Search results for: testing techniques
7026 Towards Automatic Calibration of In-Line Machine Processes
Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales
Abstract:
In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820Keywords: data model, machine learning, industrial winding, calibration
Procedia PDF Downloads 2417025 Delamination of Scale in a Fe Carbon Steel Surface by Effect of Interface Roughness and Oxide Scale Thickness
Authors: J. M. Lee, W. R. Noh, C. Y. Kim, M. G. Lee
Abstract:
Delamination of oxide scale has been often discovered at the interface between Fe carbon steel and oxide scale. Among several mechanisms of this delamination behavior, the normal tensile stress to the substrate-scale interface has been described as one of the main factors. The stress distribution at the interface is also known to be affected by thermal expansion mismatch between substrate and oxide scale, creep behavior during cooling and the geometry of the interface. In this study, stress states near the interface in a Fe carbon steel with oxide scale have been investigated using FE simulations. The thermal and mechanical properties of oxide scales are indicated in literature and Fe carbon steel is measured using tensile testing machine. In particular, the normal and shear stress components developed at the interface during bending are investigated. Preliminary numerical sensitivity analyses are provided to explain the effects of the interface geometry and oxide thickness on the delamination behavior.Keywords: oxide scale, delamination, Fe analysis, roughness, thickness, stress state
Procedia PDF Downloads 3447024 Research and Application of Multi-Scale Three Dimensional Plant Modeling
Authors: Weiliang Wen, Xinyu Guo, Ying Zhang, Jianjun Du, Boxiang Xiao
Abstract:
Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science.Keywords: plant, three dimensional modeling, multi-scale, plant phenotyping, three dimensional data acquisition
Procedia PDF Downloads 2777023 Using Priority Order of Basic Features for Circumscribed Masses Detection in Mammograms
Authors: Minh Dong Le, Viet Dung Nguyen, Do Huu Viet, Nguyen Huu Tu
Abstract:
In this paper, we present a new method for circumscribed masses detection in mammograms. Our method is evaluated on 23 mammographic images of circumscribed masses and 20 normal mammograms from public Mini-MIAS database. The method is quite sanguine with sensitivity (SE) of 95% with only about 1 false positive per image (FPpI). To achieve above results we carry out a progression following: Firstly, the input images are preprocessed with the aim to enhance key information of circumscribed masses; Next, we calculate and evaluate statistically basic features of abnormal regions on training database; Then, mammograms on testing database are divided into equal blocks which calculated corresponding features. Finally, using priority order of basic features to classify blocks as an abnormal or normal regions.Keywords: mammograms, circumscribed masses, evaluated statistically, priority order of basic features
Procedia PDF Downloads 3347022 Analysis of Stress Concentration of a Hybrid Composite Material with Centre Circular Hole Subjected to Tensile Loading
Authors: C. Shalini Devi
Abstract:
This work describes the stress concentration in a rectangular specimen with a circular hole made up of hybrid composite material with the combination of glass/carbon with epoxy. The arrangements of cross ply lamina in the sequence of alternative carbon and glass, using carbon fiber in panel, gives more strength to the structure as the carbon properties are higher when compared to glass. Typical aircraft and automobile components are with cut-outs, and such cut-outs reduce the weight of the aircraft according to the weight reduction law and also they reduce the bulking load carrying capacity. Experimental investigations were carried out using three specimens as per ASTM D5766 and three specimens as per ASTM D3039 in the Universal Testing Machine. Stress concentration in the rectangular specimen with a hole is also analysed using FEA and comparing the results.Keywords: composite, stress concentration, finite element analysis, tensile strength
Procedia PDF Downloads 4497021 Monitoring Deforestation Using Remote Sensing And GIS
Authors: Tejaswi Agarwal, Amritansh Agarwal
Abstract:
Forest ecosystem plays very important role in the global carbon cycle. It stores about 80% of all above ground and 40% of all below ground terrestrial organic carbon. There is much interest in the extent of tropical forests and their rates of deforestation for two reasons: greenhouse gas contributions and the impact of profoundly negative biodiversity. Deforestation has many ecological, social and economic consequences, one of which is the loss of biological diversity. The rapid deployment of remote sensing (RS) satellites and development of RS analysis techniques in the past three decades have provided a reliable, effective, and practical way to characterize terrestrial ecosystem properties. Global estimates of tropical deforestation vary widely and range from 50,000 to 170,000km2 /yr Recent FAO tropical deforestation estimates for 1990–1995 cite 116,756km2 / yr globally. Remote Sensing can prove to be a very useful tool in monitoring of forests and associated deforestation to a sufficient level of accuracy without the need of physically surveying the forest areas as many of them are physically inaccessible. The methodology for the assessment of forest cover using digital image processing (ERDAS) has been followed. The satellite data for the study was procured from Indian institute of remote Sensing (IIRS), Dehradoon in the digital format. While procuring the satellite data, care was taken to ensure that the data was cloud free and did not belong to dry and leafless season. The Normalized Difference Vegetation Index (NDVI) has been used as a numerical indicator of the reduction in ground biomass. NDVI = (near I.R - Red)/ (near I.R + Red). After calculating the NDVI variations and associated mean, we have analysed the change in ground biomass. Through this paper, we have tried to indicate the rate of deforestation over a given period of time by comparing the forest cover at different time intervals. With the help of remote sensing and GIS techniques, it is clearly shown that the total forest cover is continuously degrading and transforming into various land use/land cover category.Keywords: remote sensing, deforestation, supervised classification, NDVI, change detection
Procedia PDF Downloads 12047020 Correlation between Consumer Knowledge of the Circular Economy and Consumer Behavior towards Its Application: A Canadian Exploratory Study
Authors: Christopher E. A. Ramsey, Halia Valladares Montemayor
Abstract:
This study examined whether the dissemination of information about the circular economy (CE) has any bearing on the likelihood of the implementation of its concepts on an individual basis. Specifically, the goal of this research study was to investigate the impact of consumer knowledge about the circular economy on their behavior in applying such concepts. Given that our current linear supply chains are unsustainable, it is of great importance that we understand what mechanisms are most effective in encouraging consumers to embrace CE. The theoretical framework employed was the theory of planned behavior (TPB). TPB, with its analysis of how attitude, subjective norms, and perceived behavioral control affect intention, provided an adequate model for testing the effects of increased information about the CE on the implementation of its recommendations. The empirical research consisted of a survey distributed among university students, faculty, and staff at a Canadian University in British Columbia.Keywords: circular economy, consumer behavior, sustainability, theory of planned behavior
Procedia PDF Downloads 1247019 Fire Safety Engineering of Wood Dust Layer or Cloud
Authors: Marzena Półka, Bożena Kukfisz
Abstract:
This paper presents an analysis of dust explosion hazards in the process industries. It includes selected testing method of dust explosibility and presentation two of them according to experimental standards used by Department of Combustion and Fire Theory in The Main School of Fire Service in Warsaw. In the article are presented values of maximum acceptable surface temperature (MAST) of machines operating in the presence of dust cloud and chosen dust layer with thickness of 5 and 12,5mm. The comparative analysis, points to the conclusion that the value of the minimum ignition temperature of the layer (MITL) and the minimum ignition temperature of dust cloud (MTCD) depends on the granularity of the substance. Increasing the thickness of the dust layer reduces minimum ignition temperature of dust layer. Increasing the thickness of dust at the same time extends the flameless combustion and delays the ignition.Keywords: fire safety engineering, industrial hazards, minimum ignition temperature, wood dust
Procedia PDF Downloads 3197018 An Embedded High Speed Adder for Arithmetic Computations
Authors: Kala Bharathan, R. Seshasayanan
Abstract:
In this paper, a 1-bit Embedded Logic Full Adder (EFA) circuit in transistor level is proposed, which reduces logic complexity, gives low power and high speed. The design is further extended till 64 bits. To evaluate the performance of EFA, a 16, 32, 64-bit both Linear and Square root Carry Select Adder/Subtractor (CSLAS) Structure is also proposed. Realistic testing of proposed circuits is done on 8 X 8 Modified Booth multiplier and comparison in terms of power and delay is done. The EFA is implemented for different multiplier architectures for performance parameter comparison. Overall delay for CSLAS is reduced to 78% when compared to conventional one. The circuit implementations are done on TSMC 28nm CMOS technology using Cadence Virtuoso tool. The EFA has power savings of up to 14% when compared to the conventional adder. The present implementation was found to offer significant improvement in terms of power and speed in comparison to other full adder circuits.Keywords: embedded logic, full adder, pdp, xor gate
Procedia PDF Downloads 4487017 NDVI as a Measure of Change in Forest Biomass
Authors: Amritansh Agarwal, Tejaswi Agarwal
Abstract:
Forest ecosystem plays very important role in the global carbon cycle. It stores about 80% of all above ground and 40% of all below ground terrestrial organic carbon. There is much interest in the extent of tropical forests and their rates of deforestation for two reasons: greenhouse gas contributions and the impact of profoundly negative biodiversity. Deforestation has many ecological, social and economic consequences, one of which is the loss of biological diversity. The rapid deployment of remote sensing (RS) satellites and development of RS analysis techniques in the past three decades have provided a reliable, effective, and practical way to characterize terrestrial ecosystem properties. Global estimates of tropical deforestation vary widely and range from 50,000 to 170,000 km2 /yr Recent FAO tropical deforestation estimates for 1990–1995 cite 116,756km2 / yr globally. Remote Sensing can prove to be a very useful tool in monitoring of forests and associated deforestation to a sufficient level of accuracy without the need of physically surveying the forest areas as many of them are physically inaccessible. The methodology for the assessment of forest cover using digital image processing (ERDAS) has been followed. The satellite data for the study was procured from USGS website in the digital format. While procuring the satellite data, care was taken to ensure that the data was cloud and aerosol free by making using of FLAASH atmospheric correction technique. The Normalized Difference Vegetation Index (NDVI) has been used as a numerical indicator of the reduction in ground biomass. NDVI = (near I.R - Red)/ (near I.R + Red). After calculating the NDVI variations and associated mean we have analysed the change in ground biomass. Through this paper we have tried to indicate the rate of deforestation over a given period of time by comparing the forest cover at different time intervals. With the help of remote sensing and GIS techniques it is clearly shows that the total forest cover is continuously degrading and transforming into various land use/land cover category.Keywords: remote sensing, deforestation, supervised classification, NDVI change detection
Procedia PDF Downloads 4027016 Application of Alumina-Aerogel in Post-Combustion CO₂ Capture: Optimization by Response Surface Methodology
Authors: S. Toufigh Bararpour, Davood Karami, Nader Mahinpey
Abstract:
Dependence of global economics on fossil fuels has led to a large growth in the emission of greenhouse gases (GHGs). Among the various GHGs, carbon dioxide is the main contributor to the greenhouse effect due to its huge emission amount. To mitigate the threatening effect of CO₂, carbon capture and sequestration (CCS) technologies have been studied widely in recent years. For the combustion processes, three main CO₂ capture techniques have been proposed such as post-combustion, pre-combustion and oxyfuel combustion. Post-combustion is the most commonly used CO₂ capture process as it can be readily retrofit into the existing power plants. Multiple advantages have been reported for the post-combustion by solid sorbents such as high CO₂ selectivity, high adsorption capacity, and low required regeneration energy. Chemical adsorption of CO₂ over alkali-metal-based solid sorbents such as K₂CO₃ is a promising method for the selective capture of diluted CO₂ from the huge amount of nitrogen existing in the flue gas. To improve the CO₂ capture performance, K₂CO₃ is supported by a stable and porous material. Al₂O₃ has been employed commonly as the support and enhanced the cyclic CO₂ capture efficiency of K₂CO₃. Different phases of alumina can be obtained by setting the calcination temperature of boehmite at 300, 600 (γ-alumina), 950 (δ-alumina) and 1200 °C (α-alumina). By increasing the calcination temperature, the regeneration capacity of alumina increases, while the surface area reduces. However, sorbents with lower surface areas have lower CO₂ capture capacity as well (except for the sorbents prepared by hydrophilic support materials). To resolve this issue, a highly efficient alumina-aerogel support was synthesized with a BET surface area of over 2000 m²/g and then calcined at a high temperature. The synthesized alumina-aerogel was impregnated on K₂CO₃ based on 50 wt% support/K₂CO₃, which resulted in the preparation of a sorbent with remarkable CO₂ capture performance. The effect of synthesis conditions such as types of alcohols, solvent-to-co-solvent ratios, and aging times was investigated on the performance of the support. The best support was synthesized using methanol as the solvent, after five days of aging time, and at a solvent-to-co-solvent (methanol-to-toluene) ratio (v/v) of 1/5. Response surface methodology was used to investigate the effect of operating parameters such as carbonation temperature and H₂O-to-CO₂ flowrate ratio on the CO₂ capture capacity. The maximum CO₂ capture capacity, at the optimum amounts of operating parameters, was 7.2 mmol CO₂ per gram K₂CO₃. Cyclic behavior of the sorbent was examined over 20 carbonation and regenerations cycles. The alumina-aerogel-supported K₂CO₃ showed a great performance compared to unsupported K₂CO₃ and γ-alumina-supported K₂CO₃. Fundamental performance analyses and long-term thermal and chemical stability test will be performed on the sorbent in the future. The applicability of the sorbent for a bench-scale process will be evaluated, and a corresponding process model will be established. The fundamental material knowledge and respective process development will be delivered to industrial partners for the design of a pilot-scale testing unit, thereby facilitating the industrial application of alumina-aerogel.Keywords: alumina-aerogel, CO₂ capture, K₂CO₃, optimization
Procedia PDF Downloads 1167015 Experimental Study Damage in a Composite Structure by Vibration Analysis- Glass / Polyester
Authors: R. Abdeldjebar, B. Labbaci, L. Missoum, B. Moudden, M. Djermane
Abstract:
The basic components of a composite material made him very sensitive to damage, which requires techniques for detecting damage reliable and efficient. This work focuses on the detection of damage by vibration analysis, whose main objective is to exploit the dynamic response of a structure to detect understand the damage. The experimental results are compared with those predicted by numerical models to confirm the effectiveness of the approach.Keywords: experimental, composite, vibration analysis, damage
Procedia PDF Downloads 6747014 Inoculation of Aerospace Grade Mg-Al-Zn-Mn Cast Magnesium Alloy with Carbon Nanopowder
Authors: Spartak Makovskyi, Volodymir Klochykhin, Valery Zakharchenko, Konstantyn Balushok, Eduard Tsyvirko, Anatoly Shalomeyev
Abstract:
A highly efficient, cost-effective grain refinement technique for ML5 magnesium alloy with a commercially pure carbon nanopowder has been proposed. An experimental casting of testing specimens with incremental additions of a carbon nanopowder (0.001 - 0.1 wt.% ) was performed. It has been found that the carbon nanoparticle inoculation of the alloy structure is efficient in a narrow concentration range. The additions of 0.005-0.01 wt. % the grain refiner in the alloy resulted in a maximum increase of ductility properties (appr. Twofold) and improved tensile strength. However, further expansion of the grain refiner content led to the deterioration of the alloy's mechanical properties. In particular, the introduction of 0.1 wt.% of the nanocarbon and more caused internal defects in the metal. The carbon nanoparticle inoculation is a promising way of improving the properties of the Mg-Al-Zn alloys for critical lightweight aerospace applications on an industrial scale.Keywords: carbon nanopowder, inoculation, melt, tensile strength
Procedia PDF Downloads 2087013 Seismic Inversion for Geothermal Exploration
Authors: E. N. Masri, E. Takács
Abstract:
Amplitude Versus Offset (AVO) and simultaneous model-based impedance inversion techniques have not been utilized for geothermal exploration commonly; however, some recent publications called the attention that they can be very useful in the geothermal investigations. In this study, we present rock physical attributes obtained from 3D pre-stack seismic data and well logs collected in a study area of the NW part of Pannonian Basin where the geothermal reservoir is located in the fractured zones of Triassic basement and it was hit by three productive-injection well pairs. The holes were planned very successfully based on the conventional 3D migrated stack volume prior to this study. Subsequently, the available geophysical-geological datasets provided a great opportunity to test modern inversion procedures in the same area. In this presentation, we provide a summary of the theory and application of the most promising seismic inversion techniques from the viewpoint of geothermal exploration. We demonstrate P- and S-wave impedance, as well as the velocity (Vp and Vs), the density, and the Vp/Vs ratio attribute volumes calculated from the seismic and well-logging data sets. After a detailed discussion, we conclude that P-wave impedance and Vp/Vp ratio are the most helpful parameters for lithology discrimination in the study area. They detect the hot water saturated fracture zone very well thus they can be very useful in mapping the investigated reservoir. Integrated interpretation of all the obtained rock-physical parameters is essential. We are extending the above discussed pre-stack seismic tools by studying the possibilities of Elastic Impedance Inversion (EII) for geothermal exploration. That procedure provides two other useful rock-physical properties, the compressibility and the rigidity (Lamé parameters). Results of those newly created elastic parameters will also be demonstrated in the presentation. Geothermal extraction is of great interest nowadays; and we can adopt several methods have been successfully applied in the hydrocarbon exploration for decades to discover new reservoirs and reduce drilling risk and cost.Keywords: fractured zone, seismic, well-logging, inversion
Procedia PDF Downloads 1267012 A Reading Light That Can Adjust Indoor Light Intensity According to the Activity and Person for Improve Indoor Visual Comfort of Occupants and Tested using Post-occupancy Evaluation Techniques for Sri Lankan Population
Authors: R.T.P. De Silva, T. K. Wijayasiriwardhane, B. Jayawardena
Abstract:
Most people nowadays spend their time indoor environment. Because of that, a quality indoor environment needs for them. This study was conducted to identify how to improve indoor visual comfort using a personalized light system. Light intensity, light color, glare, and contrast are the main facts that affect visual comfort. The light intensity which needs to perform a task is changed according to the task. Using necessary light intensity and we can improve the visual comfort of occupants. The hue can affect the emotions of occupants. The preferred light colors and intensity change according to the occupant's age and gender. The research was conducted to identify is there any relationship between personalization and visual comfort. To validate this designed an Internet of Things-based reading light. This light can work according to the standard light levels and personalized light levels. It also can measure the current light intensity of the environment and maintain continuous light levels according to the task. The test was conducted by using 25 undergraduates, and 5school students, and 5 adults. The feedbacks are gathered using Post-occupancy evaluation (POE) techniques. Feedbacks are gathered in three steps, It was done without any light control, with standard light level, and with personalized light level Users had to spend 10 minutes under each condition. After finishing each step, collected their feedbacks. According to the result gathered, 94% of participants rated a personalized light system as comfort for them. The feedbacks show stay under continuous light level help to keep their concentrate. Future research can be conducted on how the color of indoor light can affect for indoor visual comfort of occupants using a personalized light system. Further proposed IoT based can improve to change the light colors according to the user's preference.Keywords: indoor environment quality, internet of things based light system, post occupancy evaluation, visual comfort
Procedia PDF Downloads 1557011 A New Graph Theoretic Problem with Ample Practical Applications
Authors: Mehmet Hakan Karaata
Abstract:
In this paper, we first coin a new graph theocratic problem with numerous applications. Second, we provide two algorithms for the problem. The first solution is using a brute-force techniques, whereas the second solution is based on an initial identification of the cycles in the given graph. We then provide a correctness proof of the algorithm. The applications of the problem include graph analysis, graph drawing and network structuring.Keywords: algorithm, cycle, graph algorithm, graph theory, network structuring
Procedia PDF Downloads 3867010 Buy-and-Hold versus Alternative Strategies: A Comparison of Market-Timing Techniques
Authors: Jonathan J. Burson
Abstract:
With the rise of virtually costless, mobile-based trading platforms, stock market trading activity has increased significantly over the past decade, particularly for the millennial generation. This increased stock market attention, combined with the recent market turmoil due to the economic upset caused by COVID-19, make the topics of market-timing and forecasting particularly relevant. While the overall stock market saw an unprecedented, historically-long bull market from March 2009 to February 2020, the end of that bull market reignited a search by investors for a way to reduce risk and increase return. Similar searches for outperformance occurred in the early, and late 2000’s as the Dotcom bubble burst and the Great Recession led to years of negative returns for mean-variance, index investors. Extensive research has been conducted on fundamental analysis, technical analysis, macroeconomic indicators, microeconomic indicators, and other techniques—all using different methodologies and investment periods—in pursuit of higher returns with lower risk. The enormous variety of timeframes, data, and methodologies used by the diverse forecasting methods makes it difficult to compare the outcome of each method directly to other methods. This paper establishes a process to evaluate the market-timing methods in an apples-to-apples manner based on simplicity, performance, and feasibility. Preliminary findings show that certain technical analysis models provide a higher return with lower risk when compared to the buy-and-hold method and to other market-timing strategies. Furthermore, technical analysis models tend to be easier for individual investors both in terms of acquiring the data and in analyzing it, making technical analysis-based market-timing methods the preferred choice for retail investors.Keywords: buy-and-hold, forecast, market-timing, probit, technical analysis
Procedia PDF Downloads 977009 Effects of Conjugated Linoleic Acid on the Reproductive Axis of Ram
Authors: Behnaz Mahdavi, Hamidreza Khodaei, Alireza Banitaba
Abstract:
Conjugated Linoleic Acid is a group of long-chain unsaturated fatty acids with more than one double bond and a mixture of 28 isomers of Linoleic acid (C 18:2) and it is counted as one of the essential acids. The main purpose of this study was to investigate the effect of CLA on some reproductive hormones in rams. In this study, six rams 3 to 4 years old with an average weight of 90 kg were selected. Rams were randomly divided into 3 groups and were treated by CLA treatment for 30 days. The first group (as a control group) did not receive CLA, The second group received 0.5 gr and the third group received 1 gram of CLA. The blood testing was done on rams every 15 days using a 20 ml syringe. Data analysis was performed by SAS software. Also mean comparison was done using Duncan's test method (p<0.05). Obtained results showed that the serum concentration of testosterone hormone was decreased numerically as well as the concentration of FSH hormone however the concentration of LH was increased. Also, the CLA had a significant effect on Leptin concentration. CLA in oral form can reduce the concentration of testosterone in rams.Keywords: CLA, ram, testosterone, conjugated linoleic acid
Procedia PDF Downloads 3047008 A Comparison of Convolutional Neural Network Architectures for the Classification of Alzheimer’s Disease Patients Using MRI Scans
Authors: Tomas Premoli, Sareh Rowlands
Abstract:
In this study, we investigate the impact of various convolutional neural network (CNN) architectures on the accuracy of diagnosing Alzheimer’s disease (AD) using patient MRI scans. Alzheimer’s disease is a debilitating neurodegenerative disorder that affects millions worldwide. Early, accurate, and non-invasive diagnostic methods are required for providing optimal care and symptom management. Deep learning techniques, particularly CNNs, have shown great promise in enhancing this diagnostic process. We aim to contribute to the ongoing research in this field by comparing the effectiveness of different CNN architectures and providing insights for future studies. Our methodology involved preprocessing MRI data, implementing multiple CNN architectures, and evaluating the performance of each model. We employed intensity normalization, linear registration, and skull stripping for our preprocessing. The selected architectures included VGG, ResNet, and DenseNet models, all implemented using the Keras library. We employed transfer learning and trained models from scratch to compare their effectiveness. Our findings demonstrated significant differences in performance among the tested architectures, with DenseNet201 achieving the highest accuracy of 86.4%. Transfer learning proved to be helpful in improving model performance. We also identified potential areas for future research, such as experimenting with other architectures, optimizing hyperparameters, and employing fine-tuning strategies. By providing a comprehensive analysis of the selected CNN architectures, we offer a solid foundation for future research in Alzheimer’s disease diagnosis using deep learning techniques. Our study highlights the potential of CNNs as a valuable diagnostic tool and emphasizes the importance of ongoing research to develop more accurate and effective models.Keywords: Alzheimer’s disease, convolutional neural networks, deep learning, medical imaging, MRI
Procedia PDF Downloads 737007 Detection of Adulterants in Milk Using IoT
Authors: Shaik Mohammad Samiullah Shariff, Siva Sreenath, Sai Haripriya, Prathyusha, M. Padma Lalitha
Abstract:
The Internet of Things (IoT) is the emerging technology that has been utilized to extend the possibilities for smart dairy farming (SDF). Milk consumption is continually increasing due to the world's growing population. As a result, some providers are prone to using dishonest measures to close the supply-demand imbalance, such as adding adulterants to milk. To identify the presence of adulterants in milk, traditional testing methods necessitate the use of particular chemicals and equipment. While efficient, this method has the disadvantage of yielding difficult and time-consuming qualitative results. Furthermore, same milk sample cannot be tested for other adulterants later. As a result, this study proposes an IoT-based approach for identifying adulterants in milk by measuring electrical conductivity (EC) or Total Dissolved Solids (TDS) and PH. In order to achieve this, an Arduino UNO microcontroller is used to assess the contaminants. When there is no adulteration, the pH and TDS values of milk range from 6.45 to 6.67 and 750 to 780ppm, respectively, according to this study. Finally, the data is uploaded to the cloud via an IoT device attached to the Ubidot web platform.Keywords: internet of things (IoT), pH sensor, TDS sensor, EC sensor, industry 4.0
Procedia PDF Downloads 787006 Testing the Capital Structure Behavior of Malaysian Firms: Shariah vs. Non-Shariah Compliant
Authors: Asyraf Abdul Halim, Mohd Edil Abd Sukor, Obiyathulla Ismath Bacha
Abstract:
This paper attempts to investigate the capital structure behavior of Shariah compliant firms of various levels as well those firms who are consistently Shariah non-compliant in Malaysia. The paper utilizes a unique dataset of firms of the heterogeneous level of Shariah-compliancy status over a 20 year period from the year 1997 to 2016. The paper focuses on the effects of dynamic forces behind capital structure variation such as the optimal capital structure behavior based on the trade-off, pecking order, market timing and firmly fixed effect models of capital structure. This study documents significant evidence in support of the trade-off theory with a high speed of adjustment (SOA) as well as for the time-invariant firm fixed effects across all Shariah compliance group.Keywords: capital structure, market timing, trade-off theory, equity risk premium, Shariah-compliant firms
Procedia PDF Downloads 3127005 Reliability Analysis in Power Distribution System
Authors: R. A. Deshpande, P. Chandhra Sekhar, V. Sankar
Abstract:
In this paper, we discussed the basic reliability evaluation techniques needed to evaluate the reliability of distribution systems which are applied in distribution system planning and operation. Basically, the reliability study can also help to predict the reliability performance of the system after quantifying the impact of adding new components to the system. The number and locations of new components needed to improve the reliability indices to certain limits are identified and studied.Keywords: distribution system, reliability indices, urban feeder, rural feeder
Procedia PDF Downloads 7767004 Anterior Tooth Misalignment: Orthodontics or Restorative Treatment
Authors: Maryam Firouzmandi, Moosa Miri
Abstract:
Smile is considered to be one of the most effective methods of influencing people. Increasing numbers of patients are requesting cosmetic dental procedures to achieve the perfect smile. Based on the patient’s age, oral and facial characteristics, and the dentist’s expertise, different concepts of treatment would be available. Orthodontics is the most conservative and the ideal treatment alternative for crowded anterior teeth; however, it may be rejected by patients due to occupational limitations of time, physical discomfort including pain and functional limitations, psychological discomfort, and appearance during treatment. In addition, orthodontic treatment will not resolve deficits of contour and color of the anterior teeth. In consequence, patients may demand restorative techniques to resolve their anterior mal-alignment instead, often called "instant orthodontics". Following its introduction, however, adhesive dentistry has suffered at times from overuse. Creating short-term attractive smiles at the expense of long-term dental health and optimal tooth biomechanics by using cosmetic techniques should not be considered an ethical approach. The objective of this narrative review was to investigate the literature for guidelines with regard to decision making and treatment planning for anterior tooth mal-alignment. In this regard, indications of orthodontic, restorative, combination of both treatments, and adjunctive periodontal surgery were discussed in clinical cases to achieve a proportional smile. Restorative modalities would include disking, cosmetic contouring, veneers, and crowns and were compared with limited or comprehensive orthodontic options. A rapid review was also presented on pros and cons of snap on smile to mask malalignments. Diagnostic tools such as mock up, wax up, and digital smile design were also considered to achieve more conservative and functional treatments with respect to biologic factors.Keywords: crowding, misalignment, veneer, crown, orthodontics
Procedia PDF Downloads 1167003 Surveying Apps in Dam Excavation
Authors: Ali Mohammadi
Abstract:
Whenever there is a need to dig the ground, the presence of a surveyor is required to control the map. In projects such as dams and tunnels, these controls are more important because any mistakes can increase the cost. Also, time is great importance in These projects have and one of the ways to reduce the drilling time is to use techniques that can reduce the mapping time in these projects. Nowadays, with the existence of mobile phones, we can design apps that perform calculations and drawing for us on the mobile phone. Also, if we have a device that requires a computer to access its information, by designing an app, we can transfer its information to the mobile phone and use it, so we will not need to go to the office.Keywords: app, tunnel, excavation, dam
Procedia PDF Downloads 677002 Structural Safety of Biocomposites under Cracking: A Fracture Analytical Approach using the Gғ-Concept
Authors: Brandtner-Hafner Martin
Abstract:
Biocomposites have established themselves as a sustainable material class in the industry. Their advantages include lower density, lower price, and easier recycling compared to conventional materials. Now there are a variety of ways to measure their technical performance. One possibility is mechanical tests, which are widely used and standardized. However, these provide only very limited insights into damage capacity, which is particularly problematic under cracking conditions. To overcome such shortcomings, experimental tests were performed applying the fracture energetically GF-concept to study the structural safety of the interface under crack opening (mode-I loading). Two different types of biocomposites based on extruded henequen-fibers (NFRP) and wood-particles (WPC) in an HDPE matrix were evaluated. The results show that the fracture energy values obtained are higher than those given in the literature. This suggests that alternatives to previous linear elastic testing methods are needed to perform authentic safety evaluations of green plastics.Keywords: biocomposites, structural safety, Gғ-concept, fracture analysis
Procedia PDF Downloads 1597001 Sequence Component-Based Adaptive Protection for Microgrids Connected Power Systems
Authors: Isabelle Snyder
Abstract:
Microgrid protection presents challenges to conventional protection techniques due to the low induced fault current. Protection relays present in microgrid applications require a combination of settings groups to adjust based on the architecture of the microgrid in islanded and grid-connected mode. In a radial system where the microgrid is at the other end of the feeder, directional elements can be used to identify the direction of the fault current and switch settings groups accordingly (grid connected or microgrid connected). However, with multiple microgrid connections, this concept becomes more challenging, and the direction of the current alone is not sufficient to identify the source of the fault current contribution. ORNL has previously developed adaptive relaying schemes through other DOE-funded research projects that will be evaluated and used as a baseline for this research. The four protection techniques in this study are the following: (1) Adaptive Current only Protection System (ACPS), Intentional (2) Unbalanced Control for Protection Control (IUCPC), (3) Adaptive Protection System with Communication Controller (APSCC) (4) Adaptive Model-Driven Protective Relay (AMDPR). The first two methods focus on identifying the islanded mode without communication by monitoring the current sequence component generated by the system (ACPS) or induced with inverter control during islanded mode (IUCPC) to identify the islanding condition without communication at the relay to adjust the settings. These two methods are used as a backup to the APSCC, which relies on a communication network to communicate the islanded configuration to the system components. The fourth method relies on a short circuit model inside the relay that is used in conjunction with communication to adjust the system configuration and computes the fault current and adjusts the settings accordingly.Keywords: adaptive relaying, microgrid protection, sequence components, islanding detection, communication controlled protection, integrated short circuit model
Procedia PDF Downloads 957000 Study on Moisture-Induced-Damage of Semi-Rigid Base under Hydrodynamic Pressure
Authors: Baofeng Pan, Heng Liu
Abstract:
Because of the high strength and large carrying capacity, the semi-rigid base is widely used in modern road engineering. However, hydrodynamic pressure, which is one of the main factors to cause early damage of semi-rigid base, cannot be avoided in the nature environment when pavement is subjected to some loadings such as the passing vehicles. In order to investigating how moisture-induced-damage of semi-rigid base influenced by hydrodynamic pressure, a new and effective experimental research method is provided in this paper. The results show that: (a) The washing action of high hydrodynamic pressure is the direct cause of strength reducing of road semi-rigid base. (b) The damage of high hydrodynamic pressure mainly occurs at the beginning of the scoring test and with the increasing of testing time the influence reduces. (c) Under the same hydrodynamic pressure, the longer the specimen health age, the stronger ability to resist moisture induced damage.Keywords: semi-rigid base, hydrodynamic pressure, moisture-induced-damage, experimental research
Procedia PDF Downloads 3186999 Usage of Military Spending, Debt Servicing and Growth for Dealing with Emergency Plan of Indian External Debt
Authors: Sahbi Farhani
Abstract:
This study investigates the relationship between external debt and military spending in case of India over the period of 1970–2012. In doing so, we have applied the structural break unit root tests to examine stationarity properties of the variables. The Auto-Regressive Distributed Lag (ARDL) bounds testing approach is used to test whether cointegration exists in presence of structural breaks stemming in the series. Our results indicate the cointegration among external debt, military spending, debt servicing, and economic growth. Moreover, military spending and debt servicing add in external debt. Economic growth helps in lowering external debt. The Vector Error Correction Model (VECM) analysis and Granger causality test reveal that military spending and economic growth cause external debt. The feedback effect also exists between external debt and debt servicing in case of India.Keywords: external debt, military spending, ARDL approach, India
Procedia PDF Downloads 2966998 Design of Structural Health Monitoring System for a Damaged Reinforced Concrete Bridge
Authors: Muhammad Fawad
Abstract:
Monitoring and structural health assessment are the primary requirements for the performance evaluation of damaged bridges. This paper highlights the case study of a damaged Reinforced Concrete (RC) bridge structure where the Finite element (FE) modelling of this structure was done using the material properties extracted by the in-situ testing. Analysis was carried out to evaluate the bridge damage. On the basis of FE analysis results, this study proposes a proper Structural Health Monitoring (SHM) system that will extend the life cycle of the bridge with minimal repair costs and reduced risk of failure. This system is based on the installation of three different types of sensors: Liquid Levelling sensors (LLS) for measurement of vertical displacement, Distributed Fiber Optic Sensors (DFOS) for crack monitoring, and Weigh in Motion (WIM) devices for monitoring of moving loads on the bridge.Keywords: bridges, reinforced concrete, finite element method, structural health monitoring, sensors
Procedia PDF Downloads 1056997 Assessment of Compost Usage Quality and Quality for Agricultural Use: A Case Study of Hebron District, Palestine
Authors: Mohammed A. A. Sarhan, Issam A. Al-Khatib
Abstract:
Complying with the technical specifications of compost production is of high importance not only for environmental protection but also for increasing the productivity and promotion of compost use by farmers in agriculture. This study focuses on the compost quality of the Palestinian market and farmers’ attitudes toward agricultural use of compost. The quality is assessed through selection of 20 compost samples of different suppliers and producers and lab testing for quality parameters, while the farmers’ attitudes to compost use for agriculture are evaluated through survey questionnaire of 321 farmers in the Hebron area. The results showed that the compost in the Palestinian markets is of medium quality due to partial or non-compliance with the quality standards and guidelines. The Palestinian farmers showed a positive attitude since 91.2% of them have the desire to use compost in agriculture. The results also showed that knowledge of difference between compost and chemical fertilizers, perception of compost benefits and previously experiencing problems in compost use, are significant factors affecting the farmers’ attitude toward the use of compost as an organic fertilizer.Keywords: attitude, compost, compost quality, organic fertilizer, manure
Procedia PDF Downloads 167