Search results for: local machine learning
11072 A Quantitative Structure-Adsorption Study on Novel and Emerging Adsorbent Materials
Authors: Marc Sader, Michiel Stock, Bernard De Baets
Abstract:
Considering a large amount of adsorption data of adsorbate gases on adsorbent materials in literature, it is interesting to predict such adsorption data without experimentation. A quantitative structure-activity relationship (QSAR) is developed to correlate molecular characteristics of gases and existing knowledge of materials with their respective adsorption properties. The application of Random Forest, a machine learning method, on a set of adsorption isotherms at a wide range of partial pressures and concentrations is studied. The predicted adsorption isotherms are fitted to several adsorption equations to estimate the adsorption properties. To impute the adsorption properties of desired gases on desired materials, leave-one-out cross-validation is employed. Extensive experimental results for a range of settings are reported.Keywords: adsorption, predictive modeling, QSAR, random forest
Procedia PDF Downloads 22711071 Naturalistic Neuroimaging: From Film to Learning Disorders
Authors: Asha Dukkipati
Abstract:
Cognitive neuroscience explores neural functioning and aberrant brain activity during cognitive and perceptual tasks. Neurocinematics is a subfield of cognitive neuroscience that observes neural responses of individuals watching a film to see similarities and differences between individuals. This method is typically used for commercial use, allowing directors and filmmakers to produce better visuals and increasing their results in the box office. However, neurocinematics is increasingly becoming a common tool for neuroscientists interested in studying similar patterns of brain activity across viewers outside of the film industry. In this review, it argue that neurocinematics provides an easy, naturalistic approach for studying and diagnosing learning disorders. While the neural underpinnings of developmental learning disorders are traditionally assessed with well-established methods like EEG and fMRI that target particular cognitive domains, such as simple visual and attention tasks, there is initial evidence and theoretical background in support of neurocinematics as a biomarker for learning differences. By using ADHD, dyslexia, and autism as case studies, this literature review discusses the potential advantages of neurocinematics as a new tool for learning disorders research.Keywords: behavioral and social sciences, neuroscience, neurocinematics, biomarkers, neurobehavioral disorders
Procedia PDF Downloads 9611070 Sino-Africa Trade Ties: The Curse of African Minerals: Tweaking the Corporate Scorecard to Benefit the Mining Village Communities
Authors: Donald Ouko
Abstract:
For decades, Africa has been home to several foreign companies doing business in various sectors. In recent years, China has consistently positioned itself as a development partner powerhouse among African nations. However, this has not been felt as equally beneficial to the local communities where the partnerships bloom in extractives trading. This paper explores the impact of Chinese involvement in mining on the local communities in three African countries, the factors that enable the sector to thrive amid the impacts, and what could be done differently for the local communities to experience a different outcome. It suggests alternative terms of engagement that aim at transparency, accountability, and anti-corruption to ensure inclusive social and economic development, and sound governance both at state and corporate levels.Keywords: law and society, social development, corporate governance, China-Africa ties, human rights, socio-economic development, accountability, transparency
Procedia PDF Downloads 2911069 Animation: A Footpath for Enhanced Awareness Creation on Malaria Prevention in Rural Communities
Authors: Stephen Osei Akyiaw, Divine Kwabena Atta Kyere-Owusu
Abstract:
Malaria has been a worldwide menace of a health condition to human beings for several decades with majority of people on the African continent with most causalities where Ghana is no exception. Therefore, this study employed the use of animation to enhance awareness creation on the spread and prevention of Malaria in Effutu Communities in the Central Region of Ghana. Working with the interpretivist paradigm, this study adopted Art-Based Research, where the AIDA Model and Cognitive Theory of Multimedia Learning (CTML) served as the theories underpinning the study. Purposive and convenience sampling techniques were employed in selecting sample for the study. The data collection instruments included document review and interviews. Besides, the study developed an animation using the local language of the people as the voice over to foster proper understanding by the rural community folks. Also, indigenous characters were used for the animation for the purpose of familiarization with the local folks. The animation was publicized at Health Town Halls within the communities. The outcomes of the study demonstrated that the use of animation was effective in enhancing the awareness creation for preventing and controlling malaria disease in rural communities in Effutu Communities in the Central Region of Ghana. Health officers and community folks expressed interest and desire to practice the preventive measures outlined in the animation to help reduce the spread of Malaria in their communities. The study, therefore, recommended that animation could be used to curtail the spread and enhanced the prevention of Malaria.Keywords: malaria, animation, prevention, communities
Procedia PDF Downloads 8711068 Impact of Natural Language Processing in Educational Setting: An Effective Approach towards Improved Learning
Authors: Khaled M. Alhawiti
Abstract:
Natural Language Processing (NLP) is an effective approach for bringing improvement in educational setting. This involves initiating the process of learning through the natural acquisition in the educational systems. It is based on following effective approaches for providing the solution for various problems and issues in education. Natural Language Processing provides solution in a variety of different fields associated with the social and cultural context of language learning. It is based on involving various tools and techniques such as grammar, syntax, and structure of text. It is effective approach for teachers, students, authors, and educators for providing assistance for writing, analysis, and assessment procedure. Natural Language Processing is widely integrated in the large number of educational contexts such as research, science, linguistics, e-learning, evaluations system, and various other educational settings such as schools, higher education system, and universities. Natural Language Processing is based on applying scientific approach in the educational settings. In the educational settings, NLP is an effective approach to ensure that students can learn easily in the same way as they acquired language in the natural settings.Keywords: natural language processing, education, application, e-learning, scientific studies, educational system
Procedia PDF Downloads 50311067 Integrated Free Space Optical Communication and Optical Sensor Network System with Artificial Intelligence Techniques
Authors: Yibeltal Chanie Manie, Zebider Asire Munyelet
Abstract:
5G and 6G technology offers enhanced quality of service with high data transmission rates, which necessitates the implementation of the Internet of Things (IoT) in 5G/6G architecture. In this paper, we proposed the integration of free space optical communication (FSO) with fiber sensor networks for IoT applications. Recently, free-space optical communications (FSO) are gaining popularity as an effective alternative technology to the limited availability of radio frequency (RF) spectrum. FSO is gaining popularity due to flexibility, high achievable optical bandwidth, and low power consumption in several applications of communications, such as disaster recovery, last-mile connectivity, drones, surveillance, backhaul, and satellite communications. Hence, high-speed FSO is an optimal choice for wireless networks to satisfy the full potential of 5G/6G technology, offering 100 Gbit/s or more speed in IoT applications. Moreover, machine learning must be integrated into the design, planning, and optimization of future optical wireless communication networks in order to actualize this vision of intelligent processing and operation. In addition, fiber sensors are important to achieve real-time, accurate, and smart monitoring in IoT applications. Moreover, we proposed deep learning techniques to estimate the strain changes and peak wavelength of multiple Fiber Bragg grating (FBG) sensors using only the spectrum of FBGs obtained from the real experiment.Keywords: optical sensor, artificial Intelligence, Internet of Things, free-space optics
Procedia PDF Downloads 6311066 Initiating Learning to Know among Fishers for Sustainable Fishery on Lake Victoria. A Case of Kigungu Fishing Ground Wakiso District
Authors: Namubiru Zula, Aganyira Kelle, Van der Linden Josje, Openjuru George Laadah
Abstract:
Learning to know is a key principle to lifelong learning, with self-direction as the cornerstone. This study sought to initiate self-direction for lifelong learning through social constructivism among fishers; with the major goal of creating a community of fishers who continuously learn from each other for sustainable fishing. Government of Uganda has instituted several mechanisms like co-management with Beach Management Unit (BMU) System against illegal fishing. However, illegal fishing persists, there is reduced fish stocks with several outcry on how fishers are handled. Some studies have indicated that it’s the poor orientation of BMU leaders and fishers which are top down. This initial engagement of fishers was conducted through a meeting and use of stake holder’s analysis tool to discuss the relevance of the study; harnessing fishers’ knowledge for sustainable fisheries on Lake Victoria, its objectives, the key stake holders to enable them fish sustainably. It revealed initial attempt to learn from each other and learning to know among fishers, with some elements of self-direction. However, fishers attempt to learning and self-direction are affected by prior brutal enforcement experiences. This meeting led to fishers gain some sense of hope towards enforcement brutality. The key stakeholders highlighted include MAAIF, FAO, UNBS, NaFIRRI, LVFO, BMU, UFPEA, Fishers m employers, Fisheries Protection Unit, GIZ, and any Non-Government organization but declined the Association of Fisheries and Lake Users in Uganda.Keywords: self direction, lifelong learning, social constructivism, sustainable fishing
Procedia PDF Downloads 8611065 Predictive Pathogen Biology: Genome-Based Prediction of Pathogenic Potential and Countermeasures Targets
Authors: Debjit Ray
Abstract:
Horizontal gene transfer (HGT) and recombination leads to the emergence of bacterial antibiotic resistance and pathogenic traits. HGT events can be identified by comparing a large number of fully sequenced genomes across a species or genus, define the phylogenetic range of HGT, and find potential sources of new resistance genes. In-depth comparative phylogenomics can also identify subtle genome or plasmid structural changes or mutations associated with phenotypic changes. Comparative phylogenomics requires that accurately sequenced, complete and properly annotated genomes of the organism. Assembling closed genomes requires additional mate-pair reads or “long read” sequencing data to accompany short-read paired-end data. To bring down the cost and time required of producing assembled genomes and annotating genome features that inform drug resistance and pathogenicity, we are analyzing the performance for genome assembly of data from the Illumina NextSeq, which has faster throughput than the Illumina HiSeq (~1-2 days versus ~1 week), and shorter reads (150bp paired-end versus 300bp paired end) but higher capacity (150-400M reads per run versus ~5-15M) compared to the Illumina MiSeq. Bioinformatics improvements are also needed to make rapid, routine production of complete genomes a reality. Modern assemblers such as SPAdes 3.6.0 running on a standard Linux blade are capable in a few hours of converting mixes of reads from different library preps into high-quality assemblies with only a few gaps. Remaining breaks in scaffolds are generally due to repeats (e.g., rRNA genes) are addressed by our software for gap closure techniques, that avoid custom PCR or targeted sequencing. Our goal is to improve the understanding of emergence of pathogenesis using sequencing, comparative genomics, and machine learning analysis of ~1000 pathogen genomes. Machine learning algorithms will be used to digest the diverse features (change in virulence genes, recombination, horizontal gene transfer, patient diagnostics). Temporal data and evolutionary models can thus determine whether the origin of a particular isolate is likely to have been from the environment (could it have evolved from previous isolates). It can be useful for comparing differences in virulence along or across the tree. More intriguing, it can test whether there is a direction to virulence strength. This would open new avenues in the prediction of uncharacterized clinical bugs and multidrug resistance evolution and pathogen emergence.Keywords: genomics, pathogens, genome assembly, superbugs
Procedia PDF Downloads 19711064 Socio-Cultural Adaptation Approach to Enhance Intercultural Collaboration and Learning
Authors: Fadoua Ouamani, Narjès Bellamine Ben Saoud, Henda Hajjami Ben Ghézala
Abstract:
In the last few years and over the last decades, there was a growing interest in the development of Computer Supported Collaborative Learning (CSCL) environments. However, the existing systems ignore the variety of learners and their socio-cultural differences, especially in the case of distant and networked learning. In fact, within such collaborative learning environments, learners from different socio-cultural backgrounds may interact together. These learners evolve within various cultures and social contexts and acquire different socio-cultural values and behaviors. Thus, they should be assisted while communicating and collaborating especially in an intercultural group. Besides, the communication and collaboration tools provided to each learner must depend on and be adapted to her/his socio-cultural profile. The main goal of this paper is to present the proposed socio-cultural adaptation approach based on and guided by ontologies to adapt CSCL environments to the socio-cultural profiles of its users (learners or others).Keywords: CSCL, socio-cultural profile, adaptation, ontology
Procedia PDF Downloads 36111063 Heat Setting of Polyester: Teaching and Learning Materials
Authors: C. W. Kan
Abstract:
Heat setting is a commonly used technique in textile industry for treating synthetic fibers. In this study, we examined the effect of heat-setting process on the dyeing properties of polyester fabric. The heat setting conditions were varied, and these conditions would affect the dyeing results. The aim of this study is to illustrate the proper application method of heat setting process to polyester fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.Keywords: learning materials, heat setting, polyester, dyeing
Procedia PDF Downloads 24711062 AI-Powered Models for Real-Time Fraud Detection in Financial Transactions to Improve Financial Security
Authors: Shanshan Zhu, Mohammad Nasim
Abstract:
Financial fraud continues to be a major threat to financial institutions across the world, causing colossal money losses and undermining public trust. Fraud prevention techniques, based on hard rules, have become ineffective due to evolving patterns of fraud in recent times. Against such a background, the present study probes into distinct methodologies that exploit emergent AI-driven techniques to further strengthen fraud detection. We would like to compare the performance of generative adversarial networks and graph neural networks with other popular techniques, like gradient boosting, random forests, and neural networks. To this end, we would recommend integrating all these state-of-the-art models into one robust, flexible, and smart system for real-time anomaly and fraud detection. To overcome the challenge, we designed synthetic data and then conducted pattern recognition and unsupervised and supervised learning analyses on the transaction data to identify which activities were fishy. With the use of actual financial statistics, we compare the performance of our model in accuracy, speed, and adaptability versus conventional models. The results of this study illustrate a strong signal and need to integrate state-of-the-art, AI-driven fraud detection solutions into frameworks that are highly relevant to the financial domain. It alerts one to the great urgency that banks and related financial institutions must rapidly implement these most advanced technologies to continue to have a high level of security.Keywords: AI-driven fraud detection, financial security, machine learning, anomaly detection, real-time fraud detection
Procedia PDF Downloads 4211061 Evaluating Classification with Efficacy Metrics
Authors: Guofan Shao, Lina Tang, Hao Zhang
Abstract:
The values of image classification accuracy are affected by class size distributions and classification schemes, making it difficult to compare the performance of classification algorithms across different remote sensing data sources and classification systems. Based on the term efficacy from medicine and pharmacology, we have developed the metrics of image classification efficacy at the map and class levels. The novelty of this approach is that a baseline classification is involved in computing image classification efficacies so that the effects of class statistics are reduced. Furthermore, the image classification efficacies are interpretable and comparable, and thus, strengthen the assessment of image data classification methods. We use real-world and hypothetical examples to explain the use of image classification efficacies. The metrics of image classification efficacy meet the critical need to rectify the strategy for the assessment of image classification performance as image classification methods are becoming more diversified.Keywords: accuracy assessment, efficacy, image classification, machine learning, uncertainty
Procedia PDF Downloads 21111060 Adopting Data Science and Citizen Science to Explore the Development of African Indigenous Agricultural Knowledge Platform
Authors: Steven Sam, Ximena Schmidt, Hugh Dickinson, Jens Jensen
Abstract:
The goal of this study is to explore the potential of data science and citizen science approaches to develop an interactive, digital, open infrastructure that pulls together African indigenous agriculture and food systems data from multiple sources, making it accessible and reusable for policy, research and practice in modern food production efforts. The World Bank has recognised that African Indigenous Knowledge (AIK) is innovative and unique among local and subsistent smallholder farmers, and it is central to sustainable food production and enhancing biodiversity and natural resources in many poor, rural societies. AIK refers to tacit knowledge held in different languages, cultures and skills passed down from generation to generation by word of mouth. AIK is a key driver of food production, preservation, and consumption for more than 80% of citizens in Africa, and can therefore assist modern efforts of reducing food insecurity and hunger. However, the documentation and dissemination of AIK remain a big challenge confronting librarians and other information professionals in Africa, and there is a risk of losing AIK owing to urban migration, modernisation, land grabbing, and the emergence of relatively small-scale commercial farming businesses. There is also a clear disconnect between the AIK and scientific knowledge and modern efforts for sustainable food production. The study combines data science and citizen science approaches through active community participation to generate and share AIK for facilitating learning and promoting knowledge that is relevant for policy intervention and sustainable food production through a curated digital platform based on FAIR principles. The study adopts key informant interviews along with participatory photo and video elicitation approach, where farmers are given digital devices (mobile phones) to record and document their every practice involving agriculture, food production, processing, and consumption by traditional means. Data collected are analysed using the UK Science and Technology Facilities Council’s proven methodology of citizen science (Zooniverse) and data science. Outcomes are presented in participatory stakeholder workshops, where the researchers outline plans for creating the platform and developing the knowledge sharing standard framework and copyrights agreement. Overall, the study shows that learning from AIK, by investigating what local communities know and have, can improve understanding of food production and consumption, in particular in times of stress or shocks affecting the food systems and communities. Thus, the platform can be useful for local populations, research, and policy-makers, and it could lead to transformative innovation in the food system, creating a fundamental shift in the way the North supports sustainable, modern food production efforts in Africa.Keywords: Africa indigenous agriculture knowledge, citizen science, data science, sustainable food production, traditional food system
Procedia PDF Downloads 8211059 Learners’ Reactions to Writing Activities in an Elementary Algebra Classroom
Authors: Early Sol A. Gadong, Lourdes C. Zamora, Jonny B. Pornel, Aurora Fe C. Bautista
Abstract:
Various research has shown that writing allows students to engage in metacognition and provides them with a venue to communicate their disposition towards what they are learning. However, few studies have explored students’ feelings about the incorporation of such writing activities in their mathematics classes. Through reflection sheets, group discussions, and interviews, this mixed-methods study explored students’ perceptions and insights on supplementary writing activities in their Elementary Algebra class. Findings revealed that while students generally have a positive regard for writing activities, they have conflicting views about how writing activities can help them in their learning. A big majority contend that writing activities can enhance the learning of mathematical content and attitudes towards mathematics if they allow students to explore and synthesize what they have learned and reflected on their emotional disposition towards mathematics. Also, gender does not appear to play a significant role in students’ reactions to writing activities.Keywords: writing in math, metacognition, affective factors in learning, elementary algebra classroom
Procedia PDF Downloads 44311058 Efficient Passenger Counting in Public Transport Based on Machine Learning
Authors: Chonlakorn Wiboonsiriruk, Ekachai Phaisangittisagul, Chadchai Srisurangkul, Itsuo Kumazawa
Abstract:
Public transportation is a crucial aspect of passenger transportation, with buses playing a vital role in the transportation service. Passenger counting is an essential tool for organizing and managing transportation services. However, manual counting is a tedious and time-consuming task, which is why computer vision algorithms are being utilized to make the process more efficient. In this study, different object detection algorithms combined with passenger tracking are investigated to compare passenger counting performance. The system employs the EfficientDet algorithm, which has demonstrated superior performance in terms of speed and accuracy. Our results show that the proposed system can accurately count passengers in varying conditions with an accuracy of 94%.Keywords: computer vision, object detection, passenger counting, public transportation
Procedia PDF Downloads 15511057 Social Collaborative Learning Model Based on Proactive Involvement to Promote the Global Merit Principle in Cultivating Youths' Morality
Authors: Wera Supa, Panita Wannapiroon
Abstract:
This paper is a report on the designing of the social collaborative learning model based on proactive involvement to Promote the global merit principle in cultivating youths’ morality. The research procedures into two phases, the first phase is to design the social collaborative learning model based on proactive involvement to promote the global merit principle in cultivating youths’ morality, and the second is to evaluate the social collaborative learning model based on proactive involvement. The sample group in this study consists of 15 experts who are dominant in proactive participation, moral merit principle and youths’ morality cultivation from executive level, lecturers and the professionals in information and communication technology expertise selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. This study has explored that there are four significant factors in promoting the hands-on collaboration of global merit scheme in order to implant virtues to adolescences which are: 1) information and communication Technology Usage; 2) proactive involvement; 3) morality cultivation policy, and 4) global merit principle. The experts agree that the social collaborative learning model based on proactive involvement is highly appropriate.Keywords: social collaborative learning, proactive involvement, global merit principle, morality
Procedia PDF Downloads 38811056 Lineament Analysis as a Method of Mineral Deposit Exploration
Authors: Dmitry Kukushkin
Abstract:
Lineaments form complex grids on Earth's surface. Currently, one particular object of study for many researchers is the analysis and geological interpretation of maps of lineament density in an attempt to locate various geological structures. But lineament grids are made up of global, regional and local components, and this superimposition of lineament grids of various scales (global, regional, and local) renders this method less effective. Besides, the erosion processes and the erosional resistance of rocks lying on the surface play a significant role in the formation of lineament grids. Therefore, specific lineament density map is characterized by poor contrast (most anomalies do not exceed the average values by more than 30%) and unstable relation with local geological structures. Our method allows to confidently determine the location and boundaries of local geological structures that are likely to contain mineral deposits. Maps of the fields of lineament distortion (residual specific density) created by our method are characterized by high contrast with anomalies exceeding the average by upward of 200%, and stable correlation to local geological structures containing mineral deposits. Our method considers a lineament grid as a general lineaments field – surface manifestation of stress and strain fields of Earth associated with geological structures of global, regional and local scales. Each of these structures has its own field of brittle dislocations that appears on the surface of its lineament field. Our method allows singling out local components by suppressing global and regional components of the general lineaments field. The remaining local lineament field is an indicator of local geological structures.The following are some of the examples of the method application: 1. Srednevilyuiskoye gas condensate field (Yakutia) - a direct proof of the effectiveness of methodology; 2. Structure of Astronomy (Taimyr) - confirmed by the seismic survey; 3. Active gold mine of Kadara (Chita Region) – confirmed by geochemistry; 4. Active gold mine of Davenda (Yakutia) - determined the boundaries of the granite massif that controls mineralization; 5. Object, promising to search for hydrocarbons in the north of Algeria - correlated with the results of geological, geochemical and geophysical surveys. For both Kadara and Davenda, the method demonstrated that the intensive anomalies of the local lineament fields are consistent with the geochemical anomalies and indicate the presence of the gold content at commercial levels. Our method of suppression of global and regional components results in isolating a local lineament field. In early stages of a geological exploration for oil and gas, this allows determining boundaries of various geological structures with very high reliability. Therefore, our method allows optimization of placement of seismic profile and exploratory drilling equipment, and this leads to a reduction of costs of prospecting and exploration of deposits, as well as acceleration of its commissioning.Keywords: lineaments, mineral exploration, oil and gas, remote sensing
Procedia PDF Downloads 30411055 Multimodal Employee Attendance Management System
Authors: Khaled Mohammed
Abstract:
This paper presents novel face recognition and identification approaches for the real-time attendance management problem in large companies/factories and government institutions. The proposed uses the Minimum Ratio (MR) approach for employee identification. Capturing the authentic face variability from a sequence of video frames has been considered for the recognition of faces and resulted in system robustness against the variability of facial features. Experimental results indicated an improvement in the performance of the proposed system compared to the Previous approaches at a rate between 2% to 5%. In addition, it decreased the time two times if compared with the Previous techniques, such as Extreme Learning Machine (ELM) & Multi-Scale Structural Similarity index (MS-SSIM). Finally, it achieved an accuracy of 99%.Keywords: attendance management system, face detection and recognition, live face recognition, minimum ratio
Procedia PDF Downloads 15511054 Content and Langauge Integrated Learning: English and Art History
Authors: Craig Mertens
Abstract:
Teaching art history or any other academic subject to EFL students can be done successfully. A course called Western Images was created to teach Japanese students art history while only using English in the classroom. An approach known as Content and Language Integrated Learning (CLIL) was used as a basis for this course. This paper’s purpose is to state the reasons why learning about art history is important, go through the process of creating content for the course, and suggest multiple tasks to help students practice the critical thinking skills used in analyzing and drawing conclusions of works of art from western culture. As a guide for this paper, Brown’s (1995) six elements of a language curriculum will be used. These stages include needs analysis, goals and objectives, assessment, materials, teaching method and tasks, and evaluation of the course. The goal here is to inspire debate and discussion regarding CLIL and its pros and cons, and to question current curriculum in university language courses.Keywords: art history, EFL, content and language integration learning, critical thinking
Procedia PDF Downloads 59711053 Does Rumor Shakes Trust: The Role of Emotions in Local Conflict and Peacemaking
Authors: Safiye Ates Burc
Abstract:
This proposal is based on the story of Kurdish tribal conflict and peace in Mardin (Turkey). In the stories that will be detailed with in-depth interviews with the parties to the conflict (family elders, mediators and other tribal lords); It will be examined how rumor has an effect on establishing conflict and peace and whether it shakes the trust between the parties. In fact, this research is still at an ongoing stage. In this paper, the effect of emotions on conflict and reconciliation, which is the main subject of this ongoing study, will be conveyed in line with the data obtained from the preliminary research. In-depth interviews are conducted in the research in which the ethnography method is used. As an early result, it can be said that in organizations such as the Kurdish tribes, where local loyalties and traditions are very strong, the rumor has the potential to shake the trust between the parties and thus can become the excuse for conflict. Because rumors damage the prestige of tribes, that’s, it’s social capital.Keywords: rumor, trust, Kurdish tribes, local peacemaking, conflict
Procedia PDF Downloads 15211052 Predictive Analytics Algorithms: Mitigating Elementary School Drop Out Rates
Authors: Bongs Lainjo
Abstract:
Educational institutions and authorities that are mandated to run education systems in various countries need to implement a curriculum that considers the possibility and existence of elementary school dropouts. This research focuses on elementary school dropout rates and the ability to replicate various predictive models carried out globally on selected Elementary Schools. The study was carried out by comparing the classical case studies in Africa, North America, South America, Asia and Europe. Some of the reasons put forward for children dropping out include the notion of being successful in life without necessarily going through the education process. Such mentality is coupled with a tough curriculum that does not take care of all students. The system has completely led to poor school attendance - truancy which continuously leads to dropouts. In this study, the focus is on developing a model that can systematically be implemented by school administrations to prevent possible dropout scenarios. At the elementary level, especially the lower grades, a child's perception of education can be easily changed so that they focus on the better future that their parents desire. To deal effectively with the elementary school dropout problem, strategies that are put in place need to be studied and predictive models are installed in every educational system with a view to helping prevent an imminent school dropout just before it happens. In a competency-based curriculum that most advanced nations are trying to implement, the education systems have wholesome ideas of learning that reduce the rate of dropout.Keywords: elementary school, predictive models, machine learning, risk factors, data mining, classifiers, dropout rates, education system, competency-based curriculum
Procedia PDF Downloads 17511051 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support
Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz
Abstract:
The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.
Procedia PDF Downloads 12711050 Effects of Learner-Content Interaction Activities on the Context of Verbal Learning Outcomes in Interactive Courses
Authors: Alper Tolga Kumtepe, Erdem Erdogdu, M. Recep Okur, Eda Kaypak, Ozlem Kaya, Serap Ugur, Deniz Dincer, Hakan Yildirim
Abstract:
Interaction is one of the most important components of open and distance learning. According to Moore, who proposed one of the keystones on interaction types, there are three basic types of interaction: learner-teacher, learner-content, and learner-learner. From these interaction types, learner-content interaction, without doubt, can be identified as the most fundamental one on which all education is based. Efficacy, efficiency, and attraction of open and distance learning systems can be achieved by the practice of effective learner-content interaction. With the development of new technologies, interactive e-learning materials have been commonly used as a resource in open and distance learning, along with the printed books. The intellectual engagement of the learners with the content that is course materials may also affect their satisfaction for the open and distance learning practices in general. Learner satisfaction holds an important place in open and distance learning since it will eventually contribute to the achievement of learning outcomes. Using the learner-content interaction activities in course materials, Anadolu University, by its Open Education system, tries to involve learners in deep and meaningful learning practices. Especially, during the e-learning material design and production processes, identifying appropriate learner-content interaction activities within the context of learning outcomes holds a big importance. Considering the lack of studies adopting this approach, as well as its being a study on the use of e-learning materials in Open Education system, this research holds a big value in open and distance learning literature. In this respect, the present study aimed to investigate a) which learner-content interaction activities included in interactive courses are the most effective in learners’ achievement of verbal information learning outcomes and b) to what extent distance learners are satisfied with these learner-content interaction activities. For this study, the quasi-experimental research design was adopted. The 120 participants of the study were from Anadolu University Open Education Faculty students living in Eskişehir. The students were divided into 6 groups randomly. While 5 of these groups received different learner-content interaction activities as a part of the experiment, the other group served as the control group. The data were collected mainly through two instruments: pre-test and post-test. In addition to those tests, learners’ perceived learning was assessed with an item at the end of the program. The data collected from pre-test and post-test were analyzed by ANOVA, and in the light of the findings of this approximately 24-month study, suggestions for the further design of e-learning materials within the context of learner-content interaction activities will be provided at the conference. The current study is planned to be an antecedent for the following studies that will examine the effects of activities on other learning domains.Keywords: interaction, distance education, interactivity, online courses
Procedia PDF Downloads 19411049 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation
Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez
Abstract:
Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.Keywords: network intrusion detection, machine learning, artificial neural network, anomaly detection module
Procedia PDF Downloads 34311048 Maintaining Minority Languages; Evidence from Italy
Authors: Carmela Perta
Abstract:
Following the example of both International and European legislation, on 15 December 1999 the national law 482/99 Regulations regarding the protection of historic language minorities was approved, providing a national framework for the preservation and renaissance of minority languages «The Italian Republic sustains the language and culture of people speaking Albanian, Catalan, German, Greek, Slovene, Croatian, French, Francoprovençal, Friulan, Ladin, Occitan and Sard». The legislation made it possible to use these languages in education, in public offices, in local government, in the judicial system, in mass media, and allowed for the reinstatement of place and personal names. However, several practical problems have emerged, particularly those concerning the variety that should be used in education, in official documents and in other formal domains, i.e. the local variety, the standard of reference (if there is any), or an over regional koinè. In minority settings, it might seem eminently sensible to use the ready made standard of reference, accepting the Ausbausprache, rather than the language as practice, that is the local variety. However, this process seems to be pointless, as is demonstrated by the results of a fieldwork that was carried out in a small town in the South of Italy where members speak Faetar, the local variety of Francoprovençal. Here the language is largely used by the community members in all domains, moreover a deep sense of loyalty towards the variety they use and a manifested minority identity can be observed analysing the speakers’ attitudes. However, these positive attitudes are towards the vehicle for their distinctive history and culture, and not for an “external” standard, a system which local authorities and planners are trying to introduce in the community. In other words, according to the speakers' reactions, there is little point in struggling to maintain a language, if what is conserved is not the group’s language but another.Keywords: maintenance, minority languages, endangered languages, francoprovençal
Procedia PDF Downloads 43511047 Multi-Objectives Genetic Algorithm for Optimizing Machining Process Parameters
Authors: Dylan Santos De Pinho, Nabil Ouerhani
Abstract:
Energy consumption of machine-tools is becoming critical for machine-tool builders and end-users because of economic, ecological and legislation-related reasons. Many machine-tool builders are seeking for solutions that allow the reduction of energy consumption of machine-tools while preserving the same productivity rate and the same quality of machined parts. In this paper, we present the first results of a project conducted jointly by academic and industrial partners to reduce the energy consumption of a Swiss-Type lathe. We employ genetic algorithms to find optimal machining parameters – the set of parameters that lead to the best trade-off between energy consumption, part quality and tool lifetime. Three main machining process parameters are considered in our optimization technique, namely depth of cut, spindle rotation speed and material feed rate. These machining process parameters have been identified as the most influential ones in the configuration of the Swiss-type machining process. A state-of-the-art multi-objective genetic algorithm has been used. The algorithm combines three fitness functions, which are objective functions that permit to evaluate a set of parameters against the three objectives: energy consumption, quality of the machined parts, and tool lifetime. In this paper, we focus on the investigation of the fitness function related to energy consumption. Four different energy consumption related fitness functions have been investigated and compared. The first fitness function refers to the Kienzle cutting force model. The second fitness function uses the Material Removal Rate (RMM) as an indicator of energy consumption. The two other fitness functions are non-deterministic, learning-based functions. One fitness function uses a simple Neural Network to learn the relation between the process parameters and the energy consumption from experimental data. Another fitness function uses Lasso regression to determine the same relation. The goal is, then, to find out which fitness functions predict best the energy consumption of a Swiss-Type machining process for the given set of machining process parameters. Once determined, these functions may be used for optimization purposes – determine the optimal machining process parameters leading to minimum energy consumption. The performance of the four fitness functions has been evaluated. The Tornos DT13 Swiss-Type Lathe has been used to carry out the experiments. A mechanical part including various Swiss-Type machining operations has been selected for the experiments. The evaluation process starts with generating a set of CNC (Computer Numerical Control) programs for machining the part at hand. Each CNC program considers a different set of machining process parameters. During the machining process, the power consumption of the spindle is measured. All collected data are assigned to the appropriate CNC program and thus to the set of machining process parameters. The evaluation approach consists in calculating the correlation between the normalized measured power consumption and the normalized power consumption prediction for each of the four fitness functions. The evaluation shows that the Lasso and Neural Network fitness functions have the highest correlation coefficient with 97%. The fitness function “Material Removal Rate” (MRR) has a correlation coefficient of 90%, whereas the Kienzle-based fitness function has a correlation coefficient of 80%.Keywords: adaptive machining, genetic algorithms, smart manufacturing, parameters optimization
Procedia PDF Downloads 14711046 The Use of Technology in Mathematics Learning (1995-2024): A Bibliometric Analysis
Authors: Rahma Adinda Sartika
Abstract:
The use of technology in learning mathematics has received a positive response from both students and teachers, so many researchers have conducted research on this theme. Based on the findings carried out in this study, 807 documents relevant to this theme have been published in Scopus from 1995-2024. After going through the stages of identification, screening, eligibility, and including, the documents that meet the criteria are 227 documents. These documents are then analyzed using the bibliometric method so that it can be seen that the most published documents in the Scopus database occurred in 2020, with 38 documents, and the lowest was from 1996 to 2000 and 2004 to 2007, namely, no documents published. The highest number of citations is in documents published in 2018, with a total of 349 citations, so the h-index is higher than the others. The country that published the most documents relevant to this theme is Indonesia with a total of 91 documents. The second largest is the United States, with a total of 28 published documents, and the third largest is China, with a total of 15 documents. Indonesia and the United States have the most working relationships between countries compared to other countries. The focus of research related to this theme is 1) mathematics learning, 2) learning systems, 3) engineering education, 4) technology and 5) mathematical concepts.Keywords: technology, bibliometric, mathematics learning, mathematical concepts
Procedia PDF Downloads 5711045 The Role of the Gut Microbiome of Marine Invertebrates in the Degradation of Complex Algal Substrates
Authors: Yuchen LI, Martyn Kurr, Peter Golyshin
Abstract:
Biological invasion is a global problem. Invasive species can threaten local ecosystems by competing for resources, consuming local species, and reproducing faster than natives. Sargassum muticum is an invasive algae in the UK. It negatively impacts local algae through overshading and can cause reductions in local biodiversity. One possibility for its success is herbivore release. According to the Enemy Release Hypothesis, invasives are less impacted by local herbivores than natives. In many species, gastrointestinal (GI) tract microbes have been found as a key factor in food preference and similar mechanisms may exist in the relationship between local consumers and S. muticum. Some populations of native Littorina snails accept S. muticum as a food source, while others avoid it. This project aims to establish the relationship between GI tract microbes and the feeding preferences of L. littorea, when offered both native algae and S. muticum. Individuals of L. littorea from a site invaded by S. muticum around 18 years ago were compared to those from an un-invaded site nearby. Sargassum-experienced snails are more likely to consume it than those naïve, and pronounced differences were found in the GI-tract microbial communities through 16S (prokaryote) and 18S (eukaryote) sequencing. Sargassum-naïve snails were then exposed to a faecal pellets from experienced snails to ‘inoculate’ them with microbes from the exposed snails. Preliminary results suggest these faecal-pellet-exposed but otherwise Sargassum-naïve snails subsequently begun consuming S. muticum. It is unclear if these results are due to genuine changes in GI-tract microbes or through some other mechanism, such as behavioural responses to chemical cues in the faecal pellets, but these results are nevertheless of significance for invasive ecology, suggesting that foraging preferences for an invasive prey type are malleable and possibly programmable in laboratory settings.Keywords: invasive algae, sea snails, gut microbiome, biocontrol
Procedia PDF Downloads 8611044 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.Keywords: deep learning, artificial neural networks, energy price forecasting, turkey
Procedia PDF Downloads 29211043 Social Networking Application: What Is Their Quality and How Can They Be Adopted in Open Distance Learning Environments?
Authors: Asteria Nsamba
Abstract:
Social networking applications and tools have become compelling platforms for generating and sharing knowledge across the world. Social networking applications and tools refer to a variety of social media platforms which include Facebook, Twitter WhatsApp, blogs and Wikis. The most popular of these platforms are Facebook, with 2.41 billion active users on a monthly basis, followed by WhatsApp with 1.6 billion users and Twitter with 330 million users. These communication platforms have not only impacted social lives but have also impacted students’ learning, across different delivery modes in higher education: distance, conventional and blended learning modes. With this amount of interest in these platforms, knowledge sharing has gained importance within the context in which it is required. In open distance learning (ODL) contexts, social networking platforms can offer students and teachers the platform on which to create and share knowledge, and form learning collaborations. Thus, they can serve as support mechanisms to increase interactions and reduce isolation and loneliness inherent in ODL. Despite this potential and opportunity, research indicates that many ODL teachers are not inclined to using social media tools in learning. Although it is unclear why these tools are uncommon in these environments, concerns raised in the literature have indicated that many teachers have not mastered the art of teaching with technology. Using technological, pedagogical content knowledge (TPCK) and product quality theory, and Bloom’s Taxonomy as lenses, this paper is aimed at; firstly, assessing the quality of three social media applications: Facebook, Twitter and WhatsApp, in order to determine the extent to which they are suitable platforms for teaching and learning, in terms of content generation, information sharing and learning collaborations. Secondly, the paper demonstrates the application of teaching, learning and assessment using Bloom’s Taxonomy.Keywords: distance education, quality, social networking tools, TPACK
Procedia PDF Downloads 124