Search results for: emotional intelligence
654 Predicting Expectations of Non-Monogamy in Long-Term Romantic Relationships
Authors: Michelle R. Sullivan
Abstract:
Positive romantic relationships and marriages offer a buffer against a host of physical and emotional difficulties. Conversely, poor relationship quality and marital discord can have deleterious consequences for individuals and families. Research has described non-monogamy, infidelity, and consensual non-monogamy, as both consequential and causal of relationship difficulty, or as a unique way a couple strives to make a relationship work. Much research on consensual non-monogamy has built on feminist theory and critique. To the author’s best knowledge, to date, no studies have examined the predictive relationship between individual and relationship characteristics and expectations of non-monogamy. The current longitudinal study: 1) estimated the prevalence of expectations of partner non-monogamy and 2) evaluated whether gender, sexual identity, age, education, how a couple met, and relationship quality were predictive expectations of partner non-monogamy. This study utilized the publically available longitudinal dataset, How Couples Meet and Stay Together. Adults aged 18- to 98-years old (n=4002) were surveyed by phone over 5 waves from 2009-2014. Demographics and how a couple met were gathered through self-report in Wave 1, and relationship quality and expectations of partner non-monogamy were gathered through self-report in Waves 4 and 5 (n=1047). The prevalence of expectations of partner non-monogamy (encompassing both infidelity and consensual non-monogamy) was 4.8%. Logistic regression models indicated that sexual identity, gender, education, and relationship quality were significantly predictive of expectations of partner non-monogamy. Specifically, male gender, lower education, identifying as lesbian, gay, or bisexual, and a lower relationship quality scores were predictive of expectations of partner non-monogamy. Male gender was not predictive of expectations of partner non-monogamy in the follow up logistic regression model. Age and whether a couple met online were not associated with expectations of partner non-monogamy. Clinical implications include awareness of the increased likelihood of lesbian, gay, and bisexual individuals to have an expectation of non-monogamy and the sequelae of relationship dissatisfaction that may be related. Future research directions could differentiate between non-monogamy subtypes and the person and relationship variables that lead to the likelihood of consensual non-monogamy and infidelity as separate constructs, as well as explore the relationship between predicting partner behavior and actual partner behavioral outcomes.Keywords: open relationship, polyamory, infidelity, relationship satisfaction
Procedia PDF Downloads 165653 Study and Simulation of a Dynamic System Using Digital Twin
Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli
Abstract:
Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models
Procedia PDF Downloads 153652 Studying Second Language Development from a Complex Dynamic Systems Perspective
Authors: L. Freeborn
Abstract:
This paper discusses the application of complex dynamic system theory (DST) to the study of individual differences in second language development. This transdisciplinary framework allows researchers to view the trajectory of language development as a dynamic, non-linear process. A DST approach views language as multi-componential, consisting of multiple complex systems and nested layers. These multiple components and systems continuously interact and influence each other at both the macro- and micro-level. Dynamic systems theory aims to explain and describe the development of the language system, rather than make predictions about its trajectory. Such a holistic and ecological approach to second language development allows researchers to include various research methods from neurological, cognitive, and social perspectives. A DST perspective would involve in-depth analyses as well as mixed methods research. To illustrate, a neurobiological approach to second language development could include non-invasive neuroimaging techniques such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to investigate areas of brain activation during language-related tasks. A cognitive framework would further include behavioural research methods to assess the influence of intelligence and personality traits, as well as individual differences in foreign language aptitude, such as phonetic coding ability and working memory capacity. Exploring second language development from a DST approach would also benefit from including perspectives from the field of applied linguistics, regarding the teaching context, second language input, and the role of affective factors such as motivation. In this way, applying mixed research methods from neurobiological, cognitive, and social approaches would enable researchers to have a more holistic view of the dynamic and complex processes of second language development.Keywords: dynamic systems theory, mixed methods, research design, second language development
Procedia PDF Downloads 140651 Cognitive Dissonance in Robots: A Computational Architecture for Emotional Influence on the Belief System
Authors: Nicolas M. Beleski, Gustavo A. G. Lugo
Abstract:
Robotic agents are taking more and increasingly important roles in society. In order to make these robots and agents more autonomous and efficient, their systems have grown to be considerably complex and convoluted. This growth in complexity has led recent researchers to investigate forms to explain the AI behavior behind these systems in search for more trustworthy interactions. A current problem in explainable AI is the inner workings with the logic inference process and how to conduct a sensibility analysis of the process of valuation and alteration of beliefs. In a social HRI (human-robot interaction) setup, theory of mind is crucial to ease the intentionality gap and to achieve that we should be able to infer over observed human behaviors, such as cases of cognitive dissonance. One specific case inspired in human cognition is the role emotions play on our belief system and the effects caused when observed behavior does not match the expected outcome. In such scenarios emotions can make a person wrongly assume the antecedent P for an observed consequent Q, and as a result, incorrectly assert that P is true. This form of cognitive dissonance where an unproven cause is taken as truth induces changes in the belief base which can directly affect future decisions and actions. If we aim to be inspired by human thoughts in order to apply levels of theory of mind to these artificial agents, we must find the conditions to replicate these observable cognitive mechanisms. To achieve this, a computational architecture is proposed to model the modulation effect emotions have on the belief system and how it affects logic inference process and consequently the decision making of an agent. To validate the model, an experiment based on the prisoner's dilemma is currently under development. The hypothesis to be tested involves two main points: how emotions, modeled as internal argument strength modulators, can alter inference outcomes, and how can explainable outcomes be produced under specific forms of cognitive dissonance.Keywords: cognitive architecture, cognitive dissonance, explainable ai, sensitivity analysis, theory of mind
Procedia PDF Downloads 135650 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey
Authors: Hayriye Anıl, Görkem Kar
Abstract:
In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting
Procedia PDF Downloads 114649 Exercise and Social Activities for Elderly with an Impairment Who Are Living Alone in the Community: Effects and Influencing Factors of a Dutch Program
Authors: Renate Verkaik, Mieke Rijken, Hennie Boeije
Abstract:
Elderly who are living alone and who are having one or more impairments are vulnerable for a loss of wellbeing and institutionalization. Physical exercise and social activities together with peers have the potential to make them more resilient. The Dutch program ‘More Resilience, Longer at Home’ initiated by FNO funded 126 local projects to stimulate vulnerable older citizens to participate in exercise and social activities, and as such to improve wellbeing and independent living. The program evaluation addressed the following questions: (1) what are the effects of the program on older (65+) participants exercise behavior, social activities and what is the relationship with wellbeing?, (2) which factors contribute to successful implementation of the projects and their outcomes? A mixed method approach was used. Effects on participants were assessed with a short survey, containing questions on exercise, social engagement, daily functioning, loneliness and life satisfaction. Results of the participants were compared with those of a reference group from the Dutch national population. Perceived influencing factors were investigated with a questionnaire for project leaders. This questionnaire was based on site visits and interviews with project leaders, volunteers and participating elderly. Preliminary results show that social engagement of the participating elderly rises significantly (p ≤ .05) as do their exercise levels and daily functioning. They experience less social loneliness, but not less emotional loneliness. Additionally, there is a positive association between daily functioning and life satisfaction and between exercise and life satisfaction. Perceived influencing factors that contribute to successful implementation of the projects can be categorized in 4 types: (1) characteristics of the activities; (2) profiles of the involved staff (professionals and volunteers), (3) characteristics of the organization, (4) the social political environment. Conclusions are that local projects have been successful in stimulating older citizens to participate in exercise and social activities. Multiple factors need to be addressed to ensure sustainability and scaling-up of the good practices.Keywords: elderly living alone in the community, exercise and social activities, resilience, quality of life
Procedia PDF Downloads 140648 Health Challenges of Unmarried Women over Thirty in Pakistan: A Public Health Perspective on Nutrition and Well-being
Authors: Anum Obaid, Iman Fatima, Wanisha Feroz, Haleema Imran, Hammad Tariq
Abstract:
In Pakistan, the health of unmarried women over thirty is an emerging public health concern due to its increasing prevalence. Achieving the Sustainable Development Goals (SDGs) requires addressing nutrition and public health issues. This research investigates these goals through the lens of nutrition and public health, specifically examining the challenges faced by unmarried women over thirty in Faisalabad, Pakistan. According to a recent United Nations report, there are 10 million unmarried women over the age of 35 in Pakistan. The United Nations defines health as "a state of complete physical, mental, and social well-being, and not merely the absence of disease or infirmity." Being unmarried and under constant societal pressure profoundly influences the dietary behaviors and nutritional status of these women, affecting their overall health, including physical, mental, and social well-being. A qualitative research approach was employed, involving interviews with both unmarried and married women over thirty. This research examines how marital status influences dietary practices, nutritional status, mental and social health, and their subsequent impacts. Factors such as physical health, mental and emotional status, societal pressure, social health, economic independence, and decision-making power were analyzed to understand the effect of singleness on overall wellness. Findings indicated that marital status significantly affects the dietary patterns and nutritional practices among women in Faisalabad. It was also revealed that unmarried women experienced more stress and had a less optimistic mindset compared to married women, due to loneliness or the absence of a spouse in their lives. Nutritional knowledge varied across marital status, impacting the overall health triangle, including physical, mental, and social health. Understanding these dynamics is crucial for developing targeted interventions to improve nutritional outcomes and overall health among unmarried women in Faisalabad. This study highlights the importance of fostering supportive environments and raising awareness about the health needs of unmarried women over thirty to enhance their overall well-being.Keywords: health triangle, unmarried woman over thirty, socio-cultural barriers, women’s health
Procedia PDF Downloads 39647 The Effect of Transactional Analysis Group Training on Self-Knowledge and Its Ego States (The Child, Parent, and Adult): A Quasi-Experimental Study Applied to Counselors of Tehran
Authors: Mehravar Javid, Sadrieh Khajavi Mazanderani, Kelly Gleischman, Zoe Andris
Abstract:
The present study was conducted with the aim of investigating the effectiveness of transactional analysis group training on self-knowledge and Its dimensions (self, child, and adult) in counselors working in public and private high schools in Tehran. Counseling has become an important job for society, and there is a need for consultants in organizations. Providing better and more efficient counseling is one of the goals of the education system. The personal characteristics of counselors are important for the success of the therapy. In TA, humans have three ego states, which are named parent, adult, and child, and the main concept in the transactional analysis is self-state, which means a stable feeling and pattern of thinking related to behavioral patterns. Self-knowledge, considered a prerequisite to effective communication, fosters psychological growth, and recognizing it, is pivotal for emotional development, leading to profound insights. The research sample included 30 working counselors (22 women and 8 men) in the academic year 2019-2020 who achieved the lowest scores on the self-knowledge questionnaire. The research method was quasi-experimental with a control group (15 people in the experimental group and 15 people in the control group). The research tool was a self-awareness questionnaire with 29 questions and three subscales (child, parent, and adult Ego state). The experimental group was exposed to transactional analysis training for 10 once-weekly 2-hour sessions; the questionnaire was implemented in both groups (post-test). Multivariate covariance analysis was used to analyze the data. The data showed that the level of self-awareness of counselors who received transactional analysis training is higher than that of counselors who did not receive any training (p<0.01). The result obtained from this analysis shows that transactional analysis training is an effective therapy for enhancing self-knowledge and its subscales (Adult ego state, Parent ego state, and Child ego state). Teaching transactional analysis increases self-knowledge, and self-realization and helps people to achieve independence and remove irresponsibility to improve intra-personal and interpersonal relationships.Keywords: ego state, group, transactional analysis, self-knowledge
Procedia PDF Downloads 79646 Prompt Design for Code Generation in Data Analysis Using Large Language Models
Authors: Lu Song Ma Li Zhi
Abstract:
With the rapid advancement of artificial intelligence technology, large language models (LLMs) have become a milestone in the field of natural language processing, demonstrating remarkable capabilities in semantic understanding, intelligent question answering, and text generation. These models are gradually penetrating various industries, particularly showcasing significant application potential in the data analysis domain. However, retraining or fine-tuning these models requires substantial computational resources and ample downstream task datasets, which poses a significant challenge for many enterprises and research institutions. Without modifying the internal parameters of the large models, prompt engineering techniques can rapidly adapt these models to new domains. This paper proposes a prompt design strategy aimed at leveraging the capabilities of large language models to automate the generation of data analysis code. By carefully designing prompts, data analysis requirements can be described in natural language, which the large language model can then understand and convert into executable data analysis code, thereby greatly enhancing the efficiency and convenience of data analysis. This strategy not only lowers the threshold for using large models but also significantly improves the accuracy and efficiency of data analysis. Our approach includes requirements for the precision of natural language descriptions, coverage of diverse data analysis needs, and mechanisms for immediate feedback and adjustment. Experimental results show that with this prompt design strategy, large language models perform exceptionally well in multiple data analysis tasks, generating high-quality code and significantly shortening the data analysis cycle. This method provides an efficient and convenient tool for the data analysis field and demonstrates the enormous potential of large language models in practical applications.Keywords: large language models, prompt design, data analysis, code generation
Procedia PDF Downloads 48645 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics
Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur
Abstract:
Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.Keywords: human machine interface, industrial internet of things, internet of things, optical character recognition, video analytics
Procedia PDF Downloads 113644 The Role of Parental Stress and Emotion Regulation in Responding to Children’s Expression of Negative Emotion
Authors: Lizel Bertie, Kim Johnston
Abstract:
Parental emotion regulation plays a central role in the socialisation of emotion, especially when teaching young children to cope with negative emotions. Despite evidence which shows non-supportive parental responses to children’s expression of negative emotions has implications for the social and emotional development of the child, few studies have investigated risk factors which impact parental emotion socialisation processes. The current study aimed to explore the extent to which parental stress contributes to both difficulties in parental emotion regulation and non-supportive parental responses to children’s expression of negative emotions. In addition, the study examined whether parental use of expressive suppression as an emotion regulation strategy facilitates the influence of parental stress on non-supportive responses by testing the relations in a mediation model. A sample of 140 Australian adults, who identified as parents with children aged 5 to 10 years, completed an online questionnaire. The measures explored recent symptoms of depression, anxiety, and stress, the use of expressive suppression as an emotion regulation strategy, and hypothetical parental responses to scenarios related to children’s expression of negative emotions. A mediated regression indicated that parents who reported higher levels of stress also reported higher levels of expressive suppression as an emotion regulation strategy and increased use of non-supportive responses in relation to young children’s expression of negative emotions. These findings suggest that parents who experience heightened symptoms of stress are more likely to both suppress their emotions in parent-child interaction and engage in non-supportive responses. Furthermore, higher use of expressive suppression strongly predicted the use of non-supportive responses, despite the presence of parental stress. Contrary to expectation, no indirect effect of stress on non-supportive responses was observed via expressive suppression. The findings from the study suggest that parental stress may become a more salient manifestation of psychological distress in a sub-clinical population of parents while contributing to impaired parental responses. As such, the study offers support for targeting overarching factors such as difficulties in parental emotion regulation and stress management, not only as an intervention for parental psychological distress, but also the detection and prevention of maladaptive parenting practices.Keywords: emotion regulation, emotion socialisation, expressive suppression, non-supportive responses, parental stress
Procedia PDF Downloads 163643 The Impact of Artificial Intelligence on Pharmacy and Pharmacology
Authors: Mamdouh Milad Adly Morkos
Abstract:
Despite having the greatest rates of mortality and morbidity in the world, low- and middle-income (LMIC) nations trail high-income nations in terms of the number of clinical trials, the number of qualified researchers, and the amount of research information specific to their people. Health inequities and the use of precision medicine may be hampered by a lack of local genomic data, clinical pharmacology and pharmacometrics competence, and training opportunities. These issues can be solved by carrying out health care infrastructure development, which includes data gathering and well-designed clinical pharmacology training in LMICs. It will be advantageous if there is international cooperation focused at enhancing education and infrastructure and promoting locally motivated clinical trials and research. This paper outlines various instances where clinical pharmacology knowledge could be put to use, including pharmacogenomic opportunities that could lead to better clinical guideline recommendations. Examples of how clinical pharmacology training can be successfully implemented in LMICs are also provided, including clinical pharmacology and pharmacometrics training programmes in Africa and a Tanzanian researcher's personal experience while on a training sabbatical in the United States. These training initiatives will profit from advocacy for clinical pharmacologists' employment prospects and career development pathways, which are gradually becoming acknowledged and established in LMICs. The advancement of training and research infrastructure to increase clinical pharmacologists' knowledge in LMICs would be extremely beneficial because they have a significant role to play in global healthKeywords: electromagnetic solar system, nano-material, nano pharmacology, pharmacovigilance, quantum theoryclinical simulation, education, pharmacology, simulation, virtual learning low- and middle-income, clinical pharmacology, pharmacometrics, career development pathways
Procedia PDF Downloads 87642 A Methodology to Integrate Data in the Company Based on the Semantic Standard in the Context of Industry 4.0
Authors: Chang Qin, Daham Mustafa, Abderrahmane Khiat, Pierre Bienert, Paulo Zanini
Abstract:
Nowadays, companies are facing lots of challenges in the process of digital transformation, which can be a complex and costly undertaking. Digital transformation involves the collection and analysis of large amounts of data, which can create challenges around data management and governance. Furthermore, it is also challenged to integrate data from multiple systems and technologies. Although with these pains, companies are still pursuing digitalization because by embracing advanced technologies, companies can improve efficiency, quality, decision-making, and customer experience while also creating different business models and revenue streams. In this paper, the issue that data is stored in data silos with different schema and structures is focused. The conventional approaches to addressing this issue involve utilizing data warehousing, data integration tools, data standardization, and business intelligence tools. However, these approaches primarily focus on the grammar and structure of the data and neglect the importance of semantic modeling and semantic standardization, which are essential for achieving data interoperability. In this session, the challenge of data silos in Industry 4.0 is addressed by developing a semantic modeling approach compliant with Asset Administration Shell (AAS) models as an efficient standard for communication in Industry 4.0. The paper highlights how our approach can facilitate the data mapping process and semantic lifting according to existing industry standards such as ECLASS and other industrial dictionaries. It also incorporates the Asset Administration Shell technology to model and map the company’s data and utilize a knowledge graph for data storage and exploration.Keywords: data interoperability in industry 4.0, digital integration, industrial dictionary, semantic modeling
Procedia PDF Downloads 97641 The Representation of Women in Iraq: Gender Wage Gap and the Position of Women within Iraqi Society
Authors: Hanaa Sameen Ameen Bajilan
Abstract:
Human rights should be protected and promoted without regard to race, ethnicity, religion, political philosophy, or sexual orientation, following our firm convictions. Thus, any infringement of these rights or disdain for; any use of violence against women undermines the principles and human values of equality and endangers the entire society, including its potential to live in peace and to make growth and development. This paper represents the condition of the new Iraqi women regarding issues such as the gender wage gap, education, health, and violence against women. The study aims to determine the impact of traditions and customs on the legal position of Iraqi women. First, it seeks to assess the effects of culture as a historical agency on the legal status of Iraqi women. Second, the influence of cultural developments in the later part of the twentieth century on Iraqi women's legal standing, and third, the importance of cultural variety as a progressive cultural component in women's legal position. Finally, the study highlights the representation of women in Iraq: Gender wage Gap, Women's liberation between culture and law, and the role of women within Iraqi society based on an Iraqi novel named (Orange Light) in Arabic: برتقالو ضو. in her book, the Iraqi writer Nadia Al-Abru succeeds in portraying the post-war society's devotion to the sexual, emotional and mental marginalization of women in terms of the value of attendance. Since the study of Iraqi women's literature in Arabic-English translation is a new avenue of research that contributes to all three areas, this investigation aims to establish critical lines of engagement between contemporary Iraqi women's literature in English translation and feminist translation conceptual frameworks, and this is accomplished by first focusing on why analyzing Iraqi women writers' novels in Arabic-English translation is a timeline of inquiry that contributes to existing and emerging knowledge fields concerning Iraqi women writers' contemporary critical contexts and scholarship on Arab women's literature in Arabic-English translation.Keywords: women in İraq, equality, violence, gender wage gap, Nadia Al-Abru, (orange light), women's liberation, İraqi women's literature,
Procedia PDF Downloads 96640 Examining the Relationship Between Subjective Executive Functioning, Think/No-Think Task Performance, and Psychiatric Symptoms: Integrating Self-Report and Experimental Measures
Authors: Gabriela Dârzan
Abstract:
This study examines the relationship between subjective executive functioning, memory control, and psychiatric symptoms (anxiety and depression), addressing a critical gap in aligning self-reported executive dysfunction with objective measures of memory suppression. Using the Behavior Rating Inventory of Executive Function – Adult Version (BRIEF-A) and the Think/No-Think (TNT) task, the study evaluates how these measures relate to psychiatric symptoms and assesses suppression-induced forgetting (SIF). Fifty-four adults aged 21–59 first completed the Think/No-Think (TNT) task under Thought Avoidance (TA) and Thought Substitution (TS) conditions, followed by the Behavior Rating Inventory of Executive Function – Adult Version (BRIEF-A), Generalized Anxiety Disorder-7 (GAD-7), and Patient Health Questionnaire-9 (PHQ-9). Statistical analyses included correlations, mediation models, and ANOVAs. Results indicated significant correlations between each of the BRIEF-A scales and indices and psychiatric symptoms. Higher self-rated executive dysfunction (Global Executive Composite, Behavioral Regulation Index, and Emotional Control) predicted higher anxiety levels. Similarly, the Global Executive Composite and Material Organization predicted higher depression levels. However, TNT task performance did not correlate with self-reported executive dysfunction, nor did it mediate the relationship between executive functioning and psychiatric symptoms. No significant SIF effect was observed, with no differences between the No-Think and Baseline trials. Additionally, instructional (TA and TS) and test (Independent-Probe - IP and Same-Probe - SP) conditions did not significantly influence thought suppression performance, and the severity of anxiety and depression symptoms did not affect task outcomes. These findings indicate that subjective executive dysfunction is associated with higher anxiety and depression, but memory suppression performance does not demonstrate a mitigating effect on these symptoms. Clinically, interventions focusing on broader executive functioning rather than memory suppression may better address these conditions. Practitioners could explore tailored cognitive strategies and alternative techniques to help patients manage intrusive thoughts effectively.Keywords: anxiety, depression, subjective executive function, suppression-induced forgetting, think/no-think task
Procedia PDF Downloads 7639 A Study on the Effects of a Mindfulness Training on Managers: The Case of the Malian Company for the Development of Textile
Authors: Aboubacar Garba Konte, Wei Jun, Li Xiaohui
Abstract:
Nowadays companies are facing increasing pressure. The market environment changes more frequently than ever. Therefore, managers have to develop their agility, their performance and their capacity for innovation. Most companies look for managerial innovations to develop in their employees qualities such as motivation, commitment, creativity, autonomy or even the ability to adapt to change and manage intensive pressure. On a more collective level, companies are looking for teams that are able to organize, communicate and develop a form of collective intelligence based on cooperation and solidarity. Among the many managerial innovations that are currently developing, mindfulness (or mindfulness) is drawing the attention of a growing number of companies (Google, Apple, Sony, ING ...), These companies have implemented programs based on mindfulness. Although the concept of mindfulness and its effects have been the subject of in-depth research in the psychological field, research on mindfulness in the field of management is still in its infancy and it is necessary to evaluate its contribution to organizations. The purpose of this research is to evaluate the effects of a mindfulness training among the managers of a Malian textile company (CMDT). We conducted a case study on their experience and their managerial practices. In addition, we discuss the innovative nature of mindfulness in terms of managerial practice The results show significant positive effects on two major skills identified by managers that raise significant difficulties in their daily lives: their ability to supervise a team of employees with all that this implies in terms of interpersonal skills and their ability to organize and prioritize their activities. In addition, the research methodology sheds light on the innovative nature of mindfulness in a favorable organizational environment.Keywords: mindfulness, manager, managerial innovation, relational skills, organization and prioritization
Procedia PDF Downloads 104638 Solving a Micromouse Maze Using an Ant-Inspired Algorithm
Authors: Rolando Barradas, Salviano Soares, António Valente, José Alberto Lencastre, Paulo Oliveira
Abstract:
This article reviews the Ant Colony Optimization, a nature-inspired algorithm, and its implementation in the Scratch/m-Block programming environment. The Ant Colony Optimization is a part of Swarm Intelligence-based algorithms and is a subset of biological-inspired algorithms. Starting with a problem in which one has a maze and needs to find its path to the center and return to the starting position. This is similar to an ant looking for a path to a food source and returning to its nest. Starting with the implementation of a simple wall follower simulator, the proposed solution uses a dynamic graphical interface that allows young students to observe the ants’ movement while the algorithm optimizes the routes to the maze’s center. Things like interface usability, Data structures, and the conversion of algorithmic language to Scratch syntax were some of the details addressed during this implementation. This gives young students an easier way to understand the computational concepts of sequences, loops, parallelism, data, events, and conditionals, as they are used through all the implemented algorithms. Future work includes the simulation results with real contest mazes and two different pheromone update methods and the comparison with the optimized results of the winners of each one of the editions of the contest. It will also include the creation of a Digital Twin relating the virtual simulator with a real micromouse in a full-size maze. The first test results show that the algorithm found the same optimized solutions that were found by the winners of each one of the editions of the Micromouse contest making this a good solution for maze pathfinding.Keywords: nature inspired algorithms, scratch, micromouse, problem-solving, computational thinking
Procedia PDF Downloads 128637 Applications of Evolutionary Optimization Methods in Reinforcement Learning
Authors: Rahul Paul, Kedar Nath Das
Abstract:
The paradigm of Reinforcement Learning (RL) has become prominent in training intelligent agents to make decisions in environments that are both dynamic and uncertain. The primary objective of RL is to optimize the policy of an agent in order to maximize the cumulative reward it receives throughout a given period. Nevertheless, the process of optimization presents notable difficulties as a result of the inherent trade-off between exploration and exploitation, the presence of extensive state-action spaces, and the intricate nature of the dynamics involved. Evolutionary Optimization Methods (EOMs) have garnered considerable attention as a supplementary approach to tackle these challenges, providing distinct capabilities for optimizing RL policies and value functions. The ongoing advancement of research in both RL and EOMs presents an opportunity for significant advancements in autonomous decision-making systems. The convergence of these two fields has the potential to have a transformative impact on various domains of artificial intelligence (AI) applications. This article highlights the considerable influence of EOMs in enhancing the capabilities of RL. Taking advantage of evolutionary principles enables RL algorithms to effectively traverse extensive action spaces and discover optimal solutions within intricate environments. Moreover, this paper emphasizes the practical implementations of EOMs in the field of RL, specifically in areas such as robotic control, autonomous systems, inventory problems, and multi-agent scenarios. The article highlights the utilization of EOMs in facilitating RL agents to effectively adapt, evolve, and uncover proficient strategies for complex tasks that may pose challenges for conventional RL approaches.Keywords: machine learning, reinforcement learning, loss function, optimization techniques, evolutionary optimization methods
Procedia PDF Downloads 84636 Deep Learning-Based Approach to Automatic Abstractive Summarization of Patent Documents
Authors: Sakshi V. Tantak, Vishap K. Malik, Neelanjney Pilarisetty
Abstract:
A patent is an exclusive right granted for an invention. It can be a product or a process that provides an innovative method of doing something, or offers a new technical perspective or solution to a problem. A patent can be obtained by making the technical information and details about the invention publicly available. The patent owner has exclusive rights to prevent or stop anyone from using the patented invention for commercial uses. Any commercial usage, distribution, import or export of a patented invention or product requires the patent owner’s consent. It has been observed that the central and important parts of patents are scripted in idiosyncratic and complex linguistic structures that can be difficult to read, comprehend or interpret for the masses. The abstracts of these patents tend to obfuscate the precise nature of the patent instead of clarifying it via direct and simple linguistic constructs. This makes it necessary to have an efficient access to this knowledge via concise and transparent summaries. However, as mentioned above, due to complex and repetitive linguistic constructs and extremely long sentences, common extraction-oriented automatic text summarization methods should not be expected to show a remarkable performance when applied to patent documents. Other, more content-oriented or abstractive summarization techniques are able to perform much better and generate more concise summaries. This paper proposes an efficient summarization system for patents using artificial intelligence, natural language processing and deep learning techniques to condense the knowledge and essential information from a patent document into a single summary that is easier to understand without any redundant formatting and difficult jargon.Keywords: abstractive summarization, deep learning, natural language Processing, patent document
Procedia PDF Downloads 127635 An Approach to Building a Recommendation Engine for Travel Applications Using Genetic Algorithms and Neural Networks
Authors: Adrian Ionita, Ana-Maria Ghimes
Abstract:
The lack of features, design and the lack of promoting an integrated booking application are some of the reasons why most online travel platforms only offer automation of old booking processes, being limited to the integration of a smaller number of services without addressing the user experience. This paper represents a practical study on how to improve travel applications creating user-profiles through data-mining based on neural networks and genetic algorithms. Choices made by users and their ‘friends’ in the ‘social’ network context can be considered input data for a recommendation engine. The purpose of using these algorithms and this design is to improve user experience and to deliver more features to the users. The paper aims to highlight a broader range of improvements that could be applied to travel applications in terms of design and service integration, while the main scientific approach remains the technical implementation of the neural network solution. The motivation of the technologies used is also related to the initiative of some online booking providers that have made the fact that they use some ‘neural network’ related designs public. These companies use similar Big-Data technologies to provide recommendations for hotels, restaurants, and cinemas with a neural network based recommendation engine for building a user ‘DNA profile’. This implementation of the ‘profile’ a collection of neural networks trained from previous user choices, can improve the usability and design of any type of application.Keywords: artificial intelligence, big data, cloud computing, DNA profile, genetic algorithms, machine learning, neural networks, optimization, recommendation system, user profiling
Procedia PDF Downloads 166634 Tracing Syrian Refugees Urban Mobilities: The Case of Egypt and Canada
Authors: N. Elgendy, N. Hussein
Abstract:
The current Syrian crisis has caused unprecedented practices of global mobility. The process of forced eviction and the resettlement of refugees could be seen through the insights of the “new mobilities paradigm”. The mobility of refugees in terms of meaning and practice is a subject that calls for further studies. There is a need for the development of an approach to human mobility to understand a practice that is turning into a phenomenon in the 21st century. This paper aims at studying, from a qualitative point of view, the process of movement within the six constituents of mobility defined as the first phase of the journey of a refugee. The second phase would include the process of settling in and re-defining the host country as new “home” to refugees. The change in the refugee state of mind and crossing the physical and mental borders from a “foreigner” to a citizen is encouraged by both the governmental policies and the local communities’ efforts to embrace these newcomers. The paper would focus on these policies of social and economic integration. The concept of integration connotes the idea that refugees would enjoy the opportunities, rights and services available to the citizens of the refugee’s new community. So, this paper examines this concept through showcasing the two hosting countries of Canada and Egypt, as they provide two contrasting situations in terms of cultural, geographical, economic and political backgrounds. The analysis would highlight the specific policies defined towards the refugees including the mass communication, media calls, and access to employment. This research is part of a qualitative research project on the process of Urban Mobility practiced by the Syrian Refugees, drawing on conversational interviews with new-settlers who have moved to the different hosting countries, from their home in Syria. It explores these immigrants’ practical and emotional relationships with the process of movement and settlement. It uses the conversational interviews as a tool to document analysis and draw relationships in an attempt to establish an understanding of the factors that contribute to the new-settlers feeling of home and integration within the new community.Keywords: integration, mobility, policy, refugees
Procedia PDF Downloads 315633 Optimizing CNC Production Line Efficiency Using NSGA-II: Adaptive Layout and Operational Sequence for Enhanced Manufacturing Flexibility
Authors: Yi-Ling Chen, Dung-Ying Lin
Abstract:
In the manufacturing process, computer numerical control (CNC) machining plays a crucial role. CNC enables precise machinery control through computer programs, achieving automation in the production process and significantly enhancing production efficiency. However, traditional CNC production lines often require manual intervention for loading and unloading operations, which limits the production line's operational efficiency and production capacity. Additionally, existing CNC automation systems frequently lack sufficient intelligence and fail to achieve optimal configuration efficiency, resulting in the need for substantial time to reconfigure production lines when producing different products, thereby impacting overall production efficiency. Using the NSGA-II algorithm, we generate production line layout configurations that consider field constraints and select robotic arm specifications from an arm list. This allows us to calculate loading and unloading times for each job order, perform demand allocation, and assign processing sequences. The NSGA-II algorithm is further employed to determine the optimal processing sequence, with the aim of minimizing demand completion time and maximizing average machine utilization. These objectives are used to evaluate the performance of each layout, ultimately determining the optimal layout configuration. By employing this method, it enhance the configuration efficiency of CNC production lines and establish an adaptive capability that allows the production line to respond promptly to changes in demand. This will minimize production losses caused by the need to reconfigure the layout, ensuring that the CNC production line can maintain optimal efficiency even when adjustments are required due to fluctuating demands.Keywords: evolutionary algorithms, multi-objective optimization, pareto optimality, layout optimization, operations sequence
Procedia PDF Downloads 27632 A Framework for Auditing Multilevel Models Using Explainability Methods
Authors: Debarati Bhaumik, Diptish Dey
Abstract:
Multilevel models, increasingly deployed in industries such as insurance, food production, and entertainment within functions such as marketing and supply chain management, need to be transparent and ethical. Applications usually result in binary classification within groups or hierarchies based on a set of input features. Using open-source datasets, we demonstrate that popular explainability methods, such as SHAP and LIME, consistently underperform inaccuracy when interpreting these models. They fail to predict the order of feature importance, the magnitudes, and occasionally even the nature of the feature contribution (negative versus positive contribution to the outcome). Besides accuracy, the computational intractability of SHAP for binomial classification is a cause of concern. For transparent and ethical applications of these hierarchical statistical models, sound audit frameworks need to be developed. In this paper, we propose an audit framework for technical assessment of multilevel regression models focusing on three aspects: (i) model assumptions & statistical properties, (ii) model transparency using different explainability methods, and (iii) discrimination assessment. To this end, we undertake a quantitative approach and compare intrinsic model methods with SHAP and LIME. The framework comprises a shortlist of KPIs, such as PoCE (Percentage of Correct Explanations) and MDG (Mean Discriminatory Gap) per feature, for each of these three aspects. A traffic light risk assessment method is furthermore coupled to these KPIs. The audit framework will assist regulatory bodies in performing conformity assessments of AI systems using multilevel binomial classification models at businesses. It will also benefit businesses deploying multilevel models to be future-proof and aligned with the European Commission’s proposed Regulation on Artificial Intelligence.Keywords: audit, multilevel model, model transparency, model explainability, discrimination, ethics
Procedia PDF Downloads 99631 Cognitive Science Based Scheduling in Grid Environment
Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya
Abstract:
Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence
Procedia PDF Downloads 395630 The ReliVR Project: Feasibility of a Virtual Reality Intervention in the Psychotherapy of Depression
Authors: Kyra Kannen, Sonja D. Roelen, Sebastian Schnieder, Jarek Krajewski, Steffen Holsteg, André Karger, Johanna Askeridis, Celina Slawik, Philip Mildner, Jens Piesk, Ruslan David, Holger Kürten, Benjamin Oster, Robert Malzan, Mike Ludemann
Abstract:
Virtual Reality (VR) is increasingly recognized for its potential in transforming mental disorder treatment, offering advantages such as cost-effectiveness, time efficiency, accessibility, reduced stigma, and scalability. While the application of VR in the context of anxiety disorders has been extensively evaluated and demonstrated to be effective, the utilization of VR as a therapeutic treatment for depression remains under-investigated. Our goal is to pioneer immersive VR therapy modules for treating major depression, alongside a web-based system for home use. We develop a modular digital therapy platform grounded in psychodynamic therapy interventions which addresses stress reduction, exploration of social situations and relationship support, social skill training, avoidance behavior analysis, and psychoeducation. In addition, an automated depression monitoring system, based on acoustic voice analysis, is implemented in the form of a speech-based diary to track the affective state of the user and depression severity. The use of immersive VR facilitates patient immersion into complex and realistic interpersonal interactions with high emotional engagement, which may contribute to positive treatment acceptance and satisfaction. In a proof-of-concept study, 45 depressed patients were assigned to VR or web-platform modules, evaluating user experience, usability and additional metrics including depression severity, mindfulness, interpersonal problems, and treatment satisfaction. The findings provide valuable insights into the effectiveness and user-friendliness of VR and web modules for depression therapy and contribute to the refinement of more tailored digital interventions to improve mental health.Keywords: virtual reality therapy, digital health, depression, psychotherapy
Procedia PDF Downloads 68629 Experience of Inpatient Life in Korean Complex Regional Pain Syndrome: A Phenomenological Study
Authors: Se-Hwa Park, En-Kyung Han, Jae-Young Lim, Hye-Jung Ahn
Abstract:
Purpose: The objective of this study is to provide basic data for understanding the substance of inpatient life with CRPS (Complex Regional Pain Syndrome) and developing efficient and effective nursing intervention. Methods: From September 2018 to November, we have interviewed 10 CRPS patients about inpatient experiences. To understand the implication of inpatient life experiences with CRPS and intrinsic structure, we have used the question: 'How about the inpatient experiences with CRPS'. For data analysis, the method suggested by Colaizzi was applied as a phenomenological method. Results: According to the analysis, the study participants' inpatient life process was structured in six categories: (a) breakthrough pain experience (b) the limitation of pain treatment, (c) worsen factors of pain during inpatient period, (d) treat method for pain, (e) positive experience for inpatient period, (f) requirements for medical team, family and people in hospital room. Conclusion: Inpatient with CRPS have experienced the breakthrough pain. They had expected immediate treatment for breakthrough pain, but they experienced severe pain because immediate treatment was not implemented. Pain-worsening factors which patients with CRPS are as follows: personal factors from negative emotions such as insomnia, stress, sensitive character, pain part touch or vibration stimulus on the bed, physical factors from high threshold or rapid speed during fast transfer, conflict with other people, climate factors such as humidity or low temperature, noise, smell, lack of space because of many visitors. Patients actively manage the pain committing into another tasks or diversion. And also, patients passively manage the pain, just suppress, give-up. They think positively about rehabilitation treatment. And they require the understanding and sympathy for other people, and emotional support, immediate intervention for medical team. Based on the results of this study, we suppose the guideline of systematic breakthrough pain management for the relaxation of sudden pain, using notice of informing caution for touch or vibration. And we need to develop non-medicine pain management nursing intervention.Keywords: breakthrough pain, CRPS, complex regional pain syndrome, inpatient life experiences, phenomenological method
Procedia PDF Downloads 135628 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane
Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo
Abstract:
Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining
Procedia PDF Downloads 92627 Intelligent Scaffolding Diagnostic Tutoring Systems to Enhance Students’ Academic Reading Skills
Authors: A.Chayaporn Kaoropthai, B. Onjaree Natakuatoong, C. Nagul Cooharojananone
Abstract:
The first year is usually the most critical year for university students. Generally, a considerable number of first-year students worldwide drop out of university every year. One of the major reasons for dropping out is failing. Although they are supposed to have mastered sufficient English proficiency upon completing their high school education, most first-year students are still novices in academic reading. Due to their lack of experience in academic reading, first-year students need significant support from teachers to help develop their academic reading skills. Reading strategies training is thus a necessity and plays a crucial role in classroom instruction. However, individual differences in both students, as well as teachers, are the main factors contributing to the failure in not responding to each individual student’s needs. For this reason, reading strategies training inevitably needs a diagnosis of students’ academic reading skills levels before, during, and after learning, in order to respond to their different needs. To further support reading strategies training, scaffolding is proposed to facilitate students in understanding and practicing using reading strategies under the teachers’ guidance. The use of the Intelligent Tutoring Systems (ITSs) as a tool for diagnosing students’ reading problems will be very beneficial to both students and their teachers. The ITSs consist of four major modules: the Expert module, the Student module, the Diagnostic module, and the User Interface module. The application of Artificial Intelligence (AI) enables the systems to perform diagnosis consistently and appropriately for each individual student. Thus, it is essential to develop the Intelligent Scaffolding Diagnostic Reading Strategies Tutoring Systems to enhance first-year students’ academic reading skills. The systems proposed will contribute to resolving classroom reading strategies training problems, developing students’ academic reading skills, and facilitating teachers.Keywords: academic reading, intelligent tutoring systems, scaffolding, university students
Procedia PDF Downloads 393626 Identifying Factors of Wellbeing in Russian Orphans
Authors: Alexandra Telitsyna, Galina Semya, Elvira Garifulina
Abstract:
Introduction: Starting from 2012 Russia conducts deinstitutionalization policy and now the main indicator of success is the number of children living in institutions. Active family placement process has resulted in residents of the institution now mainly consists of adolescents with behavioral and emotional problems, children with disabilities and groups of siblings. Purpose of science research: The purpose of science research is to identify factors for child’s wellbeing while temporary stay in an orphanage and the subjective assessment of children's level of well-being (psychological well-being). Methods: The data used for this project was collected by the questionnaire of 72 indicators, a tool for monitoring the behavior of children and caregivers, an additional questionnaire for children; well-being assessment questionnaire containing 10 scales for three age groups from preschool to older adolescents. In 2016-2018, the research was conducted in 1873 institution in 85 regions of Russia. In each region a team of academics, specialists from Non-profits, independent experts was created. Training was conducted for team members through a series of webinars prior to undertaking the assessment. The results: To ensure the well-being of the children, the following conditions are necessary: 1- Life of children in institution is organised according to the principles of family care (including the creation of conditions for attachment to be formed); 2- Contribution to find family-based placement for children (including reintegration into the primary family); 3- Work with parents of children, who are placed in an organization at the request of parents; 4- Children attend schools according to their needs; 5- Training of staff and volunteers; 6- Special environment and services for children with special needs and children with disabilities; 7- Cooperation with NGOs; 8 - Openness and accessibility of the organization. Conclusion: A study of the psychological well-being of children showed that the most emotionally stressful for children were questions about the presence and frequency of contact with relatives, and the level of well-being is higher in the presence of a trusted adult and respect for rights. The greatest contribution to the trouble is made by the time the child is in the orphanage, the lack of contact with parents and relatives, the uncertainty of the future.Keywords: identifying factors, orphans, Russia, wellbeing
Procedia PDF Downloads 136625 The Implications of Kinship Terms in Newspaper Accident Reports
Authors: Tharwat El-Sakran
Abstract:
The linguistic choices accident news reporters make when reporting killing cases within family circles aid in augmenting the wrath readers feel towards the perpetrators. Undoubtedly, when killers or murderers are labelled with particular words, prospective readers will associate them with the cultural connotations and emotions, whether positive or negative, attached to those words. One of these strategies is the use of kinship terms to anaphorically or cataphorically refer to the defendants. While some articles opt for using the killer’s name, others make use of other kinship labels such as “the mother,” “the father,” “the step-father, and “the step-mother.” The preference for proper nouns over kinship terms and vice versa can be indicative of some of the underlying implications that the article writer may be trying to make about either the status of the killer or the overall incident circumstances. This research examines how the use of referential kinship labels could point to hidden and shared connotations between writers and their prospective readers. This study examined seventy newspaper articles from English-medium publications based in the United Arab Emirates (UAE), the USA, and several other countries. Some of these articles make use of proper nouns referring to the individual directly by name, whereas others refer to individuals based on their kinship relation with the victim or by their occupational status. Furthermore, information was collected from two hundred fifty-one students at several UAE-based universities by asking them what certain kinship words meant to them. The survey questions allowed for real insight into some of the most prevalent interpretations attached to kinship labels and the possible implications for preferring kinship terms over occupational labels and persons’ proper names. Results indicate that newspaper writers employ kinship labels to inspire an emotion in their future readers’ reactions that may not be achieved through the use of the person’s proper name(s). Additionally, respondents to the survey believe that the use of kinship nouns like “mother,” “father,” “step-mother,” and “step-father” tends to inspire a stronger emotional response, as they are almost always associated with particular behavioral cultural codes and conventions. The study concludes with recommendations for teaching the grammar of English words to EFL and mass communication students and with suggestions for translation theorists and further research.Keywords: kinship terms, accident reports, cultural connotations, translation of kinship terms
Procedia PDF Downloads 137