production.

Keywords: biofilm, cellulose, nanocomposite, starch

Procedia PDF Downloads 405
1087 Influence of Transportation Mode to the Deterioration Rate: Case Study of Food Transport by Ship

Authors: Danijela Tuljak-Suban, Valter Suban

Abstract:

Food as perishable goods represents a specific and sensitive part in the supply chain theory, since changing of its physical or chemical characteristics considerably influences the approach to stock management. The most delicate phase of this process is transportation, where it becomes difficult to ensure stability conditions that limit the deterioration, since the value of the deterioration rate could be easily influenced by the transportation mode. Fuzzy definition of variables allows taking into account these variations. Furthermore an appropriate choice of the defuzzification method permits to adapt results, as much as possible, to real conditions. In the article will be applied the those methods to the relationship between the deterioration rate of perishable goods and transportation by ship, with the aim: (a) to minimize the total costs function, defined as the sum of the ordering cost, holding cost, disposing cost and transportation costs, and (b) to improve supply chain sustainability by reducing the environmental impact and waste disposal costs.

Keywords: perishable goods, fuzzy reasoning, transport by ship, supply chain sustainability

Procedia PDF Downloads 543
1086 Numerical Analysis of the Computational Fluid Dynamics of Co-Digestion in a Large-Scale Continuous Stirred Tank Reactor

Authors: Sylvana A. Vega, Cesar E. Huilinir, Carlos J. Gonzalez

Abstract:

Co-digestion in anaerobic biodigesters is a technology improving hydrolysis by increasing methane generation. In the present study, the dimensional computational fluid dynamics (CFD) is numerically analyzed using Ansys Fluent software for agitation in a full-scale Continuous Stirred Tank Reactor (CSTR) biodigester during the co-digestion process. For this, a rheological study of the substrate is carried out, establishing rotation speeds of the stirrers depending on the microbial activity and energy ranges. The substrate is organic waste from industrial sources of sanitary water, butcher, fishmonger, and dairy. Once the rheological behavior curves have been obtained, it is obtained that it is a non-Newtonian fluid of the pseudoplastic type, with a solids rate of 12%. In the simulation, the rheological results of the fluid are considered, and the full-scale CSTR biodigester is modeled. It was coupling the second-order continuity differential equations, the three-dimensional Navier Stokes, the power-law model for non-Newtonian fluids, and three turbulence models: k-ε RNG, k-ε Realizable, and RMS (Reynolds Stress Model), for a 45° tilt vane impeller. It is simulated for three minutes since it is desired to study an intermittent mixture with a saving benefit of energy consumed. The results show that the absolute errors of the power number associated with the k-ε RNG, k-ε Realizable, and RMS models were 7.62%, 1.85%, and 5.05%, respectively, the numbers of power obtained from the analytical-experimental equation of Nagata. The results of the generalized Reynolds number show that the fluid dynamics have a transition-turbulent flow regime. Concerning the Froude number, the result indicates there is no need to implement baffles in the biodigester design, and the power number provides a steady trend close to 1.5. It is observed that the levels of design speeds within the biodigester are approximately 0.1 m/s, which are speeds suitable for the microbial community, where they can coexist and feed on the substrate in co-digestion. It is concluded that the model that more accurately predicts the behavior of fluid dynamics within the reactor is the k-ε Realizable model. The flow paths obtained are consistent with what is stated in the referenced literature, where the 45° inclination PBT impeller is the right type of agitator to keep particles in suspension and, in turn, increase the dispersion of gas in the liquid phase. If a 24/7 complete mix is considered under stirred agitation, with a plant factor of 80%, 51,840 kWh/year are estimated. On the contrary, if intermittent agitations of 3 min every 15 min are used under the same design conditions, reduce almost 80% of energy costs. It is a feasible solution to predict the energy expenditure of an anaerobic biodigester CSTR. It is recommended to use high mixing intensities, at the beginning and end of the joint phase acetogenesis/methanogenesis. This high intensity of mixing, in the beginning, produces the activation of the bacteria, and once reaching the end of the Hydraulic Retention Time period, it produces another increase in the mixing agitations, favoring the final dispersion of the biogas that may be trapped in the biodigester bottom.

Keywords: anaerobic co-digestion, computational fluid dynamics, CFD, net power, organic waste

Procedia PDF Downloads 114
1085 Mechanical Properties and Microstructural Analysis of Al6061-Red Mud Composites

Authors: M. Gangadharappa, M. Ravi Kumar, H. N. Reddappa

Abstract:

The mechanical properties and morphological analysis of Al6061-Red mud particulate composites were investigated. The compositions of the composite include a matrix of Al6061 and the red mud particles of 53-75 micron size as reinforcement ranging from 0% to 12% at an interval of 2%. Stir casting technique was used to fabricate Al6061-Red mud composites. Density measurement, estimation of percentage porosity, tensile properties, fracture toughness, hardness value, impact energy, percentage elongation and percentage reduction in area. Further, the microstructures and SEM examinations were investigated to characterize the composites produced. The result shows that a uniform dispersion of the red mud particles along the grain boundaries of the Al6061 alloy. The tensile strength and hardness values increases with the addition of Red mud particles, but there is a slight decrease in the impact energy values, values of percentage elongation and percentage reduction in area as the reinforcement increases. From these results of investigation, we concluded that the red mud, an industrial waste can be used to enhance the properties of Al6061 alloy for engineering applications.

Keywords: Al6061, red mud, tensile strength, hardness and microstructures

Procedia PDF Downloads 562
1084 Evaluation of a Reconditioning Procedure for Batteries: Case Study on Li-Ion Batteries

Authors: I.-A. Ciobotaru, I.-E. Ciobotaru, D.-I. Vaireanu

Abstract:

Currently, an ascending trend of battery use may be observed, together with an increase of the generated amount of waste. Efforts have been focused on the recycling of batteries; however, extending their lifetime may be a more adequate alternative, and the development of such methods may prove to be more cost efficient as compared to recycling. In this context, this paper presents the analysis of a proposed process for the reconditioning of some lithium-ions batteries. The analysis is performed based on two criteria, the first one referring to the technical aspect of the reconditioning process and the second to the economic aspects. The main technical parameters taken into consideration are the values of capacitance and internal resistance of the lithium-ion batteries. The economic criterion refers to the evaluation of the efficiency of the reconditioning procedure reported to its total cost for the investigated lithium-ion batteries. Based on the cost analysis, one introduced a novel coefficient that correlates the efficiency of the aforementioned process and its corresponding costs. The reconditioning procedure for the lithium-ion batteries proposed in this paper proved to be valid, efficient, and with reasonable costs.

Keywords: cost assessment, lithium-ion battery, reconditioning coefficient, reconditioning procedure

Procedia PDF Downloads 138
1083 “To Err Is Human…” Revisiting Oral Error Correction in Class

Authors: David Steven Rosenstein

Abstract:

The widely accepted “Input Theory” of language acquisition proposes that language is basically acquired unconsciously through extensive exposure to all kinds of natural oral and written sources, especially those where the level of the input is slightly above the learner’s competence. As such, it implies that oral error correction by teachers in a classroom is unnecessary, a waste of time, and maybe even counterproductive. And yet, oral error correction by teachers in the classroom continues to be a very common phenomenon. While input theory advocates claim that such correction doesn’t work, interrupts a student’s train of thought, harms fluency, and may cause students embarrassment and fear, many teachers would disagree. They would claim that students know they make mistakes and want to be corrected in order to know they are improving, thereby encouraging students’ desire to keep studying. Moreover, good teachers can create a positive atmosphere where students will not be embarrassed or fearful. Perhaps now is the time to revisit oral error correction in the classroom and consider the results of research carried out long ago by the present speaker. The research indicates that oral error correction may be beneficial in many cases.

Keywords: input theory, language acquisition, teachers' corrections, recurrent errors

Procedia PDF Downloads 32
1082 Health Risk Assessment from Potable Water Containing Tritium and Heavy Metals

Authors: Olga A. Momot, Boris I. Synzynys, Alla A. Oudalova

Abstract:

Obninsk is situated in the Kaluga region 100 km southwest of Moscow on the left bank of the Protva River. Several enterprises utilizing nuclear energy are operating in the town. A special attention in the region where radiation-hazardous facilities are located has traditionally been paid to radioactive gas and aerosol releases into the atmosphere; liquid waste discharges into the Protva river and groundwater pollution. Municipal intakes involve 34 wells arranged 15 km apart in a sequence north-south along the foot of the left slope of the Protva river valley. Northern and southern water intakes are upstream and downstream of the town, respectively. They belong to river valley intakes with mixed feeding, i.e. precipitation infiltration is responsible for a smaller part of groundwater, and a greater amount is being formed by overflowing from Protva. Water intakes are maintained by the Protva river runoff, the volume of which depends on the precipitation fallen out and watershed area. Groundwater contamination with tritium was first detected in a sanitary-protective zone of the Institute of Physics and Power Engineering (SRC-IPPE) by Roshydromet researchers when realizing the “Program of radiological monitoring in the territory of nuclear industry enterprises”. A comprehensive survey of the SRC-IPPE’s industrial site and adjacent territories has revealed that research nuclear reactors and accelerators where tritium targets are applied as well as radioactive waste storages could be considered as potential sources of technogenic tritium. All the above sources are located within the sanitary controlled area of intakes. Tritium activity in water of springs and wells near the SRC-IPPE is about 17.4 – 3200 Bq/l. The observed values of tritium activity are below the intervention levels (7600 Bq/l for inorganic compounds and 3300 Bq/l for organically bound tritium). The risk has being assessed to estimate possible effect of considered tritium concentrations on human health. Data on tritium concentrations in pipe-line drinking water were used for calculations. The activity of 3H amounted to 10.6 Bq/l and corresponded to the risk of such water consumption of ~ 3·10-7 year-1. The risk value given in magnitude is close to the individual annual death risk for population living near a NPP – 1.6·10-8 year-1 and at the same time corresponds to the level of tolerable risk (10-6) and falls within “risk optimization”, i.e. in the sphere for planning the economically sound measures on exposure risk reduction. To estimate the chemical risk, physical and chemical analysis was made of waters from all springs and wells near the SRC-IPPE. Chemical risk from groundwater contamination was estimated according to the EPA US guidance. The risk of carcinogenic diseases at a drinking water consumption amounts to 5·10-5. According to the classification accepted the health risk in case of spring water consumption is inadmissible. The compared assessments of risk associated with tritium exposure, on the one hand, and the dangerous chemical (e.g. heavy metals) contamination of Obninsk drinking water, on the other hand, have confirmed that just these chemical pollutants are responsible for health risk.

Keywords: radiation-hazardous facilities, water intakes, tritium, heavy metal, health risk

Procedia PDF Downloads 240
1081 Geotechnical Characterization of an Industrial Waste Landfill: Stability and Environmental Study

Authors: Maria Santana, Jose Estaire

Abstract:

Even though recycling strategies are becoming more important in recent years, there is still a huge amount of industrial by-products that are the disposal of at landfills. Due to the size, possible dangerous composition, and heterogeneity, most of the wastes are located at landfills without a basic geotechnical characterization. This lack of information may have an important influence on the correct stability calculations. This paper presents the results of geotechnical characterization of some industrial wastes disposed at one landfill. The shear strength parameters were calculated based on direct shear test results carried out in a large shear box owned by CEDEX, which has a shear plane of 1 x 1 m. These parameters were also compared with the results obtained in a 30 x 30 cm shear box. The paper includes a sensitive analysis of the global safety factor of the landfill's overall stability as a function of shear strength variation. The stability calculations were assessed for various hydrological scenarios to simulate the design and performance of the leachate drainage system. The characterization was completed with leachate tests to study the potential impact on the environment.

Keywords: industrial wastes, landfill, leachate tests, stability

Procedia PDF Downloads 195
1080 Structural Analysis of Phase Transformation and Particle Formation in Metastable Metallic Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition

Authors: Pouyan Motamedi, Ken Bosnick, Ken Cadien, James Hogan

Abstract:

Growth of conformal ultrathin metal films has attracted a considerable amount of attention recently. Plasma-enhanced atomic layer deposition (PEALD) is a method capable of growing conformal thin films at low temperatures, with an exemplary control over thickness. The authors have recently reported on growth of metastable epitaxial nickel thin films via PEALD, along with a comprehensive characterization of the films and a study on the relationship between the growth parameters and the film characteristics. The goal of the current study is to use the mentioned films as a case study to investigate the temperature-activated phase transformation and agglomeration in ultrathin metallic films. For this purpose, metastable hexagonal nickel thin films were annealed using a controlled heating/cooling apparatus. The transformations in the crystal structure were observed via in-situ synchrotron x-ray diffraction. The samples were annealed to various temperatures in the range of 400-1100° C. The onset and progression of particle formation were studied in-situ via laser measurements. In addition, a four-point probe measurement tool was used to record the changes in the resistivity of the films, which is affected by phase transformation, as well as roughening and agglomeration. Thin films annealed at various temperature steps were then studied via atomic force microscopy, scanning electron microscopy and high-resolution transmission electron microscopy, in order to get a better understanding of the correlated mechanisms, through which phase transformation and particle formation occur. The results indicate that the onset of hcp-to-bcc transformation is at 400°C, while particle formations commences at 590° C. If the annealed films are quenched after transformation, but prior to agglomeration, they show a noticeable drop in resistivity. This can be attributed to the fact that the hcp films are grown epitaxially, and are under severe tensile strain, and annealing leads to relaxation of the mismatch strain. In general, the results shed light on the nature of structural transformation in nickel thin films, as well as metallic thin films, in general.

Keywords: atomic layer deposition, metastable, nickel, phase transformation, thin film

Procedia PDF Downloads 329
1079 Synthesis of High-Pressure Performance Adsorbent from Coconut Shells Polyetheretherketone for Methane Adsorption

Authors: Umar Hayatu Sidik

Abstract:

Application of liquid base petroleum fuel (petrol and diesel) for transportation fuel causes emissions of greenhouse gases (GHGs), while natural gas (NG) reduces the emissions of greenhouse gases (GHGs). At present, compression and liquefaction are the most matured technology used for transportation system. For transportation use, compression requires high pressure (200–300 bar) while liquefaction is impractical. A relatively low pressure of 30-40 bar is achievable by adsorbed natural gas (ANG) to store nearly compressed natural gas (CNG). In this study, adsorbents for high-pressure adsorption of methane (CH4) was prepared from coconut shells and polyetheretherketone (PEEK) using potassium hydroxide (KOH) and microwave-assisted activation. Design expert software version 7.1.6 was used for optimization and prediction of preparation conditions of the adsorbents for CH₄ adsorption. Effects of microwave power, activation time and quantity of PEEK on the adsorbents performance toward CH₄ adsorption was investigated. The adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric (TG) and derivative thermogravimetric (DTG) and scanning electron microscopy (SEM). The ideal CH4 adsorption capacities of adsorbents were determined using volumetric method at pressures of 5, 17, and 35 bar at an ambient temperature and 5 oC respectively. Isotherm and kinetics models were used to validate the experimental results. The optimum preparation conditions were found to be 15 wt% amount of PEEK, 3 minutes activation time and 300 W microwave power. The highest CH4 uptake of 9.7045 mmol CH4 adsorbed/g adsorbent was recorded by M33P15 (300 W of microwave power, 3 min activation time and 15 wt% amount of PEEK) among the sorbents at an ambient temperature and 35 bar. The CH4 equilibrium data is well correlated with Sips, Toth, Freundlich and Langmuir. Isotherms revealed that the Sips isotherm has the best fit, while the kinetics studies revealed that the pseudo-second-order kinetic model best describes the adsorption process. In all scenarios studied, a decrease in temperature led to an increase in adsorption of both gases. The adsorbent (M33P15) maintained its stability even after seven adsorption/desorption cycles. The findings revealed the potential of coconut shell-PEEK as CH₄ adsorbents.

Keywords: adsorption, desorption, activated carbon, coconut shells, polyetheretherketone

Procedia PDF Downloads 67
1078 Preparation and Characterization of CO-Tolerant Electrocatalyst for PEM Fuel Cell

Authors: Ádám Vass, István Bakos, Irina Borbáth, Zoltán Pászti, István Sajó, András Tompos

Abstract:

Important requirements for the anode side electrocatalysts of polymer electrolyte membrane (PEM) fuel cells are CO-tolerance, stability and corrosion resistance. Carbon is still the most common material for electrocatalyst supports due to its low cost, high electrical conductivity and high surface area, which can ensure good dispersion of the Pt. However, carbon becomes degraded at higher potentials and it causes problem during application. Therefore it is important to explore alternative materials with improved stability. Molybdenum-oxide can improve the CO-tolerance of the Pt/C catalysts, but it is prone to leach in acidic electrolyte. The Mo was stabilized by isovalent substitution of molybdenum into the rutile phase titanium-dioxide lattice, achieved by a modified multistep sol-gel synthesis method optimized for preparation of Ti0.7Mo.3O2-C composite. High degree of Mo incorporation into the rutile lattice was developed. The conductivity and corrosion resistance across the anticipated potential/pH window was ensured by mixed oxide – activated carbon composite. Platinum loading was carried out using NaBH4 and ethylene glycol; platinum content was 40 wt%. The electrocatalyst was characterized by both material investigating methods (i.e. XRD, TEM, EDS, XPS techniques) and electrochemical methods (cyclic-voltammetry, COads stripping voltammetry, hydrogen oxidation reaction on rotating disc electrode). The electrochemical activity of the sample was compared to commercial 40 wt% Pt/C (Quintech) and PtRu/C (Quintech, Pt= 20 wt%, Ru= 10 wt%) references. Enhanced CO tolerance of the electrocatalyst prepared using the Ti0.7Mo.3O2-C composite material was evidenced by the appearance of a CO-oxidation related 'pre-peak' and by the pronounced shift of the maximum of the main CO oxidation peak towards less positive potential compared to Pt/C. Fuel cell polarization measurements were also carried out using Bio-Logic and Paxitech FCT-150S test device. All details on the design, preparation, characterization and testing by both electrochemical measurements and fuel cell test device of electrocatalyst supported on Ti0.7Mo.3O2-C composite material will be presented and discussed.

Keywords: anode electrocatalyst, composite material, CO-tolerance, TiMoOx

Procedia PDF Downloads 300
1077 Alignment of Information System Strategy and Green Information System Strategy: Comprehension and A Review of the Literature

Authors: Wartika Memed Purawinata, Kridanto Surendro, Husni Sastramiharja, Iping Supriana S.

Abstract:

The information system is one of the contributors to environmental degradation and pollution are known to be released, such as the increasing of use of IT equipment and energy consumption , life cycles of IT equipment are getting shorter, IT equipment waste disposal and so on, therefore the information system should have a role in related environmental issues. Organization need to develop the ability of green to minimize negative impacts on the environment. Although the green information system is an important topic, many organizations fail to manage the environment in a way that is adequate because they ignore aspect of strategy. Alignment strategy is very important to ensure that all people do the activities of the organization headed in the same direction. Alignment strategy helps organization, determine which is more important for organization, and then make road mad to achieve the organization goal. Therefore, this paper discusses the review of the alignment, information systems strategy, and IS green strategy. With this discussion is expected there is an understanding about the alignment of information systems strategy and strategy of green IS, and its relationship with the achievement of business goals that have commitment to reduce the negative impact of information systems on the environment.

Keywords: alignment, strategy, information system, green

Procedia PDF Downloads 456
1076 Let-7 Mirnas Regulate Inflammatory Cytokine Production in Bovine Endometrial Cells after Lipopolysaccharide Challenge by Targeting TNFα

Authors: S. Ibrahim, D. Salilew-Wondim, M. Hoelker, C. Looft, E. Tholen, C. Grosse-Brinkhaus, K. Schellander, C. Neuhoff, D. Tesfaye

Abstract:

Bovine endometrial cells appear to have a key role in innate immune defense of the female genital tract. A better understanding of molecular changes in microRNAs (miRNAs) and their target genes expression may identify reliable prognostic indicators for cows that will resolve inflammation and resume cyclicity. In the current study, we hypothesized that let-7 miRNAs family has a primary role in the innate immune defence of the endometrium tissue against bacterial infection, which is partly achieved via regulating mRNA stability of pro-inflammatory cytokines at the post-transcriptional level. Therefore, we conducted two experiments. In the first experiment, primary bovine endometrial cells were challenged with clinical (3.0 μg/ml) and sub-clinical (0.5 μg/ml) doses of lipopolysaccharide (LPS) for 24h. In the 2nd experiment, we have investigated the potential role of let-7 miRNAs (let-7a and let-7f) using gain and loss of function approaches. Additionally, tumor necrosis factor alpha (TNFα), transforming growth factor beta 1 induced transcript 1 (TGFB1I1) and serum deprivation response (SDPR) genes were validated using reporter assay. Here we addressed for the first time that let-7 miRNAs have a precise role in bovine endometrium, where LPS dysregulated let-7 miRNAs family expression was associated with an increased pro-inflammatory cytokine level by directly/indirectly targeting the TNFα, interleukin 6 (IL6), nuclear factor kappa-light-chain enhancer of activated B cells (NFκB), TGFβ1I1 and SDPR genes. To our knowledge, this is the first study showing that TNFα, TGFβ1I1 and SDPR were identified and validated as novel let-7 miRNAs targets and could have a distinct role in inflammatory immune response of LPS challenged bovine endometrial cells. Our data represent a new finding by which uterine homeostasis is maintained through functional regulation of let-7a by down-regulation of pro-inflammatory cytokines expression (TNFα and IL6) at the mRNA and protein levels. These findings suggest that LPS serves as a negative regulator of let-7 miRNAs expression and provides a mechanism for the persistent pro-inflammatory phenotype, which is a hallmark of bovine subclinical endometritis.

Keywords: bovine endometrial cells, let-7, lipopolysaccharide, pro-inflammatory cytokines

Procedia PDF Downloads 380
1075 Effect of Leachate Presence on Shear Strength Parameters of Bentonite-Amended Zeolite Soil

Authors: R. Ziaie Moayed, H. Keshavarz Hedayati

Abstract:

Over recent years, due to increased population and increased waste production, groundwater protection has become more important, therefore, designing engineered barrier systems such as landfill liners to prevent the entry of leachate into groundwater should be done with greater accuracy. These measures generally involve the application of low permeability soils such as clays. Bentonite is a natural clay with low permeability which makes it a suitable soil for using in liners. Also zeolite with high cation exchange capacity can help to reduce of hazardous materials risk. Bentonite expands when wet, absorbing as much as several times its dry mass in water. This property may effect on some structural properties of soil such as shear strength. In present study, shear strength parameters are determined by both leachates polluted and not polluted bentonite-amended zeolite soil with mixing rates (B/Z) of 5%-10% and 20% with unconfined compression test to obtain the differences. It is shown that leachate presence causes reduction in resistance in general.

Keywords: bentonite, leachate, shear strength parameters, unconfined compression test

Procedia PDF Downloads 106
1074 Formulation and Physico-Mechanical Characterization of a Self-Compacting Concrete Containing Seashells as an Addition Material

Authors: Brahim Safi, Mohammed Saidi, A. Benmounah, Jozef Mitterpach

Abstract:

The aim of this work is to study the rheological and physico-mechanical properties of a self-compacting concrete elaborated with sea shells as an addition cementitious (total replacement of limestone fillers) and sand (partial and total substitution fine aggregate). Also, this present study is registered in the context of sustainable development by using this waste type which caused environmental problems. After preparation the crushed shells (obtaining fine aggregate) and finely crushed shells (obtaining end powder), concretes were manufactured using these two products. Rheological characterization tests (fluidity, filling capacity and segregation) and physico-mechanical properties (density and strength) were carried on these concretes. The results obtained show that it can be used as fin addition (by total replacement of limestone) or also used as sand by total substitution of natural sand.

Keywords: seashells, limestone, sand, self-compacting concrete, fluidity, compressive strength, flexural strength

Procedia PDF Downloads 272
1073 Biological Aquaculture System (BAS) Design and Water Quality on Marble Goby (Oxyeleotris marmoratus): A Water Recirculating Technology

Authors: AnnWon Chew, Nik Norulaini Nik Ab Rahman, Mohd Omar Ab Kadir, C. C. Chen, Jaafar Chua

Abstract:

This paper presents an innovative process to solve the ammonia, nitrite and nitrate build-up problem in recirculating system using Biological Aquaculture System (BAS). The novel aspects of the process lie in a series of bioreactors that specially arrange and design to meet the required conditions for water purification. The BAS maximizes the utilization of bio-balls as the ideal surface for beneficial microbes to flourish. It also serves as a physical barrier that traps organic particles, which in turn becomes source for the microbes to perform their work. The operation in the proposed system gives a low concentration and average range of good maintain excellent water quality, i.e., with low levels of ammonia, nitrite, nitrate, a suitable pH range for aquaculture and low turbidity. The BAS thus provides a solution for sustainable small-scale, urban aquaculture operation with a high recovery water and minimal waste disposal.

Keywords: ammonia, bioreactor, Biological Aquaculture System (BAS), bio-balls, water recirculating technology

Procedia PDF Downloads 592
1072 Working Fluids in Absorption Chillers: Investigation of the Use of Deep Eutectic Solvents

Authors: L. Cesari, D. Alonso, F. Mutelet

Abstract:

The interest in cold production has been on the increase in absorption chillers for many years. In fact, the absorption cycles replace the compressor and thus reduce electrical consumption. The devices also allow waste heat generated through industrial activities to be recovered and cooled to a moderate temperature in accordance with regulatory guidelines. Many working fluids were investigated but could not compete with the commonly used {H2O + LiBr} and {H2O + NH3} to author’s best knowledge. Yet, the corrosion, toxicity and crystallization phenomena of these mixtures prevent the development of the absorption technology. This work investigates the possible use of a glyceline deep eutectic solvent (DES) and CO2 as working fluid in an absorption chiller. To do so, good knowledge of the mixtures is required. Experimental measurements (vapor-liquid equilibria, density, and heat capacity) were performed to complete the data lacking in the literature. The performance of the mixtures was quantified by the calculation of the coefficient of performance (COP). The results show that working fluids containing DES + CO2 are an interesting alternative and lead to different trails of working mixtures for absorption and chiller.

Keywords: absorption devices, deep eutectic solvent, energy valorization, experimental data, simulation

Procedia PDF Downloads 110
1071 Validation of Two Field Base Dynamic Balance Tests in the Activation of Selected Hip and Knee Stabilizer Muscles

Authors: Mariam A. Abu-Alim

Abstract:

The purpose of this study was to validate muscle activation amplitudes of two field base dynamic balance tests that are used as strengthen and motor control exercises too in the activation of selected hip and knee stabilizer muscles. Methods: Eighteen college-age females students (21±2 years; 65.6± 8.7 kg; 169.7±8.1 cm) who participated at least for 30 minutes in physical activity most days of the week volunteered. The wireless BIOPAC (MP150, BIOPAC System. Inc, California, USA) surface electromyography system was used to validate the activation of the Gluteus Medius and the Adductor Magnus of hip stabilizer muscles; and the Hamstrings, Quadriceps, and the Gastrocnemius of the knee stabilizer muscles. Surface electrodes (EL 503, BIOPAC, System. Inc) connected to dual wireless EMG BioNormadix Transmitters were place on selected muscles of participants dominate side. Manual muscle testing was performed to obtain the maximal voluntary isometric contraction (MVIC) in which all collected muscle activity data during the three reaching direction: anterior, posteromedial, posterolateral of the Star Excursion Balance Test (SEBT) and the Y-balance Test (YBT) data could be normalized. All participants performed three trials for each reaching direction of the SEBT and the YBT. The domanial leg trial for each participant was selected for analysis which was also the standing leg. Results: the selected hip stabilizer muscles (Gluteus Medius, Adductor Magnus) were both greater than 100%MVIC during the performance of the SEBT and in all three directions. Whereas, selected knee stabilizer muscles had greater activation 0f 100% MVIC and were significantly more activated during the performance of the YBT test in all three reaching directions. The results showed that the posterolateral and the postmedial reaching directions for both dynamic balance tests had greater activation levels and greater than 200%MVIC for all tested muscles expect of the hamstrings. Conclusion: the results of this study showed that the SEBT and the YBT had validated high levels of muscular activity for the hip and the knee stabilizer muscles; which can be used to represent the improvement, strength, control and the decreasing in the injury levels. Since these selected hip and knee stabilizer muscles, represent 35% of all athletic injuries depending on the type of sport.

Keywords: dynamic balance tests, electromyography, hip stabilizer muscles, nee stabilizer muscles

Procedia PDF Downloads 151
1070 Manufacturing Process of Rubber Cement Composite Paver Block

Authors: Ratnadip Natwarbhai Bhoi

Abstract:

The objective of this research paper is to study waste tire crumb rubber granules as a partial concrete replacement by the different percentages of facing layer thickness and without facing layer in the production of rubber cement composite paver block. The physical properties of RCCRP compressive strength, flexural strength, abrasion strength density, and water absorption testing by the IS 15658:2006 method. All these physical properties depend upon the ratio of crumb rubber uses. The result showed that the with facing layer at 15 mm, 25 mm, totally rubberized and without facing layer had little effect on compressive strength, flexural strength and abrasion resistance properties. Water absorption is also important for the service life of the product. The crumb rubber paver block also performed quite well in both compressive strength and abrasion resistance. The rubber cement composite rubber paver block is suitable for nonstructural purposes, such as being lightweight and easy installation for the walkway, sidewalks, and playing area applications.

Keywords: rubber cement, crumb rubber, composite, layer

Procedia PDF Downloads 98
1069 Radionuclides Transport Phenomena in Vadose Zone

Authors: R. Testoni, R. Levizzari, M. De Salve

Abstract:

Radioactive waste management is fundamental to safeguard population and environment by radiological risks. Environmental assessment of a site, where nuclear activities are located, allows understanding the hydro geological system and the radionuclides transport in groundwater and subsoil. Use of dedicated software is the basis of transport phenomena investigation and for dynamic scenarios prediction; this permits to understand the evolution of accidental contamination events, but at the same time the potentiality of the software itself can be verified. The aim of this paper is to perform a numerical analysis by means of HYDRUS 1D code, so as to evaluate radionuclides transport in a nuclear site in Piedmont region (Italy). In particular, the behaviour in vadose zone was investigated. An iterative assessment process was performed for risk assessment of radioactive contamination. The analysis therein developed considers the following aspects: i) hydro geological site characterization; ii) individuation of the main intrinsic and external site factors influencing water flow and radionuclides transport phenomena; iii) software potential for radionuclides leakage simulation purposes.

Keywords: HYDRUS 1D, radionuclides transport phenomena, site characterization, radiation protection

Procedia PDF Downloads 397
1068 Tehran Province Water and Wastewater Company Approach on Energy Efficiency by the Development of Renewable Energy to Achieving the Sustainable Development Legal Principle

Authors: Mohammad Parvaresh, Mahdi Babaee, Bahareh Arghand, Roushanak Fahimi Hanzaee, Davood Nourmohammadi

Abstract:

Today, the intelligent network of water and wastewater as one of the key steps in realizing the smart city in the world. Use of pressure relief valves in urban water networks in order to reduce the pressure is necessary in Tehran city. But use these pressure relief valves lead to waste water, more power consumption, and environmental pollution because Tehran Province Water and Wastewater Co. use a quarter of industry 's electricity. In this regard, Tehran Province Water and Wastewater Co. identified solutions to reduce direct and indirect costs in energy use in the process of production, transmission and distribution of water because this company has extensive facilities and high capacity to realize green economy and industry. The aim of this study is to analyze the new project in water and wastewater industry to reach sustainable development.

Keywords: Tehran Province Water and Wastewater Company, water network efficiency, sustainable development, International Environmental Law

Procedia PDF Downloads 291
1067 Effective Doping Engineering of Na₃V₂(PO₄)₂F₃ as a High-Performance Cathode Material for Sodium-Ion Batteries

Authors: Ramon Alberto Paredes Camacho, Li Lu

Abstract:

Sustainable batteries are possible through the development of cheaper and greener alternatives whose most feasible option is epitomized by Sodium-Ion Batteries (SIB). Na₃V₂(PO₄)₂F₃ (NVPF) an important member of the Na-superionic-conductor (NASICON) materials, has recently been in the spotlight due to its interesting electrochemical properties when used as cathode namely, high specific capacity of 128 mA h g-¹, high energy density of 507 W h Kg-¹, increased working potential at which vanadium redox couples can be activated (with an average value around 3.9 V), and small volume variation of less than 2%. These traits grant NVPF an excellent perspective as a cathode material for the next generation of sodium batteries. Unfortunately, because of its low inherent electrical conductivity and a high energy barrier that impedes the mobilization of all the available Na ions per formula, the overall electrochemical performance suffers substantial degradation, finally obstructing its industrial use. Many approaches have been developed to remediate these issues where nanostructural design, carbon coating, and ion doping are the most effective ones. This investigation is focused on enhancing the electrochemical response of NVPF by doping metal ions in the crystal lattice, substituting vanadium atoms. A facile sol-gel process is employed, with citric acid as the chelator and the carbon source. The optimized conditions circumvent fluorine sublimation, ratifying the material’s purity. One of the reasons behind the large ionic improvement is the attraction of extra Na ions into the crystalline structure due to a charge imbalance produced by the valence of the doped ions (+2), which is lower than the one of vanadium (+3). Superior stability (higher than 90% at a current density of 20C) and capacity retention at an extremely high current density of 50C are demonstrated by our doped NVPF. This material continues to retain high capacity values at low and high temperatures. In addition, full cell NVPF//Hard Carbon shows capacity values and high stability at -20 and 60ºC. Our doping strategy proves to significantly increase the ionic and electronic conductivity of NVPF even at extreme conditions, delivering outstanding electrochemical performance and paving the way for advanced high-potential cathode materials.

Keywords: sodium-ion batteries, cathode materials, NASICON, Na3V2(PO4)2F3, Ion doping

Procedia PDF Downloads 57