Search results for: regression models drone
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9375

Search results for: regression models drone

6915 A Benchmark System for Testing Medium Voltage Direct Current (MVDC-CB) Robustness Utilizing Real Time Digital Simulation and Hardware-In-Loop Theory

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

The integration of green energy resources is a major focus, and the role of Medium Voltage Direct Current (MVDC) systems is exponentially expanding. However, the protection of MVDC systems against DC faults is a challenge that can have consequences on reliable and safe grid operation. This challenge reveals the need for MVDC circuit breakers (MVDC CB), which are in infancies of their improvement. Therefore will be a lack of MVDC CBs standards, including thresholds for acceptable power losses and operation speed. To establish a baseline for comparison purposes, a benchmark system for testing future MVDC CBs is vital. The literatures just give the timing sequence of each switch and the emphasis is on the topology, without in-depth study on the control algorithm of DCCB, as the circuit breaker control system is not yet systematic. A digital testing benchmark is designed for the Proof-of-concept of simulation studies using software models. It can validate studies based on real-time digital simulators and Transient Network Analyzer (TNA) models. The proposed experimental setup utilizes data accusation from the accurate sensors installed on the tested MVDC CB and through general purpose input/outputs (GPIO) from the microcontroller and PC Prototype studies in the laboratory-based models utilizing Hardware-in-the-Loop (HIL) equipment connected to real-time digital simulators is achieved. The improved control algorithm of the circuit breaker can reduce the peak fault current and avoid arc resignation, helping the coordination of DCCB in relay protection. Moreover, several research gaps are identified regarding case studies and evaluation approaches.

Keywords: DC circuit breaker, hardware-in-the-loop, real time digital simulation, testing benchmark

Procedia PDF Downloads 79
6914 Assessment the Tsunamis Impact with Tectonic Sources in the Southern Mainland of the Haitian Republic: Using Two Numerical Models

Authors: Delva Richard, Zahibo Narcisse, Yalciner Ahmet

Abstract:

The Republic of Haiti is one of the poor countries of the world, therefore the authorities must make choices to provide timely solutions to the many difficulties that this Caribbean country is experiencing. There is a very acute lack of scientific research to study natural phenomena in depth. A working group meeting was established under the aegis of the World Bank, UNESCO and the authorities, to study the level of exposure of the Hispaniola. The devastating earthquake of August 2021 killed about 2100 and caused massive material damage; and the 14 12 January 2010 killed more than 250,000 people and caused massive material damage, the evidence of which is still 11 years later. In this paper we want to contribute to the assessment of the risk of tsunami on the southern peninsula of the Republic of Haiti. For the realization of this work we have the bathymetric and topographic data of very good qualities from the private measurement campaigns that we have combined with GEBCO for the inundation grids. We use two numerical models MOST and NAMI DANCE for the calculation of the parameters required in any tsunami risk assessment.

Keywords: modélisation numérique, ondes longues océaniques, bathymetrie, evaluation risque, tsunamis

Procedia PDF Downloads 7
6913 Analysis and Identification of Trends in Electric Vehicle Crash Data

Authors: Cody Stolle, Mojdeh Asadollahipajouh, Khaleb Pafford, Jada Iwuoha, Samantha White, Becky Mueller

Abstract:

Battery-electric vehicles (BEVs) are growing in sales and popularity in the United States as an alternative to traditional internal combustion engine vehicles (ICEVs). BEVs are generally heavier than corresponding models of ICEVs, with large battery packs located beneath the vehicle floorpan, a “skateboard” chassis, and have front and rear crush space available in the trunk and “frunk” or front trunk. The geometrical and frame differences between the vehicles may lead to incompatibilities with gasoline vehicles during vehicle-to-vehicle crashes as well as run-off-road crashes with roadside barriers, which were designed to handle lighter ICEVs with higher centers-of-mass and with dedicated structural chasses. Crash data were collected from 10 states spanning a five-year period between 2017 and 2021. Vehicle Identification Number (VIN) codes were processed with the National Highway Traffic Safety Administration (NHTSA) VIN decoder to extract BEV models from ICEV models. Crashes were filtered to isolate only vehicles produced between 2010 and 2021, and the crash circumstances (weather, time of day, maximum injury) were compared between BEVs and ICEVs. In Washington, 436,613 crashes were identified, which satisfied the selection criteria, and 3,371 of these crashes (0.77%) involved a BEV. The number of crashes which noted a fire were comparable between BEVs and ICEVs of similar model years (0.3% and 0.33%, respectively), and no differences were discernable for the time of day, weather conditions, road geometry, or other prevailing factors (e.g., run-off-road). However, crashes involving BEVs rose rapidly; 31% of all BEV crashes occurred in just 2021. Results indicate that BEVs are performing comparably to ICEVs, and events surrounding BEV crashes are statistically indistinguishable from ICEV crashes.

Keywords: battery-electric vehicles, transportation safety, infrastructure crashworthiness, run-off-road crashes, ev crash data analysis

Procedia PDF Downloads 89
6912 Analytical Investigation on Seismic Behavior of Infilled Reinforced Concrete Frames Strengthened with Precast Diagonal Concrete Panels

Authors: Ceyhun Aksoylu, Rifat Sezer

Abstract:

In this study, a strengthening method applicable without any evacuation process was investigated. In this analytical study, the pushover analysis results carry out by using the software of SAP2000. For this purpose, 1/3 scaled, 1-bay and 2-story R/C seven frames having usual deficiencies faults produced, one of which were not strengthened, but having brick-infill wall and the other 3 frames with infill walls strengthened with various shaped of high strength-precast diagonal concrete panels. The prepared analytical models investigated under reversed-cyclic loading that resembles the seismic effect. As a result of the analytical study, the properties of the reinforced concrete frames, such as strength, rigidity, energy dissipation capacity, etc. were determined and the strengthened models were compared with the unstrengthened one having the same properties. As a result of this study, the contributions of precast diagonal concrete applied on the infill walls of the existing frame systems against seismic effects were introduced with its advantages and disadvantages.

Keywords: RC frame, seismic effect, infill wall, strengthening, precast diagonal concrete panel, pushover analysis

Procedia PDF Downloads 347
6911 A Self-Coexistence Strategy for Spectrum Allocation Using Selfish and Unselfish Game Models in Cognitive Radio Networks

Authors: Noel Jeygar Robert, V. K.Vidya

Abstract:

Cognitive radio is a software-defined radio technology that allows cognitive users to operate on the vacant bands of spectrum allocated to licensed users. Cognitive radio plays a vital role in the efficient utilization of wireless radio spectrum available between cognitive users and licensed users without making any interference to licensed users. The spectrum allocation followed by spectrum sharing is done in a fashion where a cognitive user has to wait until spectrum holes are identified and allocated when the licensed user moves out of his own allocated spectrum. In this paper, we propose a self –coexistence strategy using bargaining and Cournot game model for achieving spectrum allocation in cognitive radio networks. The game-theoretic model analyses the behaviour of cognitive users in both cooperative and non-cooperative scenarios and provides an equilibrium level of spectrum allocation. Game-theoretic models such as bargaining game model and Cournot game model produce a balanced distribution of spectrum resources and energy consumption. Simulation results show that both game theories achieve better performance compared to other popular techniques

Keywords: cognitive radio, game theory, bargaining game, Cournot game

Procedia PDF Downloads 299
6910 Numerical Analysis of Heat Transfer Characteristics of an Orthogonal and Obliquely Impinging Air Jet on a Flat Plate

Authors: Abdulrahman Alenezi

Abstract:

This research paper investigates the surface heat transfer characteristics using computational fluid dynamics for orthogonal and inclined impinging jet. A jet Reynolds number (Rₑ) of 10,000, jet-to- plate spacing (H/D) of two and eight and two angles of impingement (α) of 45° and 90° (orthogonal) were employed in this study. An unconfined jet impinges steadily a constant temperature flat surface using air as working fluid. The numerical investigation is validated with an experimental study. This numerical study employs grid dependency investigation and four different types of turbulence models including the transition SSD to accurately predict the second local maximum in Nusselt number. A full analysis of the effect of both turbulence models and mesh size is reported. Numerical values showed excellent agreement with the experimental data for the case of orthogonal impingement. For the case of H/D =6 and α=45° a maximum percentage error of approximately 8.8% occurs of local Nusselt number at stagnation point. Experimental and numerical correlations are presented for four different cases

Keywords: turbulence model, inclined jet impingement, single jet impingement, heat transfer, stagnation point

Procedia PDF Downloads 398
6909 A Review of Different Studies on Hidden Markov Models for Multi-Temporal Satellite Images: Stationarity and Non-Stationarity Issues

Authors: Ali Ben Abbes, Imed Riadh Farah

Abstract:

Due to the considerable advances in Multi-Temporal Satellite Images (MTSI), remote sensing application became more accurate. Recently, many advances in modeling MTSI are developed using various models. The purpose of this article is to present an overview of studies using Hidden Markov Model (HMM). First of all, we provide a background of using HMM and their applications in this context. A comparison of the different works is discussed, and possible areas and challenges are highlighted. Secondly, we discussed the difference on vegetation monitoring as well as urban growth. Nevertheless, most research efforts have been used only stationary data. From another point of view, in this paper, we describe a new non-stationarity HMM, that is defined with a set of parts of the time series e.g. seasonal, trend and random. In addition, a new approach giving more accurate results and improve the applicability of the HMM in modeling a non-stationary data series. In order to assess the performance of the HMM, different experiments are carried out using Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI time series of the northwestern region of Tunisia and Landsat time series of tres Cantos-Madrid in Spain.

Keywords: multi-temporal satellite image, HMM , nonstationarity, vegetation, urban

Procedia PDF Downloads 354
6908 Small Fixed-Wing UAV Physical Based Modeling, Simulation, and Validation

Authors: Ebrahim H. Kapeel, Ehab Safwat, Hossam Hendy, Ahmed M. Kamel, Yehia Z. Elhalwagy

Abstract:

Motivated by the problem of the availability of high-fidelity flight simulation models for small unmanned aerial vehicles (UAVs). This paper focuses on the geometric-mass inertia modeling and the actuation system modeling for the small fixed-wing UAVs. The UAV geometric parameters for the body, wing, horizontal and vertical tail are physically measured. Pendulum experiment with high-grade sensors and data analysis using MATLAB is used to estimate the airplane moment of inertia (MOI) model. Finally, UAV’s actuation system is modeled by estimating each servo transfer function by using the system identification, which uses experimental measurement for input and output angles through using field-programmable gate array (FPGA). Experimental results for the designed models are given to illustrate the effectiveness of the methodology. It also gives a very promising result to finalize the open-loop flight simulation model through modeling the propulsion system and the aerodynamic system.

Keywords: unmanned aerial vehicle, geometric-mass inertia model, system identification, Simulink

Procedia PDF Downloads 179
6907 Assessing Spatial Associations of Mortality Patterns in Municipalities of the Czech Republic

Authors: Jitka Rychtarikova

Abstract:

Regional differences in mortality in the Czech Republic (CR) may be moderate from a broader European perspective, but important discrepancies in life expectancy can be found between smaller territorial units. In this study territorial units are based on Administrative Districts of Municipalities with Extended Powers (MEP). This definition came into force January 1, 2003. There are 205 units and the city of Prague. MEP represents the smallest unit for which mortality patterns based on life tables can be investigated and the Czech Statistical Office has been calculating such life tables (every five-years) since 2004. MEP life tables from 2009-2013 for males and females allowed the investigation of three main life cycles with the use of temporary life expectancies between the exact ages of 0 and 35; 35 and 65; and the life expectancy at exact age 65. The results showed regional survival inequalities primarily in adult and older ages. Consequently, only mortality indicators for adult and elderly population were related to census 2011 unlinked data for the same age groups. The most relevant socio-economic factors taken from the census are: having a partner, educational level and unemployment rate. The unemployment rate was measured for adults aged 35-64 completed years. Exploratory spatial data analysis methods were used to detect regional patterns in spatially contiguous units of MEP. The presence of spatial non-stationarity (spatial autocorrelation) of mortality levels for male and female adults (35-64), and elderly males and females (65+) was tested using global Moran’s I. Spatial autocorrelation of mortality patterns was mapped using local Moran’s I with the intention to depict clusters of low or high mortality and spatial outliers for two age groups (35-64 and 65+). The highest Moran’s I was observed for male temporary life expectancy between exact ages 35 and 65 (0.52) and the lowest was among women with life expectancy of 65 (0.26). Generally, men showed stronger spatial autocorrelation compared to women. The relationship between mortality indicators such as life expectancies and socio-economic factors like the percentage of males/females having a partner; percentage of males/females with at least higher secondary education; and percentage of unemployed males/females from economically active population aged 35-64 years, was evaluated using multiple regression (OLS). The results were then compared to outputs from geographically weighted regression (GWR). In the Czech Republic, there are two broader territories North-West Bohemia (NWB) and North Moravia (NM), in which excess mortality is well established. Results of the t-test of spatial regression showed that for males aged 30-64 the association between mortality and unemployment (when adjusted for education and partnership) was stronger in NM compared to NWB, while educational level impacted the length of survival more in NWB. Geographic variation and relationships in mortality of the CR MEP will also be tested using the spatial Durbin approach. The calculations were conducted by means of ArcGIS 10.6 and SAS 9.4.

Keywords: Czech Republic, mortality, municipality, socio-economic factors, spatial analysis

Procedia PDF Downloads 118
6906 Climate Changes Impact on Artificial Wetlands

Authors: Carla Idely Palencia-Aguilar

Abstract:

Artificial wetlands play an important role at Guasca Municipality in Colombia, not only because they are used for the agroindustry, but also because more than 45 species were found, some of which are endemic and migratory birds. Remote sensing was used to determine the changes in the area occupied by water of artificial wetlands by means of Aster and Modis images for different time periods. Evapotranspiration was also determined by three methods: Surface Energy Balance System-Su (SEBS) algorithm, Surface Energy Balance- Bastiaanssen (SEBAL) algorithm, and Potential Evapotranspiration- FAO. Empirical equations were also developed to determine the relationship between Normalized Difference Vegetation Index (NDVI) versus net radiation, ambient temperature and rain with an obtained R2 of 0.83. Groundwater level fluctuations on a daily basis were studied as well. Data from a piezometer placed next to the wetland were fitted with rain changes (with two weather stations located at the proximities of the wetlands) by means of multiple regression and time series analysis, the R2 from the calculated and measured values resulted was higher than 0.98. Information from nearby weather stations provided information for ordinary kriging as well as the results for the Digital Elevation Model (DEM) developed by using PCI software. Standard models (exponential, spherical, circular, gaussian, linear) to describe spatial variation were tested. Ordinary Cokriging between height and rain variables were also tested, to determine if the accuracy of the interpolation would increase. The results showed no significant differences giving the fact that the mean result of the spherical function for the rain samples after ordinary kriging was 58.06 and a standard deviation of 18.06. The cokriging using for the variable rain, a spherical function; for height variable, the power function and for the cross variable (rain and height), the spherical function had a mean of 57.58 and a standard deviation of 18.36. Threatens of eutrophication were also studied, given the unconsciousness of neighbours and government deficiency. Water quality was determined over the years; different parameters were studied to determine the chemical characteristics of water. In addition, 600 pesticides were studied by gas and liquid chromatography. Results showed that coliforms, nitrogen, phosphorous and prochloraz were the most significant contaminants.

Keywords: DEM, evapotranspiration, geostatistics, NDVI

Procedia PDF Downloads 120
6905 One Dimensional Reactor Modeling for Methanol Steam Reforming to Hydrogen

Authors: Hongfang Ma, Mingchuan Zhou, Haitao Zhang, Weiyong Ying

Abstract:

One dimensional pseudo-homogenous modeling has been performed for methanol steam reforming reactor. The results show that the models can well predict the industrial data. The reactor had minimum temperature along axial because of endothermic reaction. Hydrogen productions and temperature profiles along axial were investigated regarding operation conditions such as inlet mass flow rate and mass fraction of methanol, inlet temperature of external thermal oil. Low inlet mass flow rate of methanol, low inlet temperature, and high mass fraction of methanol decreased minimum temperature along axial. Low inlet mass flow rate of methanol, high mass fraction of methanol, and high inlet temperature of thermal oil made cold point forward. Low mass fraction, high mass flow rate, and high inlet temperature of thermal oil increased hydrogen production. One dimensional models can be a guide for industrial operation.

Keywords: reactor, modeling, methanol, steam reforming

Procedia PDF Downloads 298
6904 Understanding the Influence on Drivers’ Recommendation and Review-Writing Behavior in the P2P Taxi Service

Authors: Liwen Hou

Abstract:

The booming mobile business has been penetrating the taxi industry worldwide with P2P (peer to peer) taxi services, as an emerging business model, transforming the industry. Parallel with other mobile businesses, member recommendations and online reviews are believed to be very effective with regard to acquiring new users for P2P taxi services. Based on an empirical dataset of the taxi industry in China, this study aims to reveal which factors influence users’ recommendations and review-writing behaviors. Differing from the existing literature, this paper takes the taxi driver’s perspective into consideration and hence selects a group of variables related to the drivers. We built two models to reflect the factors that influence the number of recommendations and reviews posted on the platform (i.e., the app). Our models show that all factors, except the driver’s score, significantly influence the recommendation behavior. Likewise, only one factor, passengers’ bad reviews, is insignificant in generating more drivers’ reviews. In the conclusion, we summarize the findings and limitations of the research.

Keywords: online recommendation, P2P taxi service, review-writing, word of mouth

Procedia PDF Downloads 306
6903 The Univalence Principle: Equivalent Mathematical Structures Are Indistinguishable

Authors: Michael Shulman, Paige North, Benedikt Ahrens, Dmitris Tsementzis

Abstract:

The Univalence Principle is the statement that equivalent mathematical structures are indistinguishable. We prove a general version of this principle that applies to all set-based, categorical, and higher-categorical structures defined in a non-algebraic and space-based style, as well as models of higher-order theories such as topological spaces. In particular, we formulate a general definition of indiscernibility for objects of any such structure, and a corresponding univalence condition that generalizes Rezk’s completeness condition for Segal spaces and ensures that all equivalences of structures are levelwise equivalences. Our work builds on Makkai’s First-Order Logic with Dependent Sorts, but is expressed in Voevodsky’s Univalent Foundations (UF), extending previous work on the Structure Identity Principle and univalent categories in UF. This enables indistinguishability to be expressed simply as identification, and yields a formal theory that is interpretable in classical homotopy theory, but also in other higher topos models. It follows that Univalent Foundations is a fully equivalence-invariant foundation for higher-categorical mathematics, as intended by Voevodsky.

Keywords: category theory, higher structures, inverse category, univalence

Procedia PDF Downloads 151
6902 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions

Authors: Oscar E. Cariceo, Claudia V. Casal

Abstract:

Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.

Keywords: cyberbullying, evidence based practice, machine learning, social work research

Procedia PDF Downloads 168
6901 Integration of Climatic Factors in the Meta-Population Modelling of the Dynamic of Malaria Transmission, Case of Douala and Yaoundé, Two Cities of Cameroon

Authors: Justin-Herve Noubissi, Jean Claude Kamgang, Eric Ramat, Januarius Asongu, Christophe Cambier

Abstract:

The goal of our study is to analyse the impact of climatic factors in malaria transmission taking into account migration between Douala and Yaoundé, two cities of Cameroon country. We show how variations of climatic factors such as temperature and relative humidity affect the malaria spread. We propose a meta-population model of the dynamic transmission of malaria that evolves in space and time and that takes into account temperature and relative humidity and the migration between Douala and Yaoundé. We also integrate the variation of environmental factors as events also called mathematical impulsion that can disrupt the model evolution at any time. Our modelling has been done using the Discrete EVents System Specification (DEVS) formalism. Our implementation has been done on Virtual Laboratory Environment (VLE) that uses DEVS formalism and abstract simulators for coupling models by integrating the concept of DEVS.

Keywords: compartmental models, DEVS, discrete events, meta-population model, VLE

Procedia PDF Downloads 554
6900 Fluid Structure Interaction of Offshore Concrete Columns under Explosion Loads

Authors: Ganga K. V. Prakhya, V. Karthigeyan

Abstract:

The paper describes the influences of the fluid and structure interaction in concrete structures that support large oil platforms in the North Sea. The dynamic interaction of the fluid both in 2D and 3D are demonstrated through a Computational Fluid Dynamics analysis in the event of explosion following a gas leak inside of the concrete column. The structural response characteristics of the column in water under dynamic conditions are quite complex involving axial, radial and circumferential modes. Fluid structure interaction (FSI) modelling showed that there are some frequencies of the column in water which are not found for a column in air. For example, it was demonstrated that one of the axial breathing modes can never be simulated without the use of FSI models. The occurrence of a shift in magnitude and time of pressure from explosion following gas leak along the height of the shaft not only excited the modes of vibration involving breathing (axial), bending and squashing (radial) modes but also magnified the forces in the column. FSI models revealed that dynamic effects resulted in dynamic amplification of loads. The results are summarized from a detailed study that was carried out by the first author for the Offshore Safety Division of Health & Safety Executive United Kingdom.

Keywords: concrete, explosion, fluid structure interaction, offshore structures

Procedia PDF Downloads 188
6899 The Role of Japan's Land-Use Planning in Farmland Conservation: A Statistical Study of Tokyo Metropolitan District

Authors: Ruiyi Zhang, Wanglin Yan

Abstract:

Strict land-use plan is issued based on city planning act for controlling urbanization and conserving semi-natural landscape. And the agrarian land resource in the suburbs has indispensable socio-economic value and contributes to the sustainability of the regional environment. However, the agrarian hinterland of metropolitan is witnessing severe farmland conversion and abandonment, while the contribution of land-use planning to farmland conservation remains unclear in those areas. Hypothetically, current land-use plan contributes to farmland loss. So, this research investigated the relationship between farmland loss and land-use planning at municipality level to provide base data for zoning in the metropolitan suburbs, and help to develop a sustainable land-use plan that will conserve the agrarian hinterland. As data and methods, 1) Farmland data of Census of Agriculture and Forestry for 2005 to 2015 and population data of 2015 and 2018 were used to investigate spatial distribution feathers of farmland loss in Tokyo Metropolitan District (TMD) for two periods: 2005-2010;2010-2015. 2) And the samples were divided by four urbanization facts. 3) DID data and zoning data for 2006 to 2018 were used to specify urbanization level of zones for describing land-use plan. 4) Then we conducted multiple regression between farmland loss, both abandonment and conversion amounts, and the described land-use plan in each of the urbanization scenario and in each period. As the results, the study reveals land-use plan has unignorable relation with farmland loss in the metropolitan suburbs at ward-city-town-village level. 1) The urban promotion areas planned larger than necessity and unregulated urbanization promote both farmland conversion and abandonment, and the effect weakens from inner suburbs to outer suburbs. 2) And the effect of land-use plan on farmland abandonment is more obvious than that on farmland conversion. The study advocates that, optimizing land-use plan will hopefully help the farmland conservation in metropolitan suburbs, which contributes to sustainable regional policy making.

Keywords: Agrarian land resource, land-use planning, urbanization level, multiple regression

Procedia PDF Downloads 149
6898 Montelukast Doesn’t Decrease the Risk of Cardiovascular Disease in Asthma Patients in Taiwan

Authors: Sheng Yu Chen, Shi-Heng Wang

Abstract:

Aim: Based on human, animal experiments, and genetic studies, cysteinyl leukotrienes, LTC4, LTD4, and LTE4, are inflammatory substances that are metabolized by 5-lipooxygenase from arachidonic acid, and these substances trigger asthma. In addition, the synthetic pathway of cysteinyl leukotriene is relevant to the increase in cardiovascular diseases such as myocardial ischemia and stroke. Given the situation, we aim to investigate whether cysteinyl leukotrienes receptor antagonist (LTRA), montelukast which cures those who have asthma has potential protective effects on cardiovascular diseases. Method: We conducted a cohort study, and enrolled participants which are newly diagnosed with asthma (ICD-9 CM code 493. X) between 2002 to 2011. The data source is from Taiwan National Health Insurance Research Database Patients with a previous history of myocardial infarction or ischemic stroke were excluded. Among the remaining participants, every montelukast user was matched with two randomly non-users by sex, and age. The incident cardiovascular diseases, including myocardial infarction and ischemic stroke, were regarded as outcomes. We followed the participants until outcomes come first or the end of the following period. To explore the protective effect of montelukast on the risk of cardiovascular disease, we use multivariable Cox regression to estimate the hazard ratio with adjustment for potential confounding factors. Result: There are 55876 newly diagnosed asthma patients who had at least one claim of inpatient admission or at least three claims of outpatient records. We enrolled 5350 montelukast users and 10700 non-users in this cohort study. The following mean (±SD) time of the Montelukast group is 5 (±2.19 )years, and the non-users group is 6.2 5.47 (± 2.641) years. By using multivariable Cox regression, our analysis indicated that the risk of incident cardiovascular diseases between montelukast users (n=43, 0.8%) and non-users (n=111, 1.04%) is approximately equal. [adjusted hazard ratio 0.992; P-value:0.9643] Conclusion: In this population-based study, we found that the use of montelukast is not associated with a decrease in incident MI or IS.

Keywords: asthma, inflammation, montelukast, insurance research database, cardiovascular diseases

Procedia PDF Downloads 82
6897 Effects of Intergenerational Social Mobility on General Health, Oral Health and Physical Function among Older Adults in England

Authors: Alejandra Letelier, Anja Heilmann, Richard G. Watt, Stephen Jivraj, Georgios Tsakos

Abstract:

Background: Socioeconomic position (SEP) influences adult health. People who experienced material disadvantages in childhood or adulthood tend to have higher adult disease levels than their peers from more advantaged backgrounds. Even so, life is a dynamic process and contains a series of transitions that could lead people through different socioeconomic paths. Research on social mobility takes this into account by adopting a trajectory approach, thereby providing a long-term view of the effect of SEP on health. Aim: The aim of this research examines the effects of intergenerational social mobility on adult general health, oral health and functioning in a population aged 50 and over in England. Methods: This study is based on the secondary analysis of data from the English Longitudinal Study of Ageing (ELSA). Using cross-sectional data, nine social trajectories were created based on parental and adult occupational socio-economic position. Regression models were used to estimate the associations between social trajectories and the following outcomes: adult self-rated health, self-rated oral health, oral health related quality of life, total tooth loss and grip strength; while controlling for socio-economic background and health related behaviours. Results: Associations with adult SEP were generally stronger than with childhood SEP, suggesting a stronger influence of proximal rather than distal SEP on health and oral health. Compared to the stable high group, being in the low SEP groups in childhood and adulthood was associated with poorer health and oral health for all examined outcome measures. For adult self-rated health and edentulousness, graded associations with social mobility trajectories were observed. Conclusion: Intergenerational social mobility was associated with self-rated health and total tooth loss. Compared to only those who remained in a low SEP group over time reported worse self-rated oral health and oral health related quality of life, and had lower grip strength measurements. Potential limitations in relation to data quality will be discussed.

Keywords: social determinants of oral health, social mobility, socioeconomic position and oral health, older adults oral health

Procedia PDF Downloads 275
6896 Water Access and Food Security: A Cross-Sectional Study of SSA Countries in 2017

Authors: Davod Ahmadi, Narges Ebadi, Ethan Wang, Hugo Melgar-Quiñonez

Abstract:

Compared to the other Least Developed Countries (LDCs), major countries in sub-Saharan Africa (SSA) have limited access to the clean water. People in this region, and more specifically females, suffer from acute water scarcity problems. They are compelled to spend too much of their time bringing water for domestic use like drinking and washing. Apart from domestic use, water through affecting agriculture and livestock contributes to the food security status of people in vulnerable regions like SSA. Livestock needs water to grow, and agriculture requires enormous quantities of water for irrigation. The main objective of this study is to explore the association between access to water and individuals’ food security status. Data from 2017 Gallup World Poll (GWP) for SSA were analyzed (n=35,000). The target population in GWP is the entire civilian, non-institutionalized, aged 15 and older population. All samples selection is probability based and nationally representative. The Gallup surveys an average of 1,000 samples of individuals per country. Three questions related to water (i.e., water quality, availability of water for crops and availability of water for livestock) were used as the exposure variables. Food Insecurity Experience Scale (FIES) was used as the outcome variable. FIES measures individuals’ food security status, and it is composed of eight questions with simple dichotomous responses (1=Yes and 0=No). Different statistical analyses such as descriptive, crosstabs and binary logistic regression, form the basis of this study. Results from descriptive analyses showed that more than 50% of the respondents had no access to enough water for crops and livestock. More than 85% of respondents were categorized as “food insecure”. Findings from cross-tabulation analyses showed that food security status was significantly associated with water quality (0.135; P=0.000), water for crops (0.106; P=0.000) and water for livestock (0.112; P=0.000). In regression analyses, the probability of being food insecure increased among people who expressed no satisfaction with water quality (OR=1.884 (OR=1.768-2.008)), not enough water for crops (OR=1.721 (1.616-1.834)) and not enough water for livestock (OR=1.706 (1.819)). In conclusion, it should note that water access affects food security status in SSA.

Keywords: water access, agriculture, livestock, FIES

Procedia PDF Downloads 150
6895 Preventive Impact of Regional Analgesia on Chronic Neuropathic Pain After General Surgery

Authors: Beloulou Mohamed Lamine, Fedili Benamar, Meliani Walid, Chaid Dalila, Lamara Abdelhak

Abstract:

Introduction: Post-surgical chronic pain (PSCP) is a pathological condition with a rather complex etiopathogenesis that extensively involves sensitization processes and neuronal damage. The neuropathic component of these pains is almost always present, with variable expression depending on the type of surgery. Objective: To assess the presumed beneficial effect of Regional Anesthesia-Analgesia Techniques (RAAT) on the development of post-surgical chronic neuropathic pain (PSCNP) in various surgical procedures. Patients and Methods: A comparative study involving 510 patients distributed across five surgical models (mastectomy, thoracotomy, hernioplasty, cholecystectomy, and major abdominal-pelvic surgery) and randomized into two groups: Group A (240) receiving conventional postoperative analgesia and Group B (270) receiving balanced analgesia, including the implementation of a Regional Anesthesia-Analgesia Technique (RAAT). These patients were longitudinally followed over a 6-month period, with postsurgical chronic neuropathic pain (PSCNP) defined by a Neuropathic Pain Score DN2≥ 3. Comparative measurements through univariate and multivariable analyses were performed to identify associations between the development of PSCNP and certain predictive factors, including the presumed preventive impact (protective effect) of RAAT. Results: At the 6th month post-surgery, 419 patients were analyzed (Group A= 196 and Group B= 223). The incidence of PSCNP was 32.2% (n=135). Among these patients with chronic pain, the prevalence of neuropathic pain was 37.8% (95% CI: [29.6; 46.5]), with n=51/135. It was significantly lower in Group B compared to Group A, with respective percentages of 31.4% vs. 48.8% (p-value = 0.035). The most significant differences were observed in breast and thoracopulmonary surgeries. In a multiple regression analysis, two predictors of PSCNP were identified: the presence of preoperative pain at the surgical site as a risk factor (OR: 3.198; 95% CI [1.326; 7.714]) and RAAT as a protective factor (OR: 0.408; 95% CI [0.173; 0.961]). Conclusion: The neuropathic component of PSCNP can be observed in different types of surgeries. Regional analgesia included in a multimodal approach to postoperative pain management has proven to be effective for acute pain and seems to have a preventive impact on the development of PSCNP and its neuropathic nature, particularly in surgeries that are more prone to chronicization.

Keywords: post-surgical chronic pain, post-surgical chronic neuropathic pain, regional anesthesia-analgesia techniques, neuropathic pain score DN2, preventive impact

Procedia PDF Downloads 78
6894 The State Model of Corporate Governance

Authors: Asaiel Alohaly

Abstract:

A theoretical framework for corporate governance is needed to bridge the gap between the corporate governance of private companies and State-owned Enterprises (SOEs). The two dominant models, being shareholder and stakeholder, do not always address the specific requirements and challenges posed by ‘hybrid’ companies; namely, previously national bodies that have been privatised bffu t where the government retains significant control or holds a majority of shareholders. Thus, an exploratory theoretical study is needed to identify how ‘hybrid’ companies should be defined and why the state model should be acknowledged since it is the less conspicuous model in comparison with the shareholder and stakeholder models. This research focuses on ‘the state model of corporate governance to understand the complex ownership, control pattern, goals, and corporate governance of these hybrid companies. The significance of this research lies in the fact that there is a limited available publication on the state model. The outcomes of this research are as follows. It became evident that the state model exists in the ecosystem. However, corporate governance theories have not extensively covered this model. Though, there is a lot being said about it by OECD and the World Bank. In response to this gap between theories and industry practice, this research argues for the state model, which proceeds from an understanding of the institutionally embedded character of hybrid companies where the government is either a majority of the total shares or a controlling shareholder.

Keywords: corporate governance, control, shareholders, state model

Procedia PDF Downloads 143
6893 Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

This study is an attempt to obtain reliable data on the natural history of breast cancer growth. We analyze the opportunities for using classical mathematical models (exponential and logistic tumor growth models, Gompertz and von Bertalanffy tumor growth models) to try to describe growth of the primary tumor and the secondary distant metastases of human breast cancer. The research aim is to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoMPaS and corresponding software. We are interested in: 1) modelling the whole natural history of the primary tumor and the secondary distant metastases; 2) developing adequate and precise CoMPaS which reflects relations between the primary tumor and the secondary distant metastases; 3) analyzing the CoMPaS scope of application; 4) implementing the model as a software tool. The foundation of the CoMPaS is the exponential tumor growth model, which is described by determinate nonlinear and linear equations. The CoMPaS corresponds to TNM classification. It allows to calculate different growth periods of the primary tumor and the secondary distant metastases: 1) ‘non-visible period’ for the primary tumor; 2) ‘non-visible period’ for the secondary distant metastases; 3) ‘visible period’ for the secondary distant metastases. The CoMPaS is validated on clinical data of 10-years and 15-years survival depending on the tumor stage and diameter of the primary tumor. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer growth models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. The CoMPaS model and predictive software: a) fit to clinical trials data; b) detect different growth periods of the primary tumor and the secondary distant metastases; c) make forecast of the period of the secondary distant metastases appearance; d) have higher average prediction accuracy than the other tools; e) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoMPaS: the number of doublings for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases. The CoMPaS enables, for the first time, to predict ‘whole natural history’ of the primary tumor and the secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on the primary tumor sizes. Summarizing: a) CoMPaS describes correctly the primary tumor growth of IA, IIA, IIB, IIIB (T1-4N0M0) stages without metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and inception of the secondary distant metastases.

Keywords: breast cancer, exponential growth model, mathematical model, metastases in lymph nodes, primary tumor, survival

Procedia PDF Downloads 341
6892 Effects of Soil-Structure Interaction on Seismic Performance of Steel Structures Equipped with Viscous Fluid Dampers

Authors: Faramarz Khoshnoudian, Saeed Vosoughiyan

Abstract:

The main goal of this article is to clarify the soil-structure interaction (SSI) effects on the seismic performance of steel moment resisting frame buildings which are rested on soft soil and equipped with viscous fluid dampers (VFDs). For this purpose, detailed structural models of a ten-story SMRF with VFDs excluding and including the SSI are constructed first. In order to simulate the dynamic response of the foundation, in this paper, the simple cone model is applied. Then, the nonlinear time-history analysis of the models is conducted using three kinds of earthquake excitations with different intensities. The analysis results have demonstrated that the SSI effects on the seismic performance of a structure equipped with VFDs and supported by rigid foundation on soft soil need to be considered. Also VFDs designed based on rigid foundation hypothesis fail to achieve the expected seismic objective while SSI goes into effect.

Keywords: nonlinear time-history analysis, soil-structure interaction, steel moment resisting frame building, viscous fluid dampers

Procedia PDF Downloads 335
6891 Modeling of Long Wave Generation and Propagation via Seabed Deformation

Authors: Chih-Hua Chang

Abstract:

This study uses a three-dimensional (3D) fully nonlinear model to simulate the wave generation problem caused by the movement of the seabed. The numerical model is first simplified into two dimensions and then compared with the existing two-dimensional (2D) experimental data and the 2D numerical results of other shallow-water wave models. Results show that this model is different from the earlier shallow-water wave models, with the phase being closer to the experimental results of wave propagation. The results of this study are also compared with those of the 3D experimental results of other researchers. Satisfactory results can be obtained in both the waveform and the flow field. This study assesses the application of the model to simulate the wave caused by the circular (radius r0) terrain rising or falling (moving distance bm). The influence of wave-making parameters r0 and bm are discussed. This study determines that small-range (e.g., r0 = 2, normalized by the static water depth), rising, or sinking terrain will produce significant wave groups in the far field. For large-scale moving terrain (e.g., r0 = 10), uplift and deformation will potentially generate the leading solitary-like waves in the far field.

Keywords: seismic wave, wave generation, far-field waves, seabed deformation

Procedia PDF Downloads 86
6890 Batch Kinetic, Isotherm and Thermodynamic Studies of Copper (II) Removal from Wastewater Using HDL as Adsorbent

Authors: Nadjet Taoualit, Zoubida Chemat, Djamel-Eddine Hadj-Boussaad

Abstract:

This study aims the removal of copper Cu (II) contained in wastewater by adsorption on a perfect synthesized mud. It is the materials Hydroxides Double Lamellar, HDL, prepared and synthesized by co-precipitation method at constant pH, which requires a simple titration assembly, with an inexpensive and available material in the laboratory, and also allows us better control of the composition of the reaction medium, and gives well crystallized products. A characterization of the adsorbent proved essential. Thus a range of physic-chemical analysis was performed including: FTIR spectroscopy, X-ray diffraction… The adsorption of copper ions was investigated in dispersed medium (batch). A systematic study of various parameters (amount of support, contact time, initial copper concentration, temperature, pH…) was performed. Adsorption kinetic data were tested using pseudo-first order, pseudo-second order, Bangham's equation and intra-particle diffusion models. The equilibrium data were analyzed using Langmuir, Freundlich, Tempkin and other isotherm models at different doses of HDL. The thermodynamics parameters were evaluated at different temperatures. The results have established good potentiality for the HDL to be used as a sorbent for the removal of Copper from wastewater.

Keywords: adsoption, copper, HDL, isotherm

Procedia PDF Downloads 275
6889 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients

Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi

Abstract:

Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.

Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection

Procedia PDF Downloads 145
6888 The Relationship between Depression, HIV Stigma and Adherence to Antiretroviral Therapy among Adult Patients Living with HIV at a Tertiary Hospital in Durban, South Africa: The Mediating Roles of Self-Efficacy and Social Support

Authors: Muziwandile Luthuli

Abstract:

Although numerous factors predicting adherence to antiretroviral therapy (ART) among people living with HIV/AIDS (PLWHA) have been broadly studied on both regional and global level, up-to-date adherence of patients to ART remains an overarching, dynamic and multifaceted problem that needs to be investigated over time and across various contexts. There is a rarity of empirical data in the literature on interactive mechanisms by which psychosocial factors influence adherence to ART among PLWHA within the South African context. Therefore, this study was designed to investigate the relationship between depression, HIV stigma, and adherence to ART among adult patients living with HIV at a tertiary hospital in Durban, South Africa, and the mediating roles of self-efficacy and social support. The health locus of control theory and the social support theory were the underlying theoretical frameworks for this study. Using a cross-sectional research design, a total of 201 male and female adult patients aged between 18-75 years receiving ART at a tertiary hospital in Durban, KwaZulu-Natal were sampled, using time location sampling (TLS). A self-administered questionnaire was employed to collect the data in this study. Data were analysed through SPSS version 27. Several statistical analyses were conducted in this study, namely univariate statistical analysis, correlational analysis, Pearson’s chi-square analysis, cross-tabulation analysis, binary logistic regression analysis, and mediational analysis. Univariate analysis indicated that the sample mean age was 39.28 years (SD=12.115), while most participants were females 71.0% (n=142), never married 74.2% (n=147), and most were also secondary school educated 48.3% (n=97), as well as unemployed 65.7% (n=132). The prevalence rate of participants who had high adherence to ART was 53.7% (n=108), and 46.3% (n=93) of participants had low adherence to ART. Chi-square analysis revealed that employment status was the only statistically significant socio-demographic influence of adherence to ART in this study (χ2 (3) = 8.745; p < .033). Chi-square analysis showed that there was a statistically significant difference found between depression and adherence to ART (χ2 (4) = 16.140; p < .003), while between HIV stigma and adherence to ART, no statistically significant difference was found (χ2 (1) = .323; p >.570). Binary logistic regression indicated that depression was statistically associated with adherence to ART (OR= .853; 95% CI, .789–.922, P < 001), while the association between self-efficacy and adherence to ART was statistically significant (OR= 1.04; 95% CI, 1.001– 1.078, P < .045) after controlling for the effect of depression. However, the findings showed that the effect of depression on adherence to ART was not significantly mediated by self-efficacy (Sobel test for indirect effect, Z= 1.01, P > 0.31). Binary logistic regression showed that the effect of HIV stigma on adherence to ART was not statistically significant (OR= .980; 95% CI, .937– 1.025, P > .374), but the effect of social support on adherence to ART was statistically significant, only after the effect of HIV stigma was controlled for (OR= 1.017; 95% CI, 1.000– 1.035, P < .046). This study promotes behavioral and social change effected through evidence-based interventions by emphasizing the need for additional research that investigates the interactive mechanisms by which psychosocial factors influence adherence to ART. Depression is a significant predictor of adherence to ART. Thus, to alleviate the psychosocial impact of depression on adherence to ART, effective interventions must be devised, along with special consideration of self-efficacy and social support. Therefore, this study is helpful in informing and effecting change in health policy and healthcare services through its findings

Keywords: ART adherence, depression, HIV/AIDS, PLWHA

Procedia PDF Downloads 180
6887 Supersymmetry versus Compositeness: 2-Higgs Doublet Models Tell the Story

Authors: S. De Curtis, L. Delle Rose, S. Moretti, K. Yagyu

Abstract:

Supersymmetry and compositeness are the two prevalent paradigms providing both a solution to the hierarchy problem and motivation for a light Higgs boson state. An open door towards the solution is found in the context of 2-Higgs Doublet Models (2HDMs), which are necessary to supersymmetry and natural within compositeness in order to enable Electro-Weak Symmetry Breaking. In scenarios of compositeness, the two isospin doublets arise as pseudo Nambu-Goldstone bosons from the breaking of SO(6). By calculating the Higgs potential at one-loop level through the Coleman-Weinberg mechanism from the explicit breaking of the global symmetry induced by the partial compositeness of fermions and gauge bosons, we derive the phenomenological properties of the Higgs states and highlight the main signatures of this Composite 2-Higgs Doublet Model at the Large Hadron Collider. These include modifications to the SM-like Higgs couplings as well as production and decay channels of heavier Higgs bosons. We contrast the properties of this composite scenario to the well-known ones established in supersymmetry, with the MSSM being the most notorious example. We show how 2HDM spectra of masses and couplings accessible at the Large Hadron Collider may allow one to distinguish between the two paradigms.

Keywords: beyond the standard model, composite Higgs, supersymmetry, Two-Higgs Doublet Model

Procedia PDF Downloads 126
6886 Association of Temperature Factors with Seropositive Results against Selected Pathogens in Dairy Cow Herds from Central and Northern Greece

Authors: Marina Sofia, Alexios Giannakopoulos, Antonia Touloudi, Dimitris C Chatzopoulos, Zoi Athanasakopoulou, Vassiliki Spyrou, Charalambos Billinis

Abstract:

Fertility of dairy cattle can be affected by heat stress when the ambient temperature increases above 30°C and the relative humidity ranges from 35% to 50%. The present study was conducted on dairy cattle farms during summer months in Greece and aimed to identify the serological profile against pathogens that could affect fertility and to associate the positive serological results at herd level with temperature factors. A total of 323 serum samples were collected from clinically healthy dairy cows of 8 herds, located in Central and Northern Greece. ELISA tests were performed to detect antibodies against selected pathogens that affect fertility, namely Chlamydophila abortus, Coxiella burnetii, Neospora caninum, Toxoplasma gondii and Infectious Bovine Rhinotracheitis Virus (IBRV). Eleven climatic variables were derived from the WorldClim version 1.4. and ArcGIS V.10.1 software was used for analysis of the spatial information. Five different MaxEnt models were applied to associate the temperature variables with the locations of seropositive Chl. abortus, C. burnetii, N. caninum, T. gondii and IBRV herds (one for each pathogen). The logistic outputs were used for the interpretation of the results. ROC analyses were performed to evaluate the goodness of fit of the models’ predictions. Jackknife tests were used to identify the variables with a substantial contribution to each model. The seropositivity rates of pathogens varied among the 8 herds (0.85-4.76% for Chl. abortus, 4.76-62.71% for N. caninum, 3.8-43.47% for C. burnetii, 4.76-39.28% for T. gondii and 47.83-78.57% for IBRV). The variables of annual temperature range, mean diurnal range and maximum temperature of the warmest month gave a contribution to all five models. The regularized training gains, the training AUCs and the unregularized training gains were estimated. The mean diurnal range gave the highest gain when used in isolation and decreased the gain the most when it was omitted in the two models for seropositive Chl.abortus and IBRV herds. The annual temperature range increased the gain when used alone and decreased the gain the most when it was omitted in the models for seropositive C. burnetii, N. caninum and T. gondii herds. In conclusion, antibodies against Chl. abortus, C. burnetii, N. caninum, T. gondii and IBRV were detected in most herds suggesting circulation of pathogens that could cause infertility. The results of the spatial analyses demonstrated that the annual temperature range, mean diurnal range and maximum temperature of the warmest month could affect positively the possible pathogens’ presence. Acknowledgment: This research has been co‐financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: T1EDK-01078).

Keywords: dairy cows, seropositivity, spatial analysis, temperature factors

Procedia PDF Downloads 199