Search results for: response model
18256 Nowcasting Indonesian Economy
Authors: Ferry Kurniawan
Abstract:
In this paper, we nowcast quarterly output growth in Indonesia by exploiting higher frequency data (monthly indicators) using a mixed-frequency factor model and exploiting both quarterly and monthly data. Nowcasting quarterly GDP in Indonesia is particularly relevant for the central bank of Indonesia which set the policy rate in the monthly Board of Governors Meeting; whereby one of the important step is the assessment of the current state of the economy. Thus, having an accurate and up-to-date quarterly GDP nowcast every time new monthly information becomes available would clearly be of interest for central bank of Indonesia, for example, as the initial assessment of the current state of the economy -including nowcast- will be used as input for longer term forecast. We consider a small scale mixed-frequency factor model to produce nowcasts. In particular, we specify variables as year-on-year growth rates thus the relation between quarterly and monthly data is expressed in year-on-year growth rates. To assess the performance of the model, we compare the nowcasts with two other approaches: autoregressive model –which is often difficult when forecasting output growth- and Mixed Data Sampling (MIDAS) regression. In particular, both mixed frequency factor model and MIDAS nowcasts are produced by exploiting the same set of monthly indicators. Hence, we compare the nowcasts performance of the two approaches directly. To preview the results, we find that by exploiting monthly indicators using mixed-frequency factor model and MIDAS regression we improve the nowcast accuracy over a benchmark simple autoregressive model that uses only quarterly frequency data. However, it is not clear whether the MIDAS or mixed-frequency factor model is better. Neither set of nowcasts encompasses the other; suggesting that both nowcasts are valuable in nowcasting GDP but neither is sufficient. By combining the two individual nowcasts, we find that the nowcast combination not only increases the accuracy - relative to individual nowcasts- but also lowers the risk of the worst performance of the individual nowcasts.Keywords: nowcasting, mixed-frequency data, factor model, nowcasts combination
Procedia PDF Downloads 33118255 Software Reliability Prediction Model Analysis
Authors: Lela Mirtskhulava, Mariam Khunjgurua, Nino Lomineishvili, Koba Bakuria
Abstract:
Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution.Keywords: exponential distribution, conditional mean time to failure, distribution function, mathematical model, software reliability
Procedia PDF Downloads 46418254 Parametric Modeling for Survival Data with Competing Risks Using the Generalized Gompertz Distribution
Authors: Noora Al-Shanfari, M. Mazharul Islam
Abstract:
The cumulative incidence function (CIF) is a fundamental approach for analyzing survival data in the presence of competing risks, which estimates the marginal probability for each competing event. Parametric modeling of CIF has the advantage of fitting various shapes of CIF and estimates the impact of covariates with maximum efficiency. To calculate the total CIF's covariate influence using a parametric model., it is essential to parametrize the baseline of the CIF. As the CIF is an improper function by nature, it is necessary to utilize an improper distribution when applying parametric models. The Gompertz distribution, which is an improper distribution, is limited in its applicability as it only accounts for monotone hazard shapes. The generalized Gompertz distribution, however, can adapt to a wider range of hazard shapes, including unimodal, bathtub, and monotonic increasing or decreasing hazard shapes. In this paper, the generalized Gompertz distribution is used to parametrize the baseline of the CIF, and the parameters of the proposed model are estimated using the maximum likelihood approach. The proposed model is compared with the existing Gompertz model using the Akaike information criterion. Appropriate statistical test procedures and model-fitting criteria will be used to test the adequacy of the model. Both models are applied to the ‘colon’ dataset, which is available in the “biostat3” package in R.Keywords: competing risks, cumulative incidence function, improper distribution, parametric modeling, survival analysis
Procedia PDF Downloads 10418253 A Systemic Maturity Model
Authors: Emir H. Pernet, Jeimy J. Cano
Abstract:
Maturity models, used descriptively to explain changes in reality or normatively to guide managers to make interventions to make organizations more effective and efficient, are based on the principles of statistical quality control promulgated by Shewhart in the years 30, and on the principles of PDCA continuous improvement (Plan, Do, Check, Act) developed by Deming and Juran. Some frameworks developed over the concept of maturity models includes COBIT, CMM, and ITIL. This paper presents some limitations of traditional maturity models, most of them based on points of reflection and analysis done by some authors. Almost all limitations are related to the mechanistic and reductionist approach of the principles over those models are built. As Systems Theory helps the understanding of the dynamics of organizations and organizational change, the development of a systemic maturity model can help to overcome some of those limitations. This document proposes a systemic maturity model, based on a systemic conceptualization of organizations, focused on the study of the functioning of the parties, the relationships among them, and their behavior as a whole. The concept of maturity from the system theory perspective is conceptually defined as an emergent property of the organization, which arises from as a result of the degree of alignment and integration of their processes. This concept is operationalized through a systemic function that measures the maturity of an organization, and finally validated by the measuring of maturity in organizations. For its operationalization and validation, the model was applied to measure the maturity of organizational Governance, Risk and Compliance (GRC) processes.Keywords: GRC, maturity model, systems theory, viable system model
Procedia PDF Downloads 31218252 Smart Material for Bacterial Detection Based on Polydiacetylene/Polyvinyl Butyrate Fiber Composites
Authors: Pablo Vidal, Misael Martinez, Carlos Hernandez, Ananta R. Adhikari, Luis Materon, Yuanbing Mao, Karen Lozano
Abstract:
Conjugated polymers are smart materials that show tremendous practical applications in diverse subjects. Polydiacetylenes are conjugated polymers with special optical properties. In response to the environmental changes such as pH and molecular binding, it changes its color. Such an interesting chromic and emissive behavior of polydiacetylenes make them a highly popular polymer in wide areas, including biomedicine such as a biosensor. In this research, we used polyvinyl butyrate as a matrix to fibrillate polydiacetylenes. We initially prepared polyvinyl butyrate/diacetylene matrix using forcespinning technique. They were then polymerized to form polyvinyl butyrate/polydiacetylene (PVB/PDA). These matrices then studied for their bio-sensing response to gram-positive and gram-negative bacteria. The sensing ability of the PVB/PDA biosensor was observed as early as 30 min in the presence of bacteria at 37°C. Now our effort is to decrease this effective temperature to room temperature to make this device applicable in the general daily life. These chromic biosensors will find extensive application not only alert the infection but also find other promising applications such as wearable sensors and diagnostic systems.Keywords: smart material, conjugated polymers, biosensor, polyvinyl butyrate/polydiacetylene
Procedia PDF Downloads 12818251 Mathematical Modeling of Skin Condensers for Domestic Refrigerator
Authors: Nitin Ghule, S. G. Taji
Abstract:
A mathematical model of hot-wall condensers used in refrigerators is presented. The model predicts the heat transfer characteristics of condenser and the effects of various design and operating parameters on condenser tube length and capacity. A finite element approach was used to model the condenser. The condenser tube is divided into elemental units, with each element consisting of adhesive tape, refrigerant tube and outer metal sheet. The heat transfer characteristics of each section are then analyzed by considering the heat transfer through the tube wall, tape and the outer sheet. Variations in inner heat transfer coefficient and pressure drop are considered depending on temperature, fluid phase, type of flow and orientation of tube. Variation in outer heat transfer coefficient is also taken into account. Various materials were analysed for the tube, tape and outer sheet.Keywords: condenser, domestic refrigerator, heat transfer, mathematical model
Procedia PDF Downloads 45218250 Evaluation of Weather Risk Insurance for Agricultural Products Using a 3-Factor Pricing Model
Authors: O. Benabdeljelil, A. Karioun, S. Amami, R. Rouger, M. Hamidine
Abstract:
A model for preventing the risks related to climate conditions in the agricultural sector is presented. It will determine the yearly optimum premium to be paid by a producer in order to reach his required turnover. The model is based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, the main ones of which are daily average sunlight, rainfall and temperature. By simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is determined from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. The model also requires accurate pricing of commodity at N+1. Therefore, a pricing model is developed using 3 state variables, namely the spot price, the difference between the mean-term and the long-term forward price, and the long-term structure of the model. The use of historical data enables to calibrate the parameters of state variables, and allows the pricing of commodity. Application to beet sugar underlines pricer precision. Indeed, the percentage of accuracy between computed result and real world is 99,5%. Optimal premium is then deduced and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect its harvest. The application to beet production in French Oise department illustrates the reliability of present model with as low as 6% difference between predicted and real data. The model can be adapted to almost any agricultural field by changing state parameters and calibrating their associated coefficients.Keywords: agriculture, production model, optimal price, meteorological factors, 3-factor model, parameter calibration, forward price
Procedia PDF Downloads 37618249 Predicting the Frequencies of Tropical Cyclone-Induced Rainfall Events in the US Using a Machine-Learning Model
Authors: Elham Sharifineyestani, Mohammad Farshchin
Abstract:
Tropical cyclones are one of the most expensive and deadliest natural disasters. They cause heavy rainfall and serious flash flooding that result in billions of dollars of damage and considerable mortality each year in the United States. Prediction of the frequency of tropical cyclone-induced rainfall events can be helpful in emergency planning and flood risk management. In this study, we have developed a machine-learning model to predict the exceedance frequencies of tropical cyclone-induced rainfall events in the United States. Model results show a satisfactory agreement with available observations. To examine the effectiveness of our approach, we also have compared the result of our predictions with the exceedance frequencies predicted using a physics-based rainfall model by Feldmann.Keywords: flash flooding, tropical cyclones, frequencies, machine learning, risk management
Procedia PDF Downloads 24718248 Towards Value-Based Healthcare through a Nursing Sector Management Approach
Authors: Hadeer Hegazy, Wael Ewieda, Ranin Soliman, Samah Elway, Asmaa Tawfik, Ragaa Sayed, Sahar Mousa
Abstract:
The current healthcare system is facing major challenges in terms of cost, quality of care, and access to services. In response, the concept of value-based healthcare has emerged as a new approach to healthcare delivery. This concept puts the focus on patient values rather than on the traditional medical model of care. To achieve this, healthcare organizations must be agile and able to anticipate and respond quickly to changing needs. Agile management is essential for healthcare organizations to achieve value-based care, as it allows them to rapidly adjust their strategies to changing circumstances. Additionally, it is argued that agile management can help healthcare organizations gain a better understanding of the needs of their patients and develop better care delivery models. Besides, it can help healthcare organizations develop new services, innovate, and become more efficient. The authors provide evidence to support their argument, drawing on examples from successful value-based healthcare initiatives at children’s cancer hospital Egypt-57357. The paper offers insight into how agile management can be used to facilitate the shift towards value-based healthcare and how it can be used to maximize value in the healthcare system.Keywords: value-based healthcare, agility in healthcare, nursing department, patients outcomes
Procedia PDF Downloads 76818247 An Analytical Study on Rotational Capacity of Beam-Column Joints in Unit Modular Frames
Authors: Kyung-Suk Choi, Hyung-Joon Kim
Abstract:
Modular structural systems are constructed using a method that they are assembled with prefabricated unit modular frames on-site. This provides a benefit that can significantly reduce building construction time. Their structural design is usually carried out under the assumption that the load-carrying mechanism is similar to that of a traditional steel moment-resisting system. However, both systems are different in terms of beam-column connection details which may strongly influence the lateral structural behavior. Specially, the presence of access holes in a beam-column joint of a unit modular frame could cause undesirable failure during strong earthquakes. Therefore, this study carried out finite element analyses (FEM) of unit modular frames to investigate the cyclic behavior of beam-column joints with the structural influence of access holes. Analysis results show that the unit modular frames present stable cyclic response with large deformation capacities, and their joints are classified into semi-rigid connections.Keywords: unit modular frame, steel moment connection, nonlinear analytical model, moment-rotation relation
Procedia PDF Downloads 61918246 Caregiver Training Results in Accurate Reporting of Stool Frequency
Authors: Matthew Heidman, Susan Dallabrida, Analice Costa
Abstract:
Background:Accuracy of caregiver reported outcomes is essential for infant growth and tolerability study success. Crying/fussiness, stool consistencies, and other gastrointestinal characteristics are important parameters regarding tolerability, and inter-caregiver reporting can see a significant amount of subjectivity and vary greatly within a study, compromising data. This study sought to elucidate how caregiver reported questions related to stool frequency are answered before and after a short amount of training and how training impacts caregivers’ understanding, and how they would answer the question. Methods:A digital survey was issued for 90 daysin the US (n=121) and 30 days in Mexico (n=88), targeting respondents with children ≤4 years of age. Respondents were asked a question in two formats, first without a line of training text and second with a line of training text. The question set was as follows, “If your baby had stool in his/her diaper and you changed the diaper and 10 min later there was more stool in the diaper, how many stools would you report this as?” followed by the same question beginning with “If you were given the instruction that IF there are at least 5 minutes in between stools, then it counts as two (2) stools…”.Four response items were provided for both questions, 1) 2 stools, 2) 1stool, 3) it depends on how much stool was in the first versus the second diaper, 4) There is not enough information to be able to answer the question. Response frequencies between questions were compared. Results: Responses to the question without training saw some variability in the US, with 69% selecting “2 stools”,11% selecting “1 stool”, 14% selecting “it depends on how much stool was in the first versus the second diaper”, and 7% selecting “There is not enough information to be able to answer the question” and in Mexico respondents selected 9%, 78%, 13%, and 0% respectively. However, responses to the question after training saw more consolidation in the US, with 85% of respondents selecting“2 stools,” representing an increase in those selecting the correct answer. Additionally in Mexico, with 84% of respondents selecting “1 episode” representing an increase in the those selecting the correct response. Conclusions: Caregiver reported outcomes are critical for infant growth and tolerability studies, however, they can be highly subjective and see a high variability of responses without guidance. Training is critical to standardize all caregivers’ perspective regarding how to answer questions accurately in order to provide an accurate dataset.Keywords: infant nutrition, clinical trial optimization, stool reporting, decentralized clinical trials
Procedia PDF Downloads 9618245 A Study of Behavioral Phenomena Using an Artificial Neural Network
Authors: Yudhajit Datta
Abstract:
Will is a phenomenon that has puzzled humanity for a long time. It is a belief that Will Power of an individual affects the success achieved by an individual in life. It is thought that a person endowed with great will power can overcome even the most crippling setbacks of life while a person with a weak will cannot make the most of life even the greatest assets. Behavioral aspects of the human experience such as will are rarely subjected to quantitative study owing to the numerous uncontrollable parameters involved. This work is an attempt to subject the phenomena of will to the test of an artificial neural network. The claim being tested is that will power of an individual largely determines success achieved in life. In the study, an attempt is made to incorporate the behavioral phenomenon of will into a computational model using data pertaining to the success of individuals obtained from an experiment. A neural network is to be trained using data based upon part of the model, and subsequently used to make predictions regarding will corresponding to data points of success. If the prediction is in agreement with the model values, the model is to be retained as a candidate. Ultimately, the best-fit model from among the many different candidates is to be selected, and used for studying the correlation between success and will.Keywords: will power, will, success, apathy factor, random factor, characteristic function, life story
Procedia PDF Downloads 37918244 Condensation of Moist Air in Heat Exchanger Using CFD
Authors: Jan Barak, Karel Frana, Joerg Stiller
Abstract:
This work presents results of moist air condensation in heat exchanger. It describes theoretical knowledge and definition of moist air. Model with geometry of square canal was created for better understanding and post processing of condensation phenomena. Different approaches were examined on this model to find suitable software and model. Obtained knowledge was applied to geometry of real heat exchanger and results from experiment were compared with numerical results. One of the goals is to solve this issue without creating any user defined function in the applied code. It also contains summary of knowledge and outlook for future work.Keywords: condensation, exchanger, experiment, validation
Procedia PDF Downloads 40318243 Response of Chickpea (Cicer arietinum L.) Genotypes to Drought Stress at Different Growth Stages
Authors: Ali. Marjani, M. Farsi, M. Rahimizadeh
Abstract:
Chickpea (Cicer arietinum L.) is one of the important grain legume crops in the world. However, drought stress is a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Field experiments were conducted to evaluate the response of 8 chickpea genotypes (MCC* 696, 537, 80, 283, 392, 361, 252, 397) and drought stress (S1: non-stress, S2: stress at vegetative growth stage, S3: stress at early bloom, S4: stress at early pod visible) at different growth stages. Experiment was arranged in split plot design with four replications. Difference among the drought stress time was found to be significant for investigated traits except biological yield. Differences were observed for genotypes in flowering time, pod information time, physiological maturation time and yield. Plant height reduced due to drought stress in vegetative growth stage. Stem dry weight reduced due to drought stress in pod visibly. Flowering time, maturation time, pod number, number of seed per plant and yield cause of drought stress in flowering was also reduced. The correlation between yield and number of seed per plant and biological yield was positive. The MCC283 and MCC696 were the high-tolerance genotypes. These results demonstrated that drought stress delayed phonological growth in chickpea and that flowering stage is sensitive.Keywords: chickpea, drought stress, growth stage, tolerance
Procedia PDF Downloads 26118242 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.Keywords: building energy prediction, data mining, demand response, electricity market
Procedia PDF Downloads 31618241 Ten Patterns of Organizational Misconduct and a Descriptive Model of Interactions
Authors: Ali Abbas
Abstract:
This paper presents a descriptive model of organizational misconduct based on observed patterns that occur before and after an ethical collapse. The patterns were classified by categorizing media articles in both "for-profit" and "not-for-profit" organizations. Based on the model parameters, the paper provides a descriptive model of various organizational deflection strategies under numerous scenarios, including situations where ethical complaints build-up, situations under which whistleblowers become more prevalent, situations where large scandals that relate to leadership occur, and strategies by which organizations deflect blame when pressure builds up or when media finds out. The model parameters start with the premise of a tolerance to double standards in unethical acts when conducted by leadership or by members of corporate governance. Following this premise, the model explains how organizations engage in discursive strategies to cover up the potential conflicts that arise, including secret agreements and weakening stakeholders who may oppose the organizational acts. Deflection strategies include "preemptive" and "post-complaint" secret agreements, absence of (or vague) documented procedures, engaging in blame and scapegoating, remaining silent on complaints until the media finds out, as well as being slow (if at all) to acknowledge misconduct and fast to cover it up. The results of this paper may be used to guide organizational leaders into the implications of such shortsighted strategies toward unethical acts, even if they are deemed legal. Validation of the model assumptions through numerous media articles is provided.Keywords: ethical decision making, prediction, scandals, organizational strategies
Procedia PDF Downloads 12518240 Prediction of Mental Health: Heuristic Subjective Well-Being Model on Perceived Stress Scale
Authors: Ahmet Karakuş, Akif Can Kilic, Emre Alptekin
Abstract:
A growing number of studies have been conducted to determine how well-being may be predicted using well-designed models. It is necessary to investigate the backgrounds of features in order to construct a viable Subjective Well-Being (SWB) model. We have picked the suitable variables from the literature on SWB that are acceptable for real-world data instructions. The goal of this work is to evaluate the model by feeding it with SWB characteristics and then categorizing the stress levels using machine learning methods to see how well it performs on a real dataset. Despite the fact that it is a multiclass classification issue, we have achieved significant metric scores, which may be taken into account for a specific task.Keywords: machine learning, multiclassification problem, subjective well-being, perceived stress scale
Procedia PDF Downloads 13118239 Licensing in a Hotelling Model with Quadratic Transportation Costs
Authors: Fehmi Bouguezzi
Abstract:
This paper studies optimal licensing regimes in a linear Hotelling model where firms are located at the end points of the city and where the transportation cost is not linear but quadratic. We study for that a more general cost function and we try to compare the findings with the results of the linear cost. We find the same optimal licensing regimes. A per unit royalty is optimal when innovation is not drastic and no licensing is better when innovation is drastic. We also find that no licensing is always better than fixed fee licensing.Keywords: Hotelling model, technology transfer, patent licensing, quadratic transportation cost
Procedia PDF Downloads 34918238 Extreme Value Modelling of Ghana Stock Exchange Indices
Authors: Kwabena Asare, Ezekiel N. N. Nortey, Felix O. Mettle
Abstract:
Modelling of extreme events has always been of interest in fields such as hydrology and meteorology. However, after the recent global financial crises, appropriate models for modelling of such rare events leading to these crises have become quite essential in the finance and risk management fields. This paper models the extreme values of the Ghana Stock Exchange All-Shares indices (2000-2010) by applying the Extreme Value Theory to fit a model to the tails of the daily stock returns data. A conditional approach of the EVT was preferred and hence an ARMA-GARCH model was fitted to the data to correct for the effects of autocorrelation and conditional heteroscedastic terms present in the returns series, before EVT method was applied. The Peak Over Threshold (POT) approach of the EVT, which fits a Generalized Pareto Distribution (GPD) model to excesses above a certain selected threshold, was employed. Maximum likelihood estimates of the model parameters were obtained and the model’s goodness of fit was assessed graphically using Q-Q, P-P and density plots. The findings indicate that the GPD provides an adequate fit to the data of excesses. The size of the extreme daily Ghanaian stock market movements were then computed using the Value at Risk (VaR) and Expected Shortfall (ES) risk measures at some high quantiles, based on the fitted GPD model.Keywords: extreme value theory, expected shortfall, generalized pareto distribution, peak over threshold, value at risk
Procedia PDF Downloads 55718237 Half Model Testing for Canard of a Hybrid Buoyant Aircraft
Authors: Anwar U. Haque, Waqar Asrar, Ashraf Ali Omar, Erwin Sulaeman, Jaffer Sayed Mohamed Ali
Abstract:
Due to the interference effects, the intrinsic aerodynamic parameters obtained from the individual component testing are always fundamentally different than those obtained for complete model testing. Consideration and limitation for such testing need to be taken into account in any design work related to the component buildup method. In this paper, the scaled model of a straight rectangular canard of a hybrid buoyant aircraft is tested at 50 m/s in IIUM-LSWT (Low-Speed Wind Tunnel). Model and its attachment with the balance are kept rigid to have results free from the aeroelastic distortion. Based on the velocity profile of the test section’s floor; the height of the model is kept equal to the corresponding boundary layer displacement. Balance measurements provide valuable but limited information of the overall aerodynamic behavior of the model. Zero lift coefficient is obtained at -2.2o and the corresponding drag coefficient was found to be less than that at zero angles of attack. As a part of the validation of low fidelity tool, the plot of lift coefficient plot was verified by the experimental data and except the value of zero lift coefficient, the overall trend has under-predicted the lift coefficient. Based on this comparative study, a correction factor of 1.36 is proposed for lift curve slope obtained from the panel method.Keywords: wind tunnel testing, boundary layer displacement, lift curve slope, canard, aerodynamics
Procedia PDF Downloads 46918236 Pressure-Controlled Dynamic Equations of the PFC Model: A Mathematical Formulation
Authors: Jatupon Em-Udom, Nirand Pisutha-Arnond
Abstract:
The phase-field-crystal, PFC, approach is a density-functional-type material model with an atomic resolution on a diffusive timescale. Spatially, the model incorporates periodic nature of crystal lattices and can naturally exhibit elasticity, plasticity and crystal defects such as grain boundaries and dislocations. Temporally, the model operates on a diffusive timescale which bypasses the need to resolve prohibitively small atomic-vibration time steps. The PFC model has been used to study many material phenomena such as grain growth, elastic and plastic deformations and solid-solid phase transformations. In this study, the pressure-controlled dynamic equation for the PFC model was developed to simulate a single-component system under externally applied pressure; these coupled equations are important for studies of deformable systems such as those under constant pressure. The formulation is based on the non-equilibrium thermodynamics and the thermodynamics of crystalline solids. To obtain the equations, the entropy variation around the equilibrium point was derived. Then the resulting driving forces and flux around the equilibrium were obtained and rewritten as conventional thermodynamic quantities. These dynamics equations are different from the recently-proposed equations; the equations in this study should provide more rigorous descriptions of the system dynamics under externally applied pressure.Keywords: driving forces and flux, evolution equation, non equilibrium thermodynamics, Onsager’s reciprocal relation, phase field crystal model, thermodynamics of single-component solid
Procedia PDF Downloads 30518235 Hidden Markov Model for the Simulation Study of Neural States and Intentionality
Authors: R. B. Mishra
Abstract:
Hidden Markov Model (HMM) has been used in prediction and determination of states that generate different neural activations as well as mental working conditions. This paper addresses two applications of HMM; one to determine the optimal sequence of states for two neural states: Active (AC) and Inactive (IA) for the three emission (observations) which are for No Working (NW), Waiting (WT) and Working (W) conditions of human beings. Another is for the determination of optimal sequence of intentionality i.e. Believe (B), Desire (D), and Intention (I) as the states and three observational sequences: NW, WT and W. The computational results are encouraging and useful.Keywords: hiden markov model, believe desire intention, neural activation, simulation
Procedia PDF Downloads 37618234 A Prediction Method for Large-Size Event Occurrences in the Sandpile Model
Authors: S. Channgam, A. Sae-Tang, T. Termsaithong
Abstract:
In this research, the occurrences of large size events in various system sizes of the Bak-Tang-Wiesenfeld sandpile model are considered. The system sizes (square lattice) of model considered here are 25×25, 50×50, 75×75 and 100×100. The cross-correlation between the ratio of sites containing 3 grain time series and the large size event time series for these 4 system sizes are also analyzed. Moreover, a prediction method of the large-size event for the 50×50 system size is also introduced. Lastly, it can be shown that this prediction method provides a slightly higher efficiency than random predictions.Keywords: Bak-Tang-Wiesenfeld sandpile model, cross-correlation, avalanches, prediction method
Procedia PDF Downloads 38218233 Modelling of Heating and Evaporation of Biodiesel Fuel Droplets
Authors: Mansour Al Qubeissi, Sergei S. Sazhin, Cyril Crua, Morgan R. Heikal
Abstract:
This paper presents the application of the Discrete Component Model for heating and evaporation to multi-component biodiesel fuel droplets in direct injection internal combustion engines. This model takes into account the effects of temperature gradient, recirculation and species diffusion inside droplets. A distinctive feature of the model used in the analysis is that it is based on the analytical solutions to the temperature and species diffusion equations inside the droplets. Nineteen types of biodiesel fuels are considered. It is shown that a simplistic model, based on the approximation of biodiesel fuel by a single component or ignoring the diffusion of components of biodiesel fuel, leads to noticeable errors in predicted droplet evaporation time and time evolution of droplet surface temperature and radius.Keywords: heat/mass transfer, biodiesel, multi-component fuel, droplet
Procedia PDF Downloads 56818232 Evaluation of Coupled CFD-FEA Simulation for Fire Determination
Authors: Daniel Martin Fellows, Sean P. Walton, Jennifer Thompson, Oubay Hassan, Ella Quigley, Kevin Tinkham
Abstract:
Fire performance is a crucial aspect to consider when designing cladding products, and testing this performance is extremely expensive. Appropriate use of numerical simulation of fire performance has the potential to reduce the total number of fire tests required when designing a product by eliminating poor-performing design ideas early in the design phase. Due to the complexity of fire and the large spectrum of failures it can cause, multi-disciplinary models are needed to capture the complex fire behavior and its structural effects on its surroundings. Working alongside Tata Steel U.K., the authors have focused on completing a coupled CFD-FEA simulation model suited to test Polyisocyanurate (PIR) based sandwich panel products to gain confidence before costly experimental standards testing. The sandwich panels are part of a thermally insulating façade system primarily for large non-domestic buildings. The work presented in this paper compares two coupling methodologies of a replicated physical experimental standards test LPS 1181-1, carried out by Tata Steel U.K. The two coupling methodologies that are considered within this research are; one-way and two-way. A one-way coupled analysis consists of importing thermal data from the CFD solver into the FEA solver. A two-way coupling analysis consists of continuously importing the updated changes in thermal data, due to the fire's behavior, to the FEA solver throughout the simulation. Likewise, the mechanical changes will also be updated back to the CFD solver to include geometric changes within the solution. For CFD calculations, a solver called Fire Dynamic Simulator (FDS) has been chosen due to its adapted numerical scheme to focus solely on fire problems. Validation of FDS applicability has been achieved in past benchmark cases. In addition, an FEA solver called ABAQUS has been chosen to model the structural response to the fire due to its crushable foam plasticity model, which can accurately model the compressibility of PIR foam. An open-source code called FDS-2-ABAQUS is used to couple the two solvers together, using several python modules to complete the process, including failure checks. The coupling methodologies and experimental data acquired from Tata Steel U.K are compared using several variables. The comparison data includes; gas temperatures, surface temperatures, and mechanical deformation of the panels. Conclusions are drawn, noting improvements to be made on the current coupling open-source code FDS-2-ABAQUS to make it more applicable to Tata Steel U.K sandwich panel products. Future directions for reducing the computational cost of the simulation are also considered.Keywords: fire engineering, numerical coupling, sandwich panels, thermo fluids
Procedia PDF Downloads 9018231 A Mixture Vine Copula Structures Model for Dependence Wind Speed among Wind Farms and Its Application in Reactive Power Optimization
Authors: Yibin Qiu, Yubo Ouyang, Shihan Li, Guorui Zhang, Qi Li, Weirong Chen
Abstract:
This paper aims at exploring the impacts of high dimensional dependencies of wind speed among wind farms on probabilistic optimal power flow. To obtain the reactive power optimization faster and more accurately, a mixture vine Copula structure model combining the K-means clustering, C vine copula and D vine copula is proposed in this paper, through which a more accurate correlation model can be obtained. Moreover, a Modified Backtracking Search Algorithm (MBSA), the three-point estimate method is applied to probabilistic optimal power flow. The validity of the mixture vine copula structure model and the MBSA are respectively tested in IEEE30 node system with measured data of 3 adjacent wind farms in a certain area, and the results indicate effectiveness of these methods.Keywords: mixture vine copula structure model, three-point estimate method, the probability integral transform, modified backtracking search algorithm, reactive power optimization
Procedia PDF Downloads 24818230 Managing Incomplete PSA Observations in Prostate Cancer Data: Key Strategies and Best Practices for Handling Loss to Follow-Up and Missing Data
Authors: Madiha Liaqat, Rehan Ahmed Khan, Shahid Kamal
Abstract:
Multiple imputation with delta adjustment is a versatile and transparent technique for addressing univariate missing data in the presence of various missing mechanisms. This approach allows for the exploration of sensitivity to the missing-at-random (MAR) assumption. In this review, we outline the delta-adjustment procedure and illustrate its application for assessing the sensitivity to deviations from the MAR assumption. By examining diverse missingness scenarios and conducting sensitivity analyses, we gain valuable insights into the implications of missing data on our analyses, enhancing the reliability of our study's conclusions. In our study, we focused on assessing logPSA, a continuous biomarker in incomplete prostate cancer data, to examine the robustness of conclusions against plausible departures from the MAR assumption. We introduced several approaches for conducting sensitivity analyses, illustrating their application within the pattern mixture model (PMM) under the delta adjustment framework. This proposed approach effectively handles missing data, particularly loss to follow-up.Keywords: loss to follow-up, incomplete response, multiple imputation, sensitivity analysis, prostate cancer
Procedia PDF Downloads 8918229 Geopotential Models Evaluation in Algeria Using Stochastic Method, GPS/Leveling and Topographic Data
Authors: M. A. Meslem
Abstract:
For precise geoid determination, we use a reference field to subtract long and medium wavelength of the gravity field from observations data when we use the remove-compute-restore technique. Therefore, a comparison study between considered models should be made in order to select the optimal reference gravity field to be used. In this context, two recent global geopotential models have been selected to perform this comparison study over Northern Algeria. The Earth Gravitational Model (EGM2008) and the Global Gravity Model (GECO) conceived with a combination of the first model with anomalous potential derived from a GOCE satellite-only global model. Free air gravity anomalies in the area under study have been used to compute residual data using both gravity field models and a Digital Terrain Model (DTM) to subtract the residual terrain effect from the gravity observations. Residual data were used to generate local empirical covariance functions and their fitting to the closed form in order to compare their statistical behaviors according to both cases. Finally, height anomalies were computed from both geopotential models and compared to a set of GPS levelled points on benchmarks using least squares adjustment. The result described in details in this paper regarding these two models has pointed out a slight advantage of GECO global model globally through error degree variances comparison and ground-truth evaluation.Keywords: quasigeoid, gravity aomalies, covariance, GGM
Procedia PDF Downloads 13718228 Use of Transportation Networks to Optimize The Profit Dynamics of the Product Distribution
Authors: S. Jayasinghe, R. B. N. Dissanayake
Abstract:
Optimization modelling together with the Network models and Linear Programming techniques is a powerful tool in problem solving and decision making in real world applications. This study developed a mathematical model to optimize the net profit by minimizing the transportation cost. This model focuses the transportation among decentralized production plants to a centralized distribution centre and then the distribution among island wide agencies considering the customer satisfaction as a requirement. This company produces basically 9 types of food items with 82 different varieties and 4 types of non-food items with 34 different varieties. Among 6 production plants, 4 were located near the city of Mawanella and the other 2 were located in Galewala and Anuradhapura cities which are 80 km and 150 km away from Mawanella respectively. The warehouse located in the Mawanella was the main production plant and also the only distribution plant. This plant distributes manufactured products to 39 agencies island-wide. The average values and average amount of the goods for 6 consecutive months from May 2013 to October 2013 were collected and then average demand values were calculated. The following constraints are used as the necessary requirement to satisfy the optimum condition of the model; there was one source, 39 destinations and supply and demand for all the agencies are equal. Using transport cost for a kilometer, total transport cost was calculated. Then the model was formulated using distance and flow of the distribution. Network optimization and linear programming techniques were used to originate the model while excel solver is used in solving. Results showed that company requires total transport cost of Rs. 146, 943, 034.50 to fulfil the customers’ requirement for a month. This is very much less when compared with data without using the model. Model also proved that company can reduce their transportation cost by 6% when distributing to island-wide customers. Company generally satisfies their customers’ requirements by 85%. This satisfaction can be increased up to 97% by using this model. Therefore this model can be used by other similar companies in order to reduce the transportation cost.Keywords: mathematical model, network optimization, linear programming
Procedia PDF Downloads 34618227 Estimation of Pressure Profile and Boundary Layer Characteristics over NACA 4412 Airfoil
Authors: Anwar Ul Haque, Waqar Asrar, Erwin Sulaeman, Jaffar S. M. Ali
Abstract:
Pressure distribution data of the standard airfoils is usually used for the calibration purposes in subsonic wind tunnels. Results of such experiments are quite old and obtained by using the model in the spanwise direction. In this manuscript, pressure distribution over NACA 4412 airfoil model was presented by placing the 3D model in the lateral direction. The model is made of metal with pressure ports distributed longitudinally as well as in the lateral direction. The pressure model was attached to the floor of the tunnel with the help of the base plate to give the specified angle of attack to the model. Before the start of the experiments, the pressure tubes of the respective ports of the 128 ports pressure scanner are checked for leakage, and the losses due to the length of the pipes were also incorporated in the results for the specified pressure range. Growth rate maps of the boundary layer thickness were also plotted. It was found that with the increase in the velocity, the dynamic pressure distribution was also increased for the alpha seep. Plots of pressure distribution so obtained were overlapped with those obtained by using XFLR software, a low fidelity tool. It was found that at moderate and high angles of attack, the distribution of the pressure coefficients obtained from the experiments is high when compared with the XFLR ® results obtained along with the span of the wing. This under-prediction by XFLR ® is more obvious on the windward than on the leeward side.Keywords: subsonic flow, boundary layer, wind tunnel, pressure testing
Procedia PDF Downloads 320