An Embedded High Speed Adder for Arithmetic Computations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 88150
An Embedded High Speed Adder for Arithmetic Computations

Authors: Kala Bharathan, R. Seshasayanan

Abstract:

In this paper, a 1-bit Embedded Logic Full Adder (EFA) circuit in transistor level is proposed, which reduces logic complexity, gives low power and high speed. The design is further extended till 64 bits. To evaluate the performance of EFA, a 16, 32, 64-bit both Linear and Square root Carry Select Adder/Subtractor (CSLAS) Structure is also proposed. Realistic testing of proposed circuits is done on 8 X 8 Modified Booth multiplier and comparison in terms of power and delay is done. The EFA is implemented for different multiplier architectures for performance parameter comparison. Overall delay for CSLAS is reduced to 78% when compared to conventional one. The circuit implementations are done on TSMC 28nm CMOS technology using Cadence Virtuoso tool. The EFA has power savings of up to 14% when compared to the conventional adder. The present implementation was found to offer significant improvement in terms of power and speed in comparison to other full adder circuits.

Keywords: embedded logic, full adder, pdp, xor gate

Procedia PDF Downloads 450