Search results for: best practice model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20337

Search results for: best practice model

17907 Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes

Authors: F. Sangiorgio, J. Silfwerbrand, G. Mancini

Abstract:

Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.

Keywords: modelling, Monte Carlo simulations, probabilistic models, data clustering, reinforced concrete members, structural design

Procedia PDF Downloads 471
17906 Soft Computing Employment to Optimize Safety Stock Levels in Supply Chain Dairy Product under Supply and Demand Uncertainty

Authors: Riyadh Jamegh, Alla Eldin Kassam, Sawsan Sabih

Abstract:

In order to overcome uncertainty conditions and inability to meet customers' requests due to these conditions, organizations tend to reserve a certain safety stock level (SSL). This level must be chosen carefully in order to avoid the increase in holding cost due to excess in SSL or shortage cost due to too low SSL. This paper used soft computing fuzzy logic to identify optimal SSL; this fuzzy model uses the dynamic concept to cope with high complexity environment status. The proposed model can deal with three input variables, i.e., demand stability level, raw material availability level, and on hand inventory level by using dynamic fuzzy logic to obtain the best SSL as an output. In this model, demand stability, raw material, and on hand inventory levels are described linguistically and then treated by inference rules of the fuzzy model to extract the best level of safety stock. The aim of this research is to provide dynamic approach which is used to identify safety stock level, and it can be implanted in different industries. Numerical case study in the dairy industry with Yogurt 200 gm cup product is explained to approve the validity of the proposed model. The obtained results are compared with the current level of safety stock which is calculated by using the traditional approach. The importance of the proposed model has been demonstrated by the significant reduction in safety stock level.

Keywords: inventory optimization, soft computing, safety stock optimization, dairy industries inventory optimization

Procedia PDF Downloads 123
17905 16s rRNA Based Metagenomic Analysis of Palm Sap Samples From Bangladesh

Authors: Ágota Ábrahám, Md Nurul Islam, Karimane Zeghbib, Gábor Kemenesi, Sazeda Akter

Abstract:

Collecting palm sap as a food source is an everyday practice in some parts of the world. However, the consumption of palm juice has been associated with regular infections and epidemics in parts of Bangladesh. This is attributed to fruit-eating bats and other vertebrates or invertebrates native to the area, contaminating the food with their body secretions during the collection process. The frequent intake of palm juice, whether as a processed food product or in its unprocessed form, is a common phenomenon in large areas. The range of pathogens suitable for human infection resulting from this practice is not yet fully understood. Additionally, the high sugar content of the liquid makes it an ideal culture medium for certain bacteria, which can easily propagate and potentially harm consumers. Rapid diagnostics, especially in remote locations, could mitigate health risks associated with palm juice consumption. The primary objective of this research is the rapid genomic detection and risk assessment of bacteria that may cause infections in humans through the consumption of palm juice. Utilizing state-of-the-art third-generation Nanopore metagenomic sequencing technology based on 16S rRNA, and identified bacteria primarily involved in fermenting processes. The swift metagenomic analysis, coupled with the widespread availability and portability of Nanopore products (including real-time analysis options), proves advantageous for detecting harmful pathogens in food sources without relying on extensive industry resources and testing.

Keywords: raw date palm sap, NGS, metabarcoding, food safety

Procedia PDF Downloads 53
17904 Integrating Machine Learning and Rule-Based Decision Models for Enhanced B2B Sales Forecasting and Customer Prioritization

Authors: Wenqi Liu, Reginald Bailey

Abstract:

This study explores an advanced approach to enhancing B2B sales forecasting by integrating machine learning models with a rule-based decision framework. The methodology begins with the development of a machine learning classification model to predict conversion likelihood, aiming to improve accuracy over traditional methods like logistic regression. The classification model's effectiveness is measured using metrics such as accuracy, precision, recall, and F1 score, alongside a feature importance analysis to identify key predictors. Following this, a machine learning regression model is used to forecast sales value, with the objective of reducing mean absolute error (MAE) compared to linear regression techniques. The regression model's performance is assessed using MAE, root mean square error (RMSE), and R-squared metrics, emphasizing feature contribution to the prediction. To bridge the gap between predictive analytics and decision-making, a rule-based decision model is introduced that prioritizes customers based on predefined thresholds for conversion probability and predicted sales value. This approach significantly enhances customer prioritization and improves overall sales performance by increasing conversion rates and optimizing revenue generation. The findings suggest that this combined framework offers a practical, data-driven solution for sales teams, facilitating more strategic decision-making in B2B environments.

Keywords: sales forecasting, machine learning, rule-based decision model, customer prioritization, predictive analytics

Procedia PDF Downloads 14
17903 A Fast Multi-Scale Finite Element Method for Geophysical Resistivity Measurements

Authors: Mostafa Shahriari, Sergio Rojas, David Pardo, Angel Rodriguez- Rozas, Shaaban A. Bakr, Victor M. Calo, Ignacio Muga

Abstract:

Logging-While Drilling (LWD) is a technique to record down-hole logging measurements while drilling the well. Nowadays, LWD devices (e.g., nuclear, sonic, resistivity) are mostly used commercially for geo-steering applications. Modern borehole resistivity tools are able to measure all components of the magnetic field by incorporating tilted coils. The depth of investigation of LWD tools is limited compared to the thickness of the geological layers. Thus, it is a common practice to approximate the Earth’s subsurface with a sequence of 1D models. For a 1D model, we can reduce the dimensionality of the problem using a Hankel transform. We can solve the resulting system of ordinary differential equations (ODEs) either (a) analytically, which results in a so-called semi-analytic method after performing a numerical inverse Hankel transform, or (b) numerically. Semi-analytic methods are used by the industry due to their high performance. However, they have major limitations, namely: -The analytical solution of the aforementioned system of ODEs exists only for piecewise constant resistivity distributions. For arbitrary resistivity distributions, the solution of the system of ODEs is unknown by today’s knowledge. -In geo-steering, we need to solve inverse problems with respect to the inversion variables (e.g., the constant resistivity value of each layer and bed boundary positions) using a gradient-based inversion method. Thus, we need to compute the corresponding derivatives. However, the analytical derivatives of cross-bedded formation and the analytical derivatives with respect to the bed boundary positions have not been published to the best of our knowledge. The main contribution of this work is to overcome the aforementioned limitations of semi-analytic methods by solving each 1D model (associated with each Hankel mode) using an efficient multi-scale finite element method. The main idea is to divide our computations into two parts: (a) offline computations, which are independent of the tool positions and we precompute only once and use them for all logging positions, and (b) online computations, which depend upon the logging position. With the above method, (a) we can consider arbitrary resistivity distributions along the 1D model, and (b) we can easily and rapidly compute the derivatives with respect to any inversion variable at a negligible additional cost by using an adjoint state formulation. Although the proposed method is slower than semi-analytic methods, its computational efficiency is still high. In the presentation, we shall derive the mathematical variational formulation, describe the proposed multi-scale finite element method, and verify the accuracy and efficiency of our method by performing a wide range of numerical experiments and comparing the numerical solutions to semi-analytic ones when the latest are available.

Keywords: logging-While-Drilling, resistivity measurements, multi-scale finite elements, Hankel transform

Procedia PDF Downloads 385
17902 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules

Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima

Abstract:

Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.

Keywords: Box-Jenkins's problem, double-input rule module, fuzzy inference model, obstacle avoidance, single-input rule module

Procedia PDF Downloads 352
17901 Fuzzy Inference-Assisted Saliency-Aware Convolution Neural Networks for Multi-View Summarization

Authors: Tanveer Hussain, Khan Muhammad, Amin Ullah, Mi Young Lee, Sung Wook Baik

Abstract:

The Big Data generated from distributed vision sensors installed on large scale in smart cities create hurdles in its efficient and beneficial exploration for browsing, retrieval, and indexing. This paper presents a three-folded framework for effective video summarization of such data and provide a compact and representative format of Big Video Data. In the first fold, the paper acquires input video data from the installed cameras and collect clues such as type and count of objects and clarity of the view from a chunk of pre-defined number of frames of each view. The decision of representative view selection for a particular interval is based on fuzzy inference system, acquiring a precise and human resembling decision, reinforced by the known clues as a part of the second fold. In the third fold, the paper forwards the selected view frames to the summary generation mechanism that is supported by a saliency-aware convolution neural network (CNN) model. The new trend of fuzzy rules for view selection followed by CNN architecture for saliency computation makes the multi-view video summarization (MVS) framework a suitable candidate for real-world practice in smart cities.

Keywords: big video data analysis, fuzzy logic, multi-view video summarization, saliency detection

Procedia PDF Downloads 187
17900 Improving Reading Comprehension Skills of Elementary School Students through Cooperative Integrated Reading and Composition Model Using Padlet

Authors: Neneng Hayatul Milah

Abstract:

The most important reading skill for students is comprehension. Understanding the reading text will have an impact on learning outcomes. However, reading comprehension instruction in Indonesian elementary schools is lacking. A more effective learning model is needed to enhance students' reading comprehension. This study aimed to evaluate the effectiveness of the CIRC (Cooperative Integrated Reading and Composition) model with Padlet integration in improving the reading comprehension skills of grade IV students in elementary schools in Cimahi City, Indonesia. This research methodology was quantitative with a pre-experiment research type and one group pretest-posttest research design. The sample of this study consisted of 30 students. The results of statistical analysis showed that there was a significant effect of using the CIRC learning model using Padlet on improving students' reading comprehension skills of narrative text. The mean score of students' pretest was 67.41, while the mean score of the posttest increased to 84.82. The paired sample t-test resulted in a t-count score of -13.706 with a significance score of <0.001, which is smaller than α = 0.05. This research is expected to provide useful insights for educational practitioners on how the use of the CIRC model using Padlet can improve the reading comprehension skills of elementary school students.

Keywords: reading comprehension skills, CIRC, Padlet, narrative text

Procedia PDF Downloads 31
17899 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model

Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu

Abstract:

The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.

Keywords: subcooled boiling flow, computational fluid dynamics (CFD), mechanistic approach, two-fluid model

Procedia PDF Downloads 316
17898 Multi-Objective Multi-Period Allocation of Temporary Earthquake Disaster Response Facilities with Multi-Commodities

Authors: Abolghasem Yousefi-Babadi, Ali Bozorgi-Amiri, Aida Kazempour, Reza Tavakkoli-Moghaddam, Maryam Irani

Abstract:

All over the world, natural disasters (e.g., earthquakes, floods, volcanoes and hurricanes) causes a lot of deaths. Earthquakes are introduced as catastrophic events, which is accident by unusual phenomena leading to much loss around the world. Such could be replaced by disasters or any other synonyms strongly demand great long-term help and relief, which can be hard to be managed. Supplies and facilities are very important challenges after any earthquake which should be prepared for the disaster regions to satisfy the people's demands who are suffering from earthquake. This paper proposed disaster response facility allocation problem for disaster relief operations as a mathematical programming model. Not only damaged people in the earthquake victims, need the consumable commodities (e.g., food and water), but also they need non-consumable commodities (e.g., clothes) to protect themselves. Therefore, it is concluded that paying attention to disaster points and people's demands are very necessary. To deal with this objective, both commodities including consumable and need non-consumable commodities are considered in the presented model. This paper presented the multi-objective multi-period mathematical programming model regarding the minimizing the average of the weighted response times and minimizing the total operational cost and penalty costs of unmet demand and unused commodities simultaneously. Furthermore, a Chebycheff multi-objective solution procedure as a powerful solution algorithm is applied to solve the proposed model. Finally, to illustrate the model applicability, a case study of the Tehran earthquake is studied, also to show model validation a sensitivity analysis is carried out.

Keywords: facility location, multi-objective model, disaster response, commodity

Procedia PDF Downloads 257
17897 Factors Affecting on Mid-Career Training for Arab Journalists, United Arab Emirates Case Study

Authors: Maha Abdulmajeed, Nagwa Fahmy

Abstract:

Improving journalism practice in the UAE requires a clear understanding of the mid-career training environment; what Arab journalists’ think about the professional training available to them, what training needs they have and still not achieved, and what factors they think it could help to improve the mid-career training outcomes. This research paper examines the validity and effectiveness of mid-career professional journalistic training in the UAE. The research focuses on Arab journalists’ perceptions and attitudes towards professional training, and the state of journalistic training courses available to them, in comparison to modern trends of professional training. The two main objectives of this paper are to examine how different factors affect the effectiveness of the mid-career training offered to Arab Journalists in UAE, whether they are institutional factories, socio-economic factors, personal factors, etc. Then, to suggest a practical roadmap to improve the mid-career journalism training in the UAE. The research methodology combines qualitative and quantitative approaches. As researchers conduct in-depth interviews with a sample of Arab journalists in the UAE, Media outlets in UAE encompass private and governmental entities, with media products in Arabic and/or English, online and/or offline as well. Besides, content analysis will be applied to the available online and offline journalistic training courses offered to Arab journalists’ in UAE along the past three years. Research outcomes are expected to be helpful and practical to improve professional training in the UAE and to determine comprehensive and concrete criteria to provide up-to-date professional training, and to evaluate its validity. Results and research outcomes can help to better understand the current status of mid-career journalistic training in the UAE, to evaluate it based on studying both; the targeted trainees and the up-to-date journalistic training trends.

Keywords: Arab journalists, Arab journalism culture, journalism practice, journalism and technology

Procedia PDF Downloads 264
17896 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations

Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang

Abstract:

Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.

Keywords: source identification, ordinary differential equations, label propagation, complex networks

Procedia PDF Downloads 17
17895 The Value of Store Choice Criteria on Perceived Patronage Intentions

Authors: Susana Marques

Abstract:

Research on how store environment cues influence consumers’ store choice decision criteria, such as store operations, product quality, monetary price, store image and sales promotion, is sparse. Especially absent research on the simultaneous impact of multiple store environment cues. The authors propose a comprehensive store choice model that includes: three types of store environment cues as exogenous constructs; various store choice criteria as possible mediating constructs, and store patronage intentions as an endogenous construct. On the basis of testing with a sample of 561 customers of hypermarkets, the model is partially supported. This study used structural equation modelling to test the proposed model.

Keywords: store choice, store patronage, structural equation modelling, retailing

Procedia PDF Downloads 270
17894 The Growth Curve of Gompertz Model in Body Weight of Slovak Mixed-Sex Goose Breeds

Authors: Cyril Hrncar, Jozef Bujko, Widya P. B. Putra

Abstract:

The growth curve of poultry is important to evaluate the farming management system. This study was aimed to estimate the growth curve of body weight in goose. The growth curve in this study was estimated with non-linear Gompertz model through CurveExpert 1.4. software. Three Slovak mixed-sex goose breeds of Landes (L), Pomeranian (P) and Steinbacher (S) were used in this study. Total of 28 geese (10 L, 8 P and 10 S) were used to estimate the growth curve. Research showed that the asymptotic weight (A) in those geese were reached of 5332.51 g (L), 6186.14 g (P) and 5048.27 g (S). Thus, the maturing rate (k) in each breed were similar (0.05 g/day). The weight of inflection was reached of 1960.48 g (L), 2274.32 g (P) and 1855.98 g (S). The time of inflection (ti) was reached of 25.6 days (L), 26.2 days (P) and 27.80 days (S). The maximum growth rate (MGR) was reached of 98.02 g/day (L), 113.72 g/day (P) and 92.80 g/day (S). Hence, the coefficient of determination (R2) in Gompertz model was 0.99 for each breed. It can be concluded that Pomeranian geese had highest of growth trait than the other breeds.

Keywords: body weight, growth curve, inflection, Slovak geese, Gompertz model

Procedia PDF Downloads 142
17893 The Voluntary Review Decision of Quarterly Consolidated Financial Statements in Emerging Market: Evidence from Taiwan

Authors: Shuofen Hsu, Ya-Yi Chao, Chao-Wei Li

Abstract:

This paper investigates the factors of whether firms’ quarterly consolidated financial statements to be voluntary reviewed by auditor. To promote the information transparency, the Financial Supervisory Commission of Executive Yuan in Taiwan ruled the Taiwanese listed companies should announce the first and third quarterly consolidated financial statements since 2008 to 2012, while the Commission didn’t require the consolidated financial statements should be reviewed by auditors. This is a very special practice in emerging market, especially in Taiwan. The valuable data of this period is suitable for us to research the determinants of firms’ voluntary review decision in emerging markets. We collected the auditors' report of each company and each year of Taiwanese listed companies since 2008 to 2012 for our research samples. We use probit model to test and analyze the determinants of voluntary review decision of the first and third quarterly consolidated financial statements. Our empirical result shows that the firms whose first and third quarterly consolidated financial statements are voluntary to be reviewed by auditors have better ranking of information transparency, higher audit quality, and better corporate governance, suggesting that voluntary review is a good signal to firms’ better information and corporate governance quality.

Keywords: voluntary review, information transparency, audit quality, quarterly consolidated financial statements

Procedia PDF Downloads 253
17892 Eco-Friendly Cultivation

Authors: Shah Rucksana Akhter Urme

Abstract:

Agriculture is the main source of food for human consumption and feeding the world huge population, the pressure of food supply is increasing day by day. Undoubtedly, quality strain, improved plantation, farming technology, synthetic fertilizer, readily available irrigation, insecticides and harvesting technology are the main factors those to meet up the huge demand of food consumption all over the world. However, depended on this limited resources and excess amount of consuming lands, water, fertilizers leads to the end of the resources and severe climate effects has been left for our future generation. Agriculture is the most responsible to global warming, emitting more greenhouse gases than all other vehicles largely from nitrous oxide released by from fertilized fields, and carbon dioxide from the cutting of rain forests to grow crops . Farming is the thirstiest user of our precious water supplies and a major polluter, as runoff from fertilizers disrupts fragile lakes, rivers, and coastal ecosystems across the globe which accelerates the loss of biodiversity, crucial habitat and a major driver of wildlife extinction. It is needless to say that we have to more concern on how we can save the nutrients of the soil, storage of the water and avoid excessive depends on synthetic fertilizer and insecticides. In this case, eco- friendly cultivation could be a potential alternative solution to minimize effects of agriculture in our environment. The objective of this review paper is about organic cultivation following in particular biotechnological process focused on bio-fertilizer and bio-pesticides. Intense practice of chemical pesticides, insecticides has severe effect on both in human life and biodiversity. This cultivation process introduces farmer an alternative way which is nonhazardous, cost effective and ecofriendly. Organic fertilizer such as tea residue, ashes might be the best alternative to synthetic fertilizer those play important role in increasing soil nutrient and fertility. Ashes contain different essential and non-essential mineral contents that are required for plant growth. Organic pesticide such as neem spray is beneficial for crop as it is toxic for pest and insects. Recycled and composted crop wastes and animal manures, crop rotation, green manures and legumes etc. are suitable for soil fertility which is free from hazardous chemicals practice. Finally water hyacinth and algae are potential source of nutrients even alternative to soil for cultivation along with storage of water for continuous supply. Inorganic practice of agriculture, consuming fruits and vegetables becomes a threat for both human life and eco-system and synthetic fertilizer and pesticides are responsible for it. Farmers that practice eco-friendly farming have to implement steps to protect the environment, particularly by severely limiting the use of pesticides and avoiding the use of synthetic chemical fertilizers, which are necessary for organic systems to experience reduced environmental harm and health risk.

Keywords: organic farming, biopesticides, organic nutrients, water storage, global warming

Procedia PDF Downloads 58
17891 Deliberate Learning and Practice: Enhancing Situated Learning Approach in Professional Communication Course

Authors: Susan Lee

Abstract:

Situated learning principles are adopted in the design of the module, professional communication, in its iteration of tasks and assignments to create a learning environment that simulates workplace reality. The success of situated learning is met when students are able to transfer and apply their skills beyond the classroom, in their personal life, and workplace. The learning process should help students recognize the relevance and opportunities for application. In the module’s learning component on negotiation, cases are created based on scenarios inspired by industry practices. The cases simulate scenarios that students on the course may encounter when they enter the workforce when they take on executive roles in the real estate sector. Engaging in the cases has enhanced students’ learning experience as they apply interpersonal communication skills in negotiation contexts of executives. Through the process of case analysis, role-playing, and peer feedback, students are placed in an experiential learning space to think and act in a deliberate manner not only as students but as professionals they will graduate to be. The immersive skills practices enable students to continuously apply a range of verbal and non-verbal communication skills purposefully as they stage their negotiations. The theme in students' feedback resonates with their awareness of the authentic and workplace experiences offered through visceral role-playing. Students also note relevant opportunities for the future transfer of the skills acquired. This indicates that students recognize the possibility of encountering similar negotiation episodes in the real world and realize they possess the negotiation tools and communication skills to deliberately apply them when these opportunities arise outside the classroom.

Keywords: deliberate practice, interpersonal communication skills, role-play, situated learning

Procedia PDF Downloads 212
17890 Food Security Model and the Role of Community Empowerment: The Case of a Marginalized Village in Mexico, Tatoxcac, Puebla

Authors: Marco Antonio Lara De la Calleja, María Catalina Ovando Chico, Eduardo Lopez Ruiz

Abstract:

Community empowerment has been proved to be a key element in the solution of the food security problem. As a result of a conceptual analysis, it was found that agricultural production, economic development and governance, are the traditional basis of food security models. Although the literature points to social inclusion as an important factor for food security, no model has considered it as the basis of it. The aim of this research is to identify different dimensions that make an integral model for food security, with emphasis on community empowerment. A diagnosis was made in the study community (Tatoxcac, Zacapoaxtla, Puebla), to know the aspects that impact the level of food insecurity. With a statistical sample integrated by 200 families, the Latin American and Caribbean Food Security Scale (ELCSA) was applied, finding that: in households composed by adults and children, have moderated food insecurity, (ELCSA scale has three levels, low, moderated and high); that result is produced mainly by the economic income capacity and the diversity of the diet on its food. With that being said, a model was developed to promote food security through five dimensions: 1. Regional context of the community; 2. Structure and system of local food; 3. Health and nutrition; 4. Information and technology access; and 5. Self-awareness and empowerment. The specific actions on each axis of the model, allowed a systemic approach needed to attend food security in the community, through the empowerment of society. It is concluded that the self-awareness of local communities is an area of extreme importance, which must be taken into account for participatory schemes to improve food security. In the long term, the model requires the integrated participation of different actors, such as government, companies and universities, to solve something such vital as food security.

Keywords: community empowerment, food security, model, systemic approach

Procedia PDF Downloads 371
17889 Critical Literacy and Multiliteracies in the English Language Teaching at Federal Institute of Mato Grosso, Rondonópolis Campus

Authors: Jordana Lenhardt

Abstract:

This paperwork aims to promote a reflection on the critical literacy and multiliteracies concepts in the English language teaching, under an emancipatory perspective, in the English language classroom at the Federal Institute of Mato Grosso (IFMT), Rondonópolis Campus. Some Authors place the relationship between the world conscience and the self-conscience in a direct reason, compromising one to the other, and others defend that emancipatory teaching practice must be connected in all the spheres of the social context; with this paperwork, we intend to analyze students’ interactions with the English language, in order to verify if they demonstrate critical conscience about language and the world around them. The study is still at a preliminary level and is grounded in discourse critical analysis and systemic-functional linguistics. We understand that text is irremediable, linked to a context, and that the linguistic selection made by the speaker builds social representations. This research foresees the analysis of some students’ speeches in an interview about their classes at the Federal Institute in the city of Rondonópolis and the methodology being used on them. Discourse critical analysis explains that, through the awareness of the language uses, learners can become more conscious of the coercions in their own language practices, the possibilities of risks, and the costs of the individual or collective challenges, to engage themselves in emancipatory linguistic practice. The critical language conscience contributes, on the other hand, to make students more aware of the practices in which they are involved, as producers and consumers of texts, of the social forces, ideologies, and power relations, their effects on the identities and social relations, as well as the discourse role in the social and cultural processes.

Keywords: multiliteracies, critical literacy, emancipation, social transformation

Procedia PDF Downloads 100
17888 Stability Analysis and Experimental Evaluation on Maxwell Model of Impedance Control

Authors: Le Fu, Rui Wu, Gang Feng Liu, Jie Zhao

Abstract:

Normally, impedance control methods are based on a model that connects a spring and damper in parallel. The series connection, namely the Maxwell model, has emerged as a counterpart and draw the attention of robotics researchers. In the theoretical analysis, it turns out that the two pattern are both equivalents to some extent, but notable differences of response characteristics exist, especially in the effect of damping viscosity. However, this novel impedance control design is lack of validation on realistic robot platforms. In this study, stability analysis and experimental evaluation are achieved using a 3-fingered Barrett® robotic hand BH8-282 endowed with tactile sensing, mounted on a torque-controlled lightweight and collaborative robot KUKA® LBR iiwa 14 R820. Object handover and incoming objects catching tasks are executed for validation and analysis. Experimental results show that the series connection pattern has much better performance in natural impact or shock absorption, which indicate promising applications in robots’ safe and physical interaction with humans and objects in various environments.

Keywords: impedance control, Maxwell model, force control, dexterous manipulation

Procedia PDF Downloads 496
17887 The Study of Chitosan beads Adsorption Properties for the Removal of Heavy Metals

Authors: Peter O. Osifo, Hein W. J. P. Neomagus

Abstract:

In this study, a predicted pH model was used to determine adsorption equilibrium properties of copper, lead, zinc and cadmium. Chitosan was prepared from the exoskeleton of Cape rock-lobsters, collected from the surroundings of Cape Town, South Africa. The beads were cross-linked with gluteraldehyde to restore its chemical stability in acid media. The chitosan beads were characterized; the beads water contents and pKa varied in the range of 90-96% and 4.3-6.0 respectively and the degree of crosslinking for the beads was 18%. A pH-model, which described the reversibility of the metal adsorbed onto the beads, was used to predict the equilibrium properties of copper, lead, zinc and cadmium adsorption onto the cross-linked beads. The model accounts for the effect of pH and the important model parameters; the equilibrium adsorption constant (Kads) and to a lesser extent the adsorbent adsorption capacity (qmax). The adsorption equilibrium constant for copper, lead, zinc and cadmium were found to be 2.58×10-3, 2.22×0-3, 9.55×0-3, and 4.79×0-3, respectively. The adsorbent maximum capacity was determined to be 4.2 mmol/g.

Keywords: chitosan beads, adsorption, heavy metals, waste water

Procedia PDF Downloads 378
17886 An Analysis of Legal and Ethical Implications of Sports Doping in India

Authors: Prathyusha Samvedam, Hiranmaya Nanda

Abstract:

Doping refers to the practice of using drugs or practices that enhance an athlete's performance. This is a problem that occurs on a worldwide scale and compromises the fairness of athletic tournaments. There are rules that have been created on both the national and international levels in order to prevent doping. However, these rules sometimes contradict one another, and it is possible that they don't do a very good job of prohibiting people from using PEDs. This study will contend that India's inability to comply with specific Code criteria, as well as its failure to satisfy "best practice" standards established by other countries, demonstrates a lack of uniformity in the implementation of anti-doping regulations and processes among nations. Such challenges have the potential to undermine the validity of the anti-doping system, particularly in developing nations like India. This article on the legislative framework in India governing doping in sports is very important. To begin, doping in sports is a significant problem that affects the spirit of fair play and sportsmanship. Moreover, it has the potential to jeopardize the integrity of the sport itself. In addition, the research has the potential to educate policymakers, sports organizations, and other stakeholders about the current legal framework and how well it discourages doping in athletic competitions. This article is divided into four distinct sections. The first section offers an explanation of what doping is and provides some context about its development throughout time. Followed the role of anti-doping authorities and the responsibilities they perform are investigated. Case studies and the research technique that will be employed for the study are in the third section; finally, the results are presented in the last section. In conclusion, doping is a severe problem that endangers the honest competition that exists within sports.

Keywords: sports law, doping, NADA, WADA, performance enhancing drugs, anti-doping bill 2022

Procedia PDF Downloads 69
17885 Investigation Bubble Growth and Nucleation Rates during the Pool Boiling Heat Transfer of Distilled Water Using Population Balance Model

Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian

Abstract:

In this research, the changes in bubbles diameter and number that may occur due to the change in heat flux of pure water during pool boiling process. For this purpose, test equipment was designed and developed to collect test data. The bubbles were graded using Caliper Screen software. To calculate the growth and nucleation rates of bubbles under different fluxes, population balance model was employed. The results show that the increase in heat flux from q=20 kw/m2 to q=102 kw/m2 raised the growth and nucleation rates of bubbles.

Keywords: heat flux, bubble growth, bubble nucleation, population balance model

Procedia PDF Downloads 474
17884 Development of Open Source Geospatial Certification Model Based on Geospatial Technology Competency Model

Authors: Tanzeel Ur Rehman Khan, Franz Josef Behr, Phillip Davis

Abstract:

Open source geospatial certifications are needed in geospatial technology education and industry sector. In parallel with proprietary software, free and open source software solutions become important in geospatial technology research and play an important role for the growth of the geospatial industry. ESRI, GISCI (GIS Certification Institute), ASPRS (American Society of Photogrammetry and remote sensing), and Meta spatial are offering certifications on proprietary and open source software. These are portfolio and competency based certifications depending on GIS Body of Knowledge (Bok). The analysis of these certification approaches might lead to the discovery of some gaps in them and will open a new way to develop certifications related to the geospatial open source (OS). This new certification will investigate the different geospatial competencies according to open source tools that help to identify geospatial professionals and strengthen the geospatial academic content. The goal of this research is to introduce a geospatial certification model based on geospatial technology competency model (GTCM).The developed certification will not only incorporate the importance of geospatial education and production of the geospatial competency-based workforce in universities and companies (private or public) as well as describe open source solutions with tools and technology. Job analysis, market analysis, survey analysis of this certification opens a new horizon for business as well.

Keywords: geospatial certification, open source, geospatial technology competency model, geoscience

Procedia PDF Downloads 564
17883 Probability-Based Damage Detection of Structures Using Kriging Surrogates and Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Surrogate model has received increasing attention for use in detecting damage of structures based on vibration modal parameters. However, uncertainties existing in the measured vibration data may lead to false or unreliable output result from such model. In this study, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The kriging technique allows one to genuinely quantify the surrogate error, therefore it is chosen as metamodeling technique. Enhanced version of ideal gas molecular movement (EIGMM) algorithm is used as main algorithm for model updating. The developed approach is applied to detect simulated damage in numerical models of 72-bar space truss and 120-bar dome truss. The simulation results show the proposed method can perform well in probability-based damage detection of structures with less computational effort compared to direct finite element model.

Keywords: probability-based damage detection (PBDD), Kriging, surrogate modeling, uncertainty quantification, artificial intelligence, enhanced ideal gas molecular movement (EIGMM)

Procedia PDF Downloads 238
17882 Dynamic Risk Model for Offshore Decommissioning Using Bayesian Belief Network

Authors: Ahmed O. Babaleye, Rafet E. Kurt

Abstract:

The global oil and gas industry is beginning to witness an increase in the number of installations moving towards decommissioning. Decommissioning of offshore installations is a complex, costly and hazardous activity, making safety one of the major concerns. Among existing removal options, complete and partial removal options pose the highest risks. Therefore, a dynamic risk model of the accidents from the two options is important to assess the risks on an overall basis. In this study, a risk-based safety model is developed to conduct quantitative risk analysis (QRA) for jacket structure systems failure. Firstly, bow-tie (BT) technique is utilised to model the causal relationship between the system failure and potential accident scenarios. Subsequently, to relax the shortcomings of BT, Bayesian Belief Networks (BBNs) were established to dynamically assess associated uncertainties and conditional dependencies. The BBN is developed through a similitude mapping of the developed bow-tie. The BBN is used to update the failure probabilities of the contributing elements through diagnostic analysis, thus, providing a case-specific and realistic safety analysis method when compared to a bow-tie. This paper presents the application of dynamic safety analysis to guide the allocation of risk control measures and consequently, drive down the avoidable cost of remediation.

Keywords: Bayesian belief network, offshore decommissioning, dynamic safety model, quantitative risk analysis

Procedia PDF Downloads 279
17881 Exploration of Two Selected Sculptural Forms in the Department of Fine and Applied Arts, Federal Capital Territory College of Education Zuba-Abuja, Nigeria as Motifs for Wax Print Pattern and Design

Authors: Adeoti Adebowale, Abduljaleel, Ejiogu Fidelis Onyekwo

Abstract:

Form and image development are fundamental to creative expression in visual arts. The form is an element that distinguishes the difference between two-dimension and three-dimension among the branches of visual arts. Particularly, the sculpture is a three-dimensional form, while the textile design is a two-dimensional form of its visual appearance. The visual expression of each of them is embedded in the creative practice of the artist, which is easily understood and interpreted by the viewer. In this research, an attempt is made to explore and analyse sculptural forms adopted as a motif for wax print in textile design, aiming at breeding yet another pattern and motif suitable for various design uses. For instance, the dynamics of sculptural form adaptation into other areas of creativity, such as architecture, pictorial arts and pottery, as well as automobile bodies, is a discernible image everywhere. The research is studio exploratory, while a camera and descriptive analysis were used to process the data. Two sculptural forms were adopted from the Department of Fine and Applied Arts, Federal Capital Territory College of Education Zuba-Abuja, in this study due to the uniqueness of their technique of execution. The findings resulted in ten (10) paper designs showing the dexterity of studio practice in the development of design for various fashion and textile uses. However, the paper concludes that sculptural form is a source of inspiration for generating design concepts for a textile designer.

Keywords: exploration, design, motifs, sculptural forms, wax print

Procedia PDF Downloads 68
17880 Aerodynamic Devices Development for Model Aircraft Control and Wind-Driven Bicycle

Authors: Yuta Moriyama, Tsuyoshi Yamazaki, Etsuo Morishita

Abstract:

Several aerodynamic devices currently attract engineers and research students. The plasma actuator is one of them, and it is very effective to control the flow. The actuator recovers a separated flow to an attached one. The actuator is also inversely applied to a spoiler. The model aircraft might be controlled by this actuator. We develop a model aircraft with the plasma actuator. Another interesting device is the Wells turbine which rotates in one direction. The present authors propose a bicycle with the Wells turbine in the wheels. Power reduction is measured when the turbine is driven by an electric motor at the exit of a wind tunnel. Several Watts power reduction might be possible. This means that the torque of the bike can be augmented by the turbine in the cross wind. These devices are tested in the wind tunnel with a three-component balance and the aerodynamic forces and moment are obtained. In this paper, we introduce these devices and their aerodynamic characteristics. The control force and moment of the plasma actuator are clarified and the power reduction of the bicycle is quantified.

Keywords: aerodynamics, model aircraft, plasma actuator, Wells turbine

Procedia PDF Downloads 243
17879 Empowering Transformers for Evidence-Based Medicine

Authors: Jinan Fiaidhi, Hashmath Shaik

Abstract:

Breaking the barrier for practicing evidence-based medicine relies on effective methods for rapidly identifying relevant evidence from the body of biomedical literature. An important challenge confronted by medical practitioners is the long time needed to browse, filter, summarize and compile information from different medical resources. Deep learning can help in solving this based on automatic question answering (Q&A) and transformers. However, Q&A and transformer technologies are not trained to answer clinical queries that can be used for evidence-based practice, nor can they respond to structured clinical questioning protocols like PICO (Patient/Problem, Intervention, Comparison and Outcome). This article describes the use of deep learning techniques for Q&A that are based on transformer models like BERT and GPT to answer PICO clinical questions that can be used for evidence-based practice extracted from sound medical research resources like PubMed. We are reporting acceptable clinical answers that are supported by findings from PubMed. Our transformer methods are reaching an acceptable state-of-the-art performance based on two staged bootstrapping processes involving filtering relevant articles followed by identifying articles that support the requested outcome expressed by the PICO question. Moreover, we are also reporting experimentations to empower our bootstrapping techniques with patch attention to the most important keywords in the clinical case and the PICO questions. Our bootstrapped patched with attention is showing relevancy of the evidence collected based on entropy metrics.

Keywords: automatic question answering, PICO questions, evidence-based medicine, generative models, LLM transformers

Procedia PDF Downloads 41
17878 The Prevalence of Postpartum Stress among Jordanian Women

Authors: Khitam Ibrahem Shlash Mohammad

Abstract:

Background: Postnatal depression is a focus of considerable research attention, but little is known about the pattern of stress across this period. Objective: to investigate the prevalence of stress after childbirth for Jordanian women and identify associated risk factors. Method: Design: A descriptive cross-sectional study. Participants were recruited six to eight weeks postpartum, provided personal, social and obstetric information, and completed the stress subscale of Depression Anxiety and Stress Scale (DASS-S), the Maternity Social Support Scale (MSSS), and Perceived Self-Efficacy Scale (PSES). Setting: maternal and child health care clinics in four health care centres in Maan city in Southern Jordan. Participants: Arabic speaking women (n = 324) between the ages of 18 and 45 years, six to eight weeks postpartum, primiparous or multiparous at low risk for obstetric complications. Data collection took place between October 2015 and January 2016. Ethical clearance was obtained prior to data collection. Results: The prevalence of postpartum stress among Jordanian women was 39.8 %. A regression analysis revealed that occupation, low social support, financial problems, difficult marital relationships, difficult relationship with family-in-law, giving birth to a female baby, difficult childbirth, and low self-efficacy were associated with postpartum stress. Conclusions and implications for practice: Jordanian women need support during pregnancy, during and after childbirth. Postpartum emotional support and assessment of symptoms of stress need to be incorporated into routine practice. The opportunity for open discussion along with increased awareness and clarification of common misconceptions about postpartum stress is necessary.

Keywords: prevalence, postpartum, stress, Jordanian women

Procedia PDF Downloads 352