Search results for: phenolic compounds
124 Removal of Problematic Organic Compounds from Water and Wastewater Using the Arvia™ Process
Authors: Akmez Nabeerasool, Michaelis Massaros, Nigel Brown, David Sanderson, David Parocki, Charlotte Thompson, Mike Lodge, Mikael Khan
Abstract:
The provision of clean and safe drinking water is of paramount importance and is a basic human need. Water scarcity coupled with tightening of regulations and the inability of current treatment technologies to deal with emerging contaminants and Pharmaceuticals and personal care products means that alternative treatment technologies that are viable and cost effective are required in order to meet demand and regulations for clean water supplies. Logistically, the application of water treatment in rural areas presents unique challenges due to the decentralisation of abstraction points arising from low population density and the resultant lack of infrastructure as well as the need to treat water at the site of use. This makes it costly to centralise treatment facilities and hence provide potable water direct to the consumer. Furthermore, across the UK there are segments of the population that rely on a private water supply which means that the owner or user(s) of these supplies, which can serve one household to hundreds, are responsible for the maintenance. The treatment of these private water supply falls on the private owners, and it is imperative that a chemical free technological solution that can operate unattended and does not produce any waste is employed. Arvia’s patented advanced oxidation technology combines the advantages of adsorption and electrochemical regeneration within a single unit; the Organics Destruction Cell (ODC). The ODC uniquely uses a combination of adsorption and electrochemical regeneration to destroy organics. Key to this innovative process is an alternative approach to adsorption. The conventional approach is to use high capacity adsorbents (e.g. activated carbons with high porosities and surface areas) that are excellent adsorbents, but require complex and costly regeneration. Arvia’s technology uses a patent protected adsorbent, Nyex™, which is a non-porous, highly conductive, graphite based adsorbent material that enables it to act as both the adsorbent and as a 3D electrode. Adsorbed organics are oxidised and the surface of the Nyex™ is regenerated in-situ for further adsorption without interruption or replacement. Treated water flows from the bottom of the cell where it can either be re-used or safely discharged. Arvia™ Technology Ltd. has trialled the application of its tertiary water treatment technology in treating reservoir water abstracted near Glasgow, Scotland, with promising results. Several other pilot plants have also been successfully deployed at various locations in the UK showing the suitability and effectiveness of the technology in removing recalcitrant organics (including pharmaceuticals, steroids and hormones), COD and colour.Keywords: Arvia™ process, adsorption, water treatment, electrochemical oxidation
Procedia PDF Downloads 263123 Characterization of a Three-Electrodes Bioelectrochemical System from Mangrove Water and Sediments for the Reduction of Chlordecone in Martinique
Authors: Malory Jonata
Abstract:
Chlordecone (CLD) is an organochlorine pesticide used between 1971 and 1993 in both Guadeloupe and Martinique for the control of banana black weevil. The bishomocubane structure which characterizes this chemical compound led to high stability in organic matter and high persistence in the environment. Recently, researchers found that CLD can be degraded by isolated bacteria consortiums and, particularly, by bacteria such as Citrobacter sp 86 and Delsulfovibrio sp 86. Actually, six transformation product families of CLD are known. Moreover, the latest discovery showed that CLD was disappearing faster than first predicted in highly contaminated soil in Guadeloupe. However, the toxicity of transformation products is still unknown, and knowledge has to be deepened on the degradation ways and chemical characteristics of chlordecone and its transformation products. Microbial fuel cells (MFC) are electrochemical systems that can convert organic matter into electricity thanks to electroactive bacteria. These bacteria can exchange electrons through their membranes to solid surfaces or molecules. MFC have proven their efficiency as bioremediation systems in water and soils. They are already used for the bioremediation of several organochlorine compounds such as perchlorate, trichlorophenol or hexachlorobenzene. In this study, a three-electrodes system, inspired by MFC, is used to try to degrade chlordecone using bacteria from a mangrove swamp in Martinique. As we know, some mangrove bacteria are electroactive. Furthermore, the CLD rate seems to decline in mangrove swamp sediments. This study aims to prove that electroactive bacteria from a mangrove swamp in Martinique can degrade CLD thanks to a three-electrodes bioelectrochemical system. To achieve this goal, the tree-electrodes assembly has been connected to a potentiostat. The substrate used is mangrove water and sediments sampled in the mangrove swamp of La Trinité, a coastal city in Martinique, where CLD contamination has already been studied. Electroactive biofilms are formed by imposing a potential relative to Saturated Calomel Electrode using chronoamperometry. Moreover, their comportment has been studied by using cyclic voltametry. Biofilms have been studied under different imposed potentials, several conditions of the substrate and with or without CLD. In order to quantify the evolution of CLD rates in the substrate’s system, gas chromatography coupled with mass spectrometry (GC-MS) was performed on pre-treated samples of water and sediments after short, medium and long-term contact with the electroactive biofilms. Results showed that between -0,8V and -0,2V, the three-electrodes system was able to reduce the chemical in the substrate solution. The first GC-MS analysis result of samples spiked with CLD seems to reveal decreased CLD concentration over time. In conclusion, the designed bioelectrochemical system can provide the necessary conditions for chlordecone degradation. However, it is necessary to improve three-electrodes control settings in order to increase degradation rates. The biological pathways are yet to enlighten by biologicals analysis of electroactive biofilms formed in this system. Moreover, the electrochemical study of mangrove substrate gives new informations on the potential use of this substrate for bioremediation. But further studies are needed to a better understanding of the electrochemical potential of this environment.Keywords: bioelectrochemistry, bioremediation, chlordecone, mangrove swamp
Procedia PDF Downloads 83122 Anti-Bacterial Activity Studies of Derivatives of 6β-Hydroxy Betunolic Acid against Selected Stains of Gram (+) and Gram (-) Bacteria
Authors: S. Jayasinghe, W. G. D. Wickramasingha, V. Karunaratne, D. N. Karunaratne, A. Ekanayake
Abstract:
Multi-drug resistant microbial pathogens are a serious global health problem, and hence, there is an urgent necessity for discovering new drug therapeutics. However, finding alternatives is a one of the biggest challenges faced by the global drug industry due to the spiraling high cost and serious side effects associated with modern medicine. On the other hand, plants and their secondary metabolites can be considered as good sources of scaffolds to provide structurally diverse bioactive compounds as potential therapeutic agents. 6β-hydroxy betunolic acid is a triterpenoid isolated from bark of Schumacheria castaneifolia which is an endemic plant to Sri Lanka which has shown antibacterial activity against both Staphylococcus aureus (ATCC 29213) and methicillin-resistant S. aureus with Minimum Inhibition Concentration (MIC) of 16 µg/ml. The objective of this study was to determine the anti-bacterial activity for the derivatives of 6β- hydroxy betunolic acid against standard strains of Staphylococcus aureus (ATCC 29213 and ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 35218 and ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), carbepenemas produce Kebsiella pneumonia (ATCC BAA 1705) and carbepenemas non produce Kebsiella pneumonia (ATCC BAA 1706) and four stains of clinically isolated methicillin resistance S. aureus and Acinetobacter. Structural analogues of 6β-hydroxy betunolic acid were synthesized by modifying the carbonyl group at C-3 to obtain olefin and oxime, the hydroxyl group at C-6 position to a ketone, the carboxylic acid at C-17 to obtain amide and halo ester and the olefin group at C-20 position to obtain epoxide. Chemical structures of the synthesized analogues were confirmed with spectroscopic data and antibacterial activity was determined through broth micro dilution assay. Results revealed that 6β- hydroxy betunolic acid shows significant antibacterial activity only against the Gram positive strains and it was inactive against all the tested Gram negative strains for the tested concentration range. However, structural modifications into oxime and olefin at C-3, ketone at C-6 and epoxide at C-20 decreased its antibacterial activity against the gram positive organisms and it was totally lost with the both modifications at C-17 into amide and ester. These results concluded that the antibacterial activity of 6β- hydroxy betunolic acid and derivatives is predominantly depending on the cell wall difference of the bacteria and the presence of carboxylic acid at C-17 is highly important for the antibacterial activity against Gram positive organisms.Keywords: antibacterial activity, 6β- hydroxy betunolic acid, broth micro dilution assay, structure activity relationship
Procedia PDF Downloads 126121 Tailorability of Poly(Aspartic Acid)/BSA Complex by Self-Assembling in Aqueous Solutions
Authors: Loredana E. Nita, Aurica P. Chiriac, Elena Stoleru, Alina Diaconu, Tudorachi Nita
Abstract:
Self-assembly processes are an attractive method to form new and complex structures between macromolecular compounds to be used for specific applications. In this context, intramolecular and intermolecular bonds play a key role during self-assembling processes in preparation of carrier systems of bioactive substances. Polyelectrolyte complexes (PECs) are formed through electrostatic interactions, and though they are significantly below of the covalent linkages in their strength, these complexes are sufficiently stable owing to the association processes. The relative ease way of PECs formation makes from them a versatile tool for preparation of various materials, with properties that can be tuned by adjusting several parameters, such as the chemical composition and structure of polyelectrolytes, pH and ionic strength of solutions, temperature and post-treatment procedures. For example, protein-polyelectrolyte complexes (PPCs) are playing an important role in various chemical and biological processes, such as protein separation, enzyme stabilization and polymer drug delivery systems. The present investigation is focused on evaluation of the PPC formation between a synthetic polypeptide (poly(aspartic acid) – PAS) and a natural protein (bovine serum albumin - BSA). The PPC obtained from PAS and BSA in different ratio was investigated by corroboration of various techniques of characterization as: spectroscopy, microscopy, thermo-gravimetric analysis, DLS and zeta potential determination, measurements which were performed in static and/or dynamic conditions. The static contact angle of the sample films was also determined in order to evaluate the changes brought upon surface free energy of the prepared PPCs in interdependence with the complexes composition. The evolution of hydrodynamic diameter and zeta potential of the PPC, recorded in situ, confirm changes of both co-partners conformation, a 1/1 ratio between protein and polyelectrolyte being benefit for the preparation of a stable PPC. Also, the study evidenced the dependence of PPC formation on the temperature of preparation. Thus, at low temperatures the PPC is formed with compact structure, small dimension and hydrodynamic diameter, close to those of BSA. The behavior at thermal treatment of the prepared PPCs is in agreement with the composition of the complexes. From the contact angle determination results the increase of the PPC films cohesion, which is higher than that of BSA films. Also, a higher hydrophobicity corresponds to the new PPC films denoting a good adhesion of the red blood cells onto the surface of PSA/BSA interpenetrated systems. The SEM investigation evidenced as well the specific internal structure of PPC concretized in phases with different size and shape in interdependence with the interpolymer mixture composition.Keywords: polyelectrolyte – protein complex, bovine serum albumin, poly(aspartic acid), self-assembly
Procedia PDF Downloads 246120 Study of Isoprene Emissions in Biogenic ad Anthropogenic Environment in Urban Atmosphere of Delhi: The Capital City of India
Authors: Prabhat Kashyap, Krishan Kumar
Abstract:
Delhi, the capital of India, is one of the most populated and polluted city among the world. In terms of air quality, Delhi’s air is degrading day by day & becomes worst of any major city in the world. The role of biogenic volatile organic compounds (BVOCs) is not much studied in cities like Delhi as a culprit for degraded air quality. They not only play a critical role in rural areas but also determine the atmospheric chemistry of urban areas as well. Particularly, Isoprene (2-methyl 1,3-butadiene, C5H8) is the single largest emitted compound among other BVOCs globally, that influence the tropospheric ozone chemistry in urban environment as the ozone forming potential of isoprene is very high. It is mainly emitted by vegetation & a small but significant portion is also released by vehicular exhaust of petrol operated vehicles. This study investigates the spatial and temporal variations of quantitative measurements of isoprene emissions along with different traffic tracers in 2 different seasons (post-monsoon & winter) at four different locations of Delhi. For the quantification of anthropogenic and biogenic isoprene, two sites from traffic intersections (Punjabi Bagh & CRRI) and two sites from vegetative locations (JNU & Yamuna Biodiversity Park) were selected in the vicinity of isoprene emitting tree species like Ficus religiosa, Dalbergia sissoo, Eucalyptus species etc. The concentrations of traffic tracers like benzene, toluene were also determined & their robust ratios with isoprene were used to differentiate anthropogenic isoprene with biogenic portion at each site. The ozone forming potential (OFP) of all selected species along with isoprene was also estimated. For collection of intra-day samples (3 times a day) in each season, a pre-conditioned fenceline monitoring (FLM) carbopack X thermal desorption tubes were used and further analysis was done with Gas chromatography attached with mass spectrometry (GC-MS). The results of the study proposed that the ambient air isoprene is always higher in post-monsoon season as compared to winter season at all the sites because of high temperature & intense sunlight. The maximum isoprene emission flux was always observed during afternoon hours in both seasons at all sites. The maximum isoprene concentration was found to be 13.95 ppbv at Biodiversity Park during afternoon time in post monsoon season while the lower concentration was observed as low as 0.07 ppbv at the same location during morning hours in winter season. OFP of isoprene at vegetation sites is very high during post-monsoon because of high concentrations. However, OFP for other traffic tracers were high during winter seasons & at traffic locations. Furthermore, high correlation between isoprene emissions with traffic volume at traffic sites revealed that a noteworthy share of its emission also originates from road traffic.Keywords: biogenic VOCs, isoprene emission, anthropogenic isoprene, urban vegetation
Procedia PDF Downloads 116119 The Effects of Heavy Metal and Aromatic Hydrocarbon Pollution on Bees
Authors: Katarzyna Zięba, Hajnalka Szentgyörgyi, Paweł Miśkowiec, Agnieszka Moos-Matysik
Abstract:
Bees are effective pollinators of plants using by humans. However, there is a concern about the fate different species due to their recently decline. Pollution of the environment is described in the literature as one of the causes of this phenomenon. Due to human activities, heavy metals and aromatic hydrocarbons can occur in bee organisms in high concentrations. The presented study aims to provide information on how pollution affects bee quality, taking into account, also the biological differences between various groups of bees. Understanding the consequences of environmental pollution on bees can help to create and promote bee friendly habitats and actions. The analyses were carried out using two contamination gradients with 5 sites on each. The first, mainly heavy metal polluted gradient is stretching approx. 30km from the Bukowno Zinc smelter near Olkusz in the Lesser Poland Voivodship, to the north. The second cuts through the agglomeration of Kraków up to the southern borders of the Ojców National Park. The gradient near Olkusz is a well-described pollution gradient contaminated mainly by zinc, lead, and cadmium. The second gradient cut through the agglomeration of Kraków and end below the Ojców National Park. On each gradient, two bee species were installed: red mason bees (Osmia bicornis) and honey bees (Apis mellifera). Red mason bee is a polylectic, solitary bee species, widely distributed in Poland. Honey bees are a highly social species of bees, with clearly defined casts and roles in the colony. Before installing the bees in the field, samples of imagos of red mason bees and samples of pollen and imagos from each honey bee colony were analysed for zinc, lead cadmium, polycyclic and monocyclic hydrocarbons levels. After collecting the bees from the field, samples of bees and pollen samples for each site were prepared for heavy metal, monocyclic hydrocarbon, and polycyclic hydrocarbon analysis. Analyses of aromatic hydrocarbons were performed with gas chromatography coupled with a headspace sampler (HP 7694E) and mass spectrometer (MS) as detector. Monocyclic compounds were injected into column with headspace sampler while polycyclic ones with manual injector (after solid-liquid extraction with hexane). The heavy metal content (zinc, lead and cadmium) was assessed with flame atomic absorption spectroscopy (FAAS AAnalyst 300 Perkin Elmer spectrometer) according to the methods for honey and bee products described in the literature. Pollution levels found in bee bodies and imago body masses in both species, and proportion of sex in case of red mason bees were correlated with pollution levels found in pollen for each site and colony or trap nest. An attempt to pinpoint the most important form of contamination regarding bee health was also be undertaken based on the achieved results.Keywords: heavy metals, aromatic hydrocarbons, bees, pollution
Procedia PDF Downloads 508118 Catalytic Ammonia Decomposition: Cobalt-Molybdenum Molar Ratio Effect on Hydrogen Production
Authors: Elvis Medina, Alejandro Karelovic, Romel Jiménez
Abstract:
Catalytic ammonia decomposition represents an attractive alternative due to its high H₂ content (17.8% w/w), a product stream free of COₓ, among others; however, challenges need to be addressed for its consolidation as an H₂ chemical storage technology, especially, those focused on the synthesis of efficient bimetallic catalytic systems, as an alternative to the price and scarcity of ruthenium, the most active catalyst reported. In this sense, from the perspective of rational catalyst design, adjusting the main catalytic activity descriptor, a screening of supported catalysts with different compositional settings of cobalt-molybdenum metals is presented to evaluate their effect on the catalytic decomposition rate of ammonia. Subsequently, a kinetic study on the supported monometallic Co and Mo catalysts, as well as on the bimetallic CoMo catalyst with the highest activity is shown. The synthesis of catalysts supported on γ-alumina was carried out using the Charge Enhanced Dry Impregnation (CEDI) method, all with a 5% w/w loading metal. Seeking to maintain uniform dispersion, the catalysts were oxidized and activated (In-situ activation) using a flow of anhydrous air and hydrogen, respectively, under the same conditions: 40 ml min⁻¹ and 5 °C min⁻¹ from room temperature to 600 °C. Catalytic tests were carried out in a fixed-bed reactor, confirming the absence of transport limitations, as well as an Approach to equilibrium (< 1 x 10⁻⁴). The reaction rate on all catalysts was measured between 400 and 500 ºC at 53.09 kPa NH3. The synergy theoretically (DFT) reported for bimetallic catalysts was confirmed experimentally. Specifically, it was observed that the catalyst composed mainly of 75 mol% cobalt proved to be the most active in the experiments, followed by the monometallic cobalt and molybdenum catalysts, in this order of activity as referred to in the literature. A kinetic study was performed at 10.13 – 101.32 kPa NH3 and at four equidistant temperatures between 437 and 475 °C the data were adjusted to an LHHW-type model, which considered the desorption of nitrogen atoms from the active phase surface as the rate determining step (RDS). The regression analysis were carried out under an integral regime, using a minimization algorithm based on SLSQP. The physical meaning of the parameters adjusted in the kinetic model, such as the RDS rate constant (k₅) and the lumped adsorption constant of the quasi-equilibrated steps (α) was confirmed through their Arrhenius and Van't Hoff-type behavior (R² > 0.98), respectively. From an energetic perspective, the activation energy for cobalt, cobalt-molybdenum, and molybdenum was 115.2, 106.8, and 177.5 kJ mol⁻¹, respectively. With this evidence and considering the volcano shape described by the ammonia decomposition rate in relation to the metal composition ratio, the synergistic behavior of the system is clearly observed. However, since characterizations by XRD and TEM were inconclusive, the formation of intermetallic compounds should be still verified using HRTEM-EDS. From this point onwards, our objective is to incorporate parameters into the kinetic expressions that consider both compositional and structural elements and explore how these can maximize or influence H₂ production.Keywords: CEDI, hydrogen carrier, LHHW, RDS
Procedia PDF Downloads 55117 Acute Antihyperglycemic Activity of a Selected Medicinal Plant Extract Mixture in Streptozotocin Induced Diabetic Rats
Authors: D. S. N. K. Liyanagamage, V. Karunaratne, A. P. Attanayake, S. Jayasinghe
Abstract:
Diabetes mellitus is an ever increasing global health problem which causes disability and untimely death. Current treatments using synthetic drugs have caused numerous adverse effects as well as complications, leading research efforts in search of safe and effective alternative treatments for diabetes mellitus. Even though there are traditional Ayurvedic remedies which are effective, due to a lack of scientific exploration, they have not been proven to be beneficial for common use. Hence the aim of this study is to evaluate the traditional remedy made of mixture of plant components, namely leaves of Murraya koenigii L. Spreng (Rutaceae), cloves of Allium sativum L. (Amaryllidaceae), fruits of Garcinia queasita Pierre (Clusiaceae) and seeds of Piper nigrum L. (Piperaceae) used for the treatment of diabetes. We report herein the preliminary results for the in vivo study of the anti-hyperglycaemic activity of the extracts of the above plant mixture in Wistar rats. A mixture made out of equal weights (100 g) of the above mentioned medicinal plant parts were extracted into cold water, hot water (3 h reflux) and water: acetone mixture (1:1) separately. Male wistar rats were divided into six groups that received different treatments. Diabetes mellitus was induced by intraperitoneal administration of streptozotocin at a dose of 70 mg/ kg in male Wistar rats in group two, three, four, five and six. Group one (N=6) served as the healthy untreated and group two (N=6) served as diabetic untreated control and both groups received distilled water. Cold water, hot water, and water: acetone plant extracts were orally administered in diabetic rats in groups three, four and five, respectively at different doses of 0.5 g/kg (n=6), 1.0 g/kg(n=6) and 1.5 g/kg(n=6) for each group. Glibenclamide (0.5 mg/kg) was administered to diabetic rats in group six (N=6) served as the positive control. The acute anti-hyperglycemic effect was evaluated over a four hour period using the total area under the curve (TAUC) method. The results of the test group of rats were compared with the diabetic untreated control. The TAUC of healthy and diabetic rats were 23.16 ±2.5 mmol/L.h and 58.31±3.0 mmol/L.h, respectively. A significant dose dependent improvement in acute anti-hyperglycaemic activity was observed in water: acetone extract (25%), hot water extract ( 20 %), and cold water extract (15 %) compared to the diabetic untreated control rats in terms of glucose tolerance (P < 0.05). Therefore, the results suggest that the plant mixture has a potent antihyperglycemic effect and thus validating their used in Ayurvedic medicine for the management of diabetes mellitus. Future studies will be focused on the determination of the long term in vivo anti-diabetic mechanisms and isolation of bioactive compounds responsible for the anti-diabetic activity.Keywords: acute antihyperglycemic activity, herbal mixture, oral glucose tolerance test, Sri Lankan medicinal plant extracts
Procedia PDF Downloads 179116 Enhancing Industrial Wastewater Treatment: Efficacy and Optimization of Ultrasound-Assisted Laccase Immobilized on Magnetic Fe₃O₄ Nanoparticles
Authors: K. Verma, v. S. Moholkar
Abstract:
In developed countries, water pollution caused by industrial discharge has emerged as a significant environmental concern over the past decades. However, despite ongoing efforts, a fully effective and sustainable remediation strategy has yet to be identified. This paper describes how enzymatic and sonochemical treatments have demonstrated great promise in degrading bio-refractory pollutants. Mainly, a compelling area of interest lies in the combined technique of sono-enzymatic treatment, which has exhibited a synergistic enhancement effect surpassing that of the individual techniques. This study employed the covalent attachment method to immobilize Laccase from Trametes versicolor onto amino-functionalized magnetic Fe₃O₄ nanoparticles. To comprehensively characterize the synthesized free nanoparticles and the laccase-immobilized nanoparticles, various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), and surface area through Brunauer-Emmett-Teller (BET) were employed. The size of immobilized Fe₃O₄@Laccase was found to be 60 nm, and the maximum loading of laccase was found to be 24 mg/g of nanoparticle. An investigation was conducted to study the effect of various process parameters, such as immobilized Fe₃O₄ Laccase dose, temperature, and pH, on the % Chemical oxygen demand (COD) removal as a response. The statistical design pinpointed the optimum conditions (immobilized Fe₃O₄ Laccase dose = 1.46 g/L, pH = 4.5, and temperature = 66 oC), resulting in a remarkable 65.58% COD removal within 60 minutes. An even more significant improvement (90.31% COD removal) was achieved with ultrasound-assisted enzymatic reaction utilizing a 10% duty cycle. The investigation of various kinetic models for free and immobilized laccase, such as the Haldane, Yano, and Koga, and Michaelis-Menten, showed that ultrasound application impacted the kinetic parameters Vmax and Km. Specifically, Vmax values for free and immobilized laccase were found to be 0.021 mg/L min and 0.045 mg/L min, respectively, while Km values were 147.2 mg/L for free laccase and 136.46 mg/L for immobilized laccase. The lower Km and higher Vmax for immobilized laccase indicate its enhanced affinity towards the substrate, likely due to ultrasound-induced alterations in the enzyme's confirmation and increased exposure of active sites, leading to more efficient degradation. Furthermore, the toxicity and Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that after the treatment process, the wastewater exhibited 70% less toxicity than before treatment, with over 25 compounds degrading by more than 75%. At last, the prepared immobilized laccase had excellent recyclability retaining 70% activity up to 6 consecutive cycles. A straightforward manufacturing strategy and outstanding performance make the recyclable magnetic immobilized Laccase (Fe₃O₄ Laccase) an up-and-coming option for various environmental applications, particularly in water pollution control and treatment.Keywords: kinetic, laccase enzyme, sonoenzymatic, ultrasound irradiation
Procedia PDF Downloads 67115 Influence of Disintegration of Sida hermaphrodita Silage on Methane Fermentation Efficiency
Authors: Marcin Zielinski, Marcin Debowski, Paulina Rusanowska, Magda Dudek
Abstract:
As a result of sonification, the destruction of complex biomass structures results in an increase in the biogas yield from the conditioned material. First, the amount of organic matter released into the solution due to disintegration was determined. This parameter was determined by changes in the carbon content in liquid phase of the conditioned substrate. The amount of carbon in the liquid phase increased with the prolongation of the sonication time to 16 min. Further increase in the duration of sonication did not cause a statistically significant increase in the amount of organic carbon in the liquid phase. The disintegrated material was then used for respirometric measurements for determination of the impact of the conditioning process used on methane fermentation effectiveness. The relationship between the amount of energy introduced into the lignocellulosic substrate and the amount of biogas produced has been demonstrated. Statistically significant increase in the amount of biogas was observed until sonication of 16 min. Further increase in energy in the conditioning process did not significantly increase the production of biogas from the treated substrate. The biogas production from the conditioned substrate was 17% higher than from the reference biomass at that time. The ultrasonic disintegration method did not significantly affect the observed biogas composition. In all series, the methane content in the produced biogas from the conditioned substrate was similar to that obtained with the raw substrate sample (51.1%). Another method of substrate conditioning was hydrothermal depolymerization. This method consists in application of increased temperature and pressure to substrate. These phenomena destroy the structure of the processed material, the release of organic compounds to the solution, which should lead to increase the amount of produced biogas from such treated biomass. The hydrothermal depolymerization was conducted using an innovative microwave heating method. Control measurements were performed using conventional heating. The obtained results indicate the relationship between depolymerization temperature and the amount of biogas. Statistically significant value of the biogas production coefficients increased as the depolymerization temperature increased to 150°C. Further raising the depolymerization temperature to 180°C did not significantly increase the amount of produced biogas in the respirometric tests. As a result of the hydrothermal depolymerization obtained using microwave at 150°C for 20 min, the rate of biogas production from the Sida silage was 780 L/kg VS, which accounted for nearly 50% increase compared to 370 L/kg VS obtained from the same silage but not depolymerised. The study showed that by microwave heating it is possible to effectively depolymerized substrate. Significant differences occurred especially in the temperature range of 130-150ºC. The pre-treatment of Sida hermaphrodita silage (biogas substrate) did not significantly affect the quality of the biogas produced. The methane concentration was about 51.5% on average. The study was carried out in the framework of the project under program BIOSTRATEG funded by the National Centre for Research and Development No. 1/270745/2/NCBR/2015 'Dietary, power, and economic potential of Sida hermaphrodita cultivation on fallow land'.Keywords: disintegration, biogas, methane fermentation, Virginia fanpetals, biomass
Procedia PDF Downloads 310114 Preliminary Studies on Poloxamer-Based Hydrogels with Oregano Essential Oil as Potential Topical Treatment of Cutaneous Papillomas
Authors: Ana Maria Muț, Georgeta Coneac, Ioana Olariu, Ștefana Avram, Ioana Zinuca Pavel, Ionela Daliana Minda, Lavinia Vlaia, Cristina Adriana Dehelean, Corina Danciu
Abstract:
Oregano essential oil is obtained from different parts of the plant Origanum vulgare (fam. Lamiaceae) and carvacrol and thymol are primary components, widely recognized for their antimicrobial activity, as well as their antiviral and antifungal properties. Poloxamers are triblock copolymers (Pluronic®), formed of three non-ionic blocks with a hydrophobic polyoxypropylene central chain flanked by two polyoxyethylene hydrophilic chains. They are known for their biocompatibility, sensitivity to temperature changes (sol-to-gel transition of aqueous solution with temperature increase), but also for their amphiphilic and surface active nature determining the formation of micelles, useful for solubilization of different hydrophobic compounds such as the terpenes and terpenoids contained in essential oils. Thus, these polymers, listed in European and US Pharmacopoeia and approved by FDA, are widely used as solubilizers and gelling agents for various pharmaceutical preparations, including topical hydrogels. The aim of this study was to investigate the posibility of solubilizing oregano essential oil (OEO) in polymeric micelles using polyoxypropylene (PPO)-polyoxyethylene (PEO)-polyoxypropylene (PPO) triblock polymers to obtain semisolid systems suitable for topical application. A formulation screening was performed, using Pluronic® F-127 in concentration of 20%, Pluronic® L-31, Pluronic® L-61 and Pluronic® L-62 in concentration of 0.5%, 0.8% respectively 1% to obtain the polymeric micelles-based systems. Then, to each selected system, with or without 10% absolute ethanol, 5% or 8% OEO was added. The obtained transparent poloxamer-based hydrogels containing solubilized OEO were further evaluated for pH, rheological characteristics (flow behaviour, viscosity, consistency and spreadability), using consacrated techniques like potentiometric titration, stationary shear flow test, penetrometric method and parallel plate method. Also, in vitro release and permeation of carvacrol from the hydrogels was carried out, using vertical diffusion cells and synthetic hydrophilic membrane and porcine skin respectively. The pH values and rheological features of all tested formulations were in accordance with official requirements for semisolid cutaneous preparations. But, the formulation containing 0.8% Pluronic® L-31, 10% absolute ethanol, 8% OEO and water and the formulation with 1% Pluronic® L-31, 5% OEO and water, produced the highest cumulative amounts of carvacrol released/permeated through the membrane. The present study demonstrated that oregano essential oil can be successfully solubilized in the investigated poloxamer-based hydrogels. These systems can be further investigated as potential topical therapy for cutaneous papillomas. Funding: This research was funded by Project PN-III-P1-1.1-TE2019-0130, Contract number TE47, Romania.Keywords: oregano essential oil, carvacrol, poloxamer, topical hydrogels
Procedia PDF Downloads 113113 Mycotoxin Bioavailability in Sparus Aurata Muscle After Human Digestion and Intestinal Transport (Caco-2/HT-29 Cells) Simulation
Authors: Cheila Pereira, Sara C. Cunha, Miguel A. Faria, José O. Fernandes
Abstract:
The increasing world population brings several concerns, one of which is food security and sustainability. To meet this challenge, aquaculture, the farming of aquatic animals and plants, including fish, mollusks, bivalves, and algae, has experienced sustained growth and development in recent years. Recent advances in this industry have focused on reducing its economic and environmental costs, for example, the substitution of protein sources in fish feed. Plant-based proteins are now a common approach, and while it is a greener alternative to animal-based proteins, there are some disadvantages, such as their putative content and intoxicants such as mycotoxins. These are naturally occurring plant contaminants, and their exposure in fish can cause health problems, stunted growth or even death, resulting in economic losses for the producers and health concerns for the consumers. Different works have demonstrated the presence of both AFB1 (aflatoxin B1) and ENNB1 (enniatin B1) in fish feed and their capacity to be absorbed and bioaccumulate in the fish organism after digestion, further reaching humans through fish ingestion. The aim of this work was to evaluate the bioaccessibility of both mycotoxins in samples of Sparus aurata muscle using a static digestion model based on the INFOGEST protocol. The samples were subjected to different cooking procedures – raw, grilled and fried – and different seasonings – none, thyme and ginger – in order to evaluate their potential reduction effect on mycotoxins bioaccessibility, followed by the evaluation of the intestinal transport of both compounds with an in vitro cell model composed of Caco-2/HT-29 co-culture monolayers, simulating the human intestinal epithelium. The bioaccessible fractions obtained in the digestion studies were used in the transport studies for a more realistic approach to bioavailability evaluation. Results demonstrated the effect of the use of different cooking procedures and seasoning on the toxin's bioavailability. Sparus aurata was chosen in this study for its large production in aquaculture and high consumption in Europe. Also, with the continued evolution of fish farming practices and more common usage of novel feed ingredients based on plants, there is a growing concern about less studied contaminants in aquaculture and their consequences for human health. In pair with greener advances in this industry, there is a convergence towards alternative research methods, such as in vitro applications. In the case of bioavailability studies, both in vitro digestion protocols and intestinal transport assessment are excellent alternatives to in vivo studies. These methods provide fast, reliable and comparable results without ethical restraints.Keywords: AFB1, aquaculture, bioaccessibility, ENNB1, intestinal transport.
Procedia PDF Downloads 66112 Production of Nanocomposite Electrical Contact Materials Ag-SnO2, W-Cu and Cu-C in Thermal Plasma
Authors: A. V. Samokhin, A. A. Fadeev, M. A. Sinaiskii, N. V. Alekseev, A. V. Kolesnikov
Abstract:
Composite materials where metal matrix is reinforced by ceramic or metal particles are of great interest for use in the manufacturing of electrical contacts. Significant improvement of the composite physical and mechanical properties as well as increase of the performance parameters of composite-based products can be achieved if the nanoscale structure in the composite materials is obtained by using nanosized powders as starting components. The results of nanosized composite powders synthesis (Ag-SnO2, W-Cu and Cu-C) in the DC thermal plasma flows are presented in this paper. The investigations included the following processes: - Recondensation of micron powder mixture Ag + SnO2 in a nitrogen plasma; - The reduction of the oxide powders mixture (WO3 + CuO) in a hydrogen-nitrogen plasma; - Decomposition of the copper formate and copper acetate powders in nitrogen plasma. The calculations of equilibrium compositions of multicomponent systems Ag-Sn-O-N, W-Cu-O-H-N and Cu-O-C-H-N in the temperature range of 400-5000 K were carried to estimate basic process characteristics. Experimental studies of the processes were performed using a plasma reactor with a confined jet flow. The plasma jet net power was in the range of 2 - 13 kW, and the feedstock flow rate was up to 0.35 kg/h. The obtained powders were characterized by TEM, HR-TEM, SEM, EDS, ED-XRF, XRD, BET and QEA methods. Nanocomposite Ag-SnO2 (12 wt. %). Processing of the initial powder mixture (Ag-SnO2) in nitrogen thermal plasma stream allowed to produce nanopowders with a specific surface area up to 24 m2/g, consisting predominantly of particles with size less than 100 nm. According to XRD results, tin was present in the obtained products as SnO2 phase, and also as intermetallic phases AgxSn. Nanocomposite W-Cu (20 wt .%). Reduction of (WO3+CuO) mixture in the hydrogen-nitrogen plasma provides W-Cu nanopowder with particle sizes in the range of 10-150 nm. The particles have mainly spherical shape and structure tungsten core - copper shell. The thickness of the shell is about several nanometers, the shell is composed of copper and its oxides (Cu2O, CuO). The nanopowders had 1.5 wt. % oxygen impurity. Heat treatment in a hydrogen atmosphere allows to reduce the oxygen content to less than 0.1 wt. %. Nanocomposite Cu-C. Copper nanopowders were found as products of the starting copper compounds decomposition. The nanopowders primarily had a spherical shape with a particle size of less than 100 nm. The main phase was copper, with small amount of Cu2O and CuO oxides. Copper formate decomposition products had a specific surface area 2.5-7 m2/g and contained 0.15 - 4 wt. % carbon; and copper acetate decomposition products had the specific surface area 5-35 m2/g, and carbon content of 0.3 - 5 wt. %. Compacting of nanocomposites (sintering in hydrogen for Ag-SnO2 and electric spark sintering (SPS) for W-Cu) showed that the samples having a relative density of 97-98 % can be obtained with a submicron structure. The studies indicate the possibility of using high-intensity plasma processes to create new technologies to produce nanocomposite materials for electric contacts.Keywords: electrical contact, material, nanocomposite, plasma, synthesis
Procedia PDF Downloads 235111 Puereria mirifica Replacement Improves Skeletal Muscle Performance Associated with Increasing Parvalbumin Levels in Ovariectomized Rat
Authors: Uraporn Vongvatcharanon, Kochakorn Sukjan, Wandee Udomuksorn, Ekkasit Kumarnsit, Surapong Vongvatcharanon
Abstract:
Sarcopenia is a loss of muscle mass, and strength frequently found in menopause. Estrogen replacement has been shown to improve such a loss of muscle functions. However, there is an increased risk of cancer that has to be considered because of the estrogen replacement therapy. Thus, phytoestrogen supplementation has been suggested as an alternative therapy. Pueraria mirifica (PM) is a plant in the family Leguminosae, that is known to be phytoestrogen-rich and has been traditionally used for the treatment of menopausal symptoms. It contains isoflavones and other compounds such as miroestrol and its derivatives. Parvalbumin (PV) is a calcium binding protein and functions as a relaxing factor in fast twitch muscle fibers. A decrease of the PV level results in a reduction of the speed of the twitch relaxation. Therefore, this study aimed to investigate the effect of an ethanolic extract from Pueraria mirifica on the estrogen levels, skeletal muscle functions and PV levels in the extensor digitorum longus (EDL) and gastrocnemius of ovariectomized rats. Twelve-week old female Wistar rats (200-250 g) were divided into 6 groups: SHAM (un-ovariectomized rats, that received double distilled water), PM-0 (ovariectomized rats, OVX, receiving double distilled water), E (OVX, receiving an estradiol benzoate dose of 0.04 mg/kg), PM-50 (OVX receiving PM 50 mg/kg), PM-500 (OVX receiving PM 500 mg/kg), PM-1000 (OVX receiving PM 1000 mg/kg) all for 90 days. The PM-0 group had estrogen levels, uterus weights, muscle mass, myofiber cross-section areas, peak tension, fatigue resistance, speed of relaxation and parvalbumin levels of both EDL and gastrocnemius that were significantly reduced compared to those of the SHAM group (p<0.05). Also the α and β estrogen receptor immunoreactivities and the parvalbumin immunoreactivities of both EDL and gastrocnemius were decreased in the PM-0 group. In contrast the E, PM-50, PM-500 and PM-1000 group had estrogen levels, uterus weights, muscle mass, myofiber cross-section areas, peak tension, fatigue resistance, speed of relaxation of both EDL and gastrocnemius that were significantly increased compared with PM-0 group (p<0.05). In addition, the α and β estrogen receptor immunoreactivities and parvalbumin immunoreactivity of both the EDL and gastrocnemius were increased in the E, PM-50, PM-500 and PM-1000 group. In addition the extract of Pueraria mirifica replacement group at 50 and 500 mg/kg had significantly increased parvalbumin levels in the EDL muscle but in the gastrocnemius, only the dose of 500 mg/kg increased the parvalbumin levels (p<0.05). These results have demonstrated that the use of the Pueraria mirifica extract as a replacement therapy for estrogen produced estrogenic activity that was similar to that produced by the estradiol benzoate replacement. It seems that the phytoestrogens could bind with the estrogen receptors and stimulate the transcriptional activity to synthesise muscle protein that caused an increase in muscle mass and parvalbumin levels. Thus, muscle synthesis may restore parvalbumin levels resulting in an enhanced relaxation efficiency that would lead to a shortened latent period before the next contraction.Keywords: Puereria mirifica, Parvalbumin, estrogen, ovariectomized rats
Procedia PDF Downloads 382110 Photocatalytic Properties of Pt/Er-KTaO3
Authors: Anna Krukowska, Tomasz Klimczuk, Adriana Zaleska-Medynska
Abstract:
Photoactive materials have attracted attention due to their potential application in the degradation of environmental pollutants to non-hazardous compounds in an eco-friendly route. Among semiconductor photocatalysts, tantalates such as potassium tantalate (KTaO3) is one of the excellent functional photomaterial. However, tantalates-based materials are less active under visible-light irradiation, the enhancement in photoactivity could be improved with the modification of opto-eletronic properties of KTaO3 by doping rare earth metal (Er) and further photodeposition of noble metal nanoparticles (Pt). Inclusion of rare earth element in orthorhombic structure of tantalate can generate one high-energy photon by absorbing two or more incident low-energy photons, which convert visible-light and infrared-light into the ultraviolet-light to satisfy the requirement of KTaO3 photocatalysts. On the other hand, depositions of noble metal nanoparticles on the surface of semiconductor strongly absorb visible-light due to their surface plasmon resonance, in which their conducting electrons undergo a collective oscillation induced by electric field of visible-light. Furthermore, the high dispersion of Pt nanoparticles, which will be obtained by photodeposition process is additional important factor to improve the photocatalytic activity. The present work is aimed to study the effect of photocatalytic process of the prepared Er-doped KTaO3 and further incorporation of Pt nanoparticles by photodeposition. Moreover, the research is also studied correlations between photocatalytic activity and physico-chemical properties of obtained Pt/Er-KTaO3 samples. The Er-doped KTaO3 microcomposites were synthesized by a hydrothermal method. Then photodeposition method was used for Pt loading over Er-KTaO3. The structural and optical properties of Pt/Er-KTaO3 photocatalytic were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD), volumetric adsorption method (BET), UV-Vis absorption measurement, Raman spectroscopy and luminescence spectroscopy. The photocatalytic properties of Pt/Er-KTaO3 microcomposites were investigated by degradation of phenol in aqueous phase as model pollutant under visible and ultraviolet-light irradiation. Results of this work show that all the prepared photocatalysis exhibit low BET surface area, although doping of the bare KTaO3 with rare earth element (Er) presents a slight increase in this value. The crystalline structure of Pt/Er-KTaO3 powders exhibited nearly identical positions for the main peak at about 22,8o and the XRD pattern could be assigned to an orthorhombic distorted perovskite structure. The Raman spectra of obtained semiconductors confirmed demonstrating perovskite-like structure. The optical absorption spectra of Pt nanoparticles exhibited plasmon absorption band for main peaks at about 216 and 264 nm. The addition of Pt nanoparticles increased photoactivity compared to Er-KTaO3 and pure KTaO3. Summary optical properties of KTaO3 change with its doping Er-element and further photodeposition of Pt nanoparticles.Keywords: heterogeneous photocatalytic, KTaO3 photocatalysts, Er3+ ion doping, Pt photodeposition
Procedia PDF Downloads 360109 Climate Change Impact on Whitefly (Bemisia tabaci) Population Infesting Tomato (Lycopersicon esculentus) in Sub-Himalayan India and Their Sustainable Management Using Biopesticides
Authors: Sunil Kumar Ghosh
Abstract:
Tomato (Lycopersicon esculentus L.) is an annual vegetable crop grown in the sub-Himalayan region of north east India throughout the year except rainy season in normal field cultivation. The crop is susceptible to various insect pests of which whitefly (Bemesia tabaci Genn.) causes heavy damage. Thus, a study on its occurrence and sustainable management is needed for successful cultivation. The pest was active throughout the growing period. During 38th standard week to 41st standard week that is during 3rd week of September to 2nd week of October minimum population was observed. The maximum population level was maintained during 11th standard week to 18th standard week that is during 2nd week of March to 3rd week of March with peak population (0.47/leaf) was recorded. Weekly population counts on white fly showed non-significant negative correlation (p=0.05) with temperature and weekly total rainfall where as significant negative correlation with relative humidity. Eight treatments were taken to study the management of the white fly pest such as botanical insecticide azadirachtin botanical extracts, Spilanthes paniculata flower, Polygonum hydropiper L. flower, tobacco leaf and garlic and mixed formulation like neem and floral extract of Spilanthes were evaluated and compared with the ability of acetamiprid. The insectide acetamiprid was found most lethal against whitefly providing 76.59% suppression, closely followed by extracts of neem + Spilanthes providing 62.39% suppression. Spectophotometric scanning of crude methanolic extract of Polygonum flower showed strong absorbance wave length between 645-675 nm. Considering the level of peaks of wave length the flower extract contain some important chemicals like Spirilloxanthin, Quercentin diglycoside, Quercentin 3-O-rutinoside, Procyanidin B1 and Isorhamnetin 3-O-rutinoside. These chemicals are responsible for pest control. Spectophotometric scanning of crude methanolic extract of Spilanthes flower showed strong absorbance wave length between 645-675 nm. Considering the level of peaks of wave length the flower extract contain some important chemicals of which polysulphide compounds are important and responsible of pest control. Neem and Spilanthes individually did not produce good results but when used as a mixture they recorded better results. Highest yield (30.15 t/ha) were recorded from acetamiprid treated plots followed by neem + Spilanthes (27.55 t/ha). Azadirachtin and Plant extracts are biopesticides having less or no hazardous effects on human health and environment. Thus they can be incorporated in IPM programmes and organic farming in vegetable cultivation.Keywords: biopesticides, organic farming, seasonal fluctuation, vegetable IPM
Procedia PDF Downloads 309108 The Hidden Mechanism beyond Ginger (Zingiber officinale Rosc.) Potent in vivo and in vitro Anti-Inflammatory Activity
Authors: Shahira M. Ezzat, Marwa I. Ezzat, Mona M. Okba, Esther T. Menze, Ashraf B. Abdel-Naim, Shahnas O. Mohamed
Abstract:
Background: In order to decrease the burden of the high cost of synthetic drugs, it is important to focus on phytopharmaceuticals. The aim of our study was to search for the mechanism of ginger (Zingiber officinale Roscoe) anti-inflammatory potential and to correlate it to its biophytochemicals. Methods: Various extracts viz. water, 50%, 70%, 80%, and 90% ethanol were prepared from ginger rhizomes. Fractionation of the aqueous extract (AE) was accomplished using Diaion HP-20. In vitro anti-inflammatory activity of the different extracts and isolated compounds was evaluated by protein denaturation inhibition, membrane stabilization, protease inhibition, and anti-lipoxygenase assays. In vivo anti-inflammatory activity of AE was estimated by assessment of rat paw oedema after carrageenan injection. Prostaglandin E2 (PGE2), certain inflammation markers (TNF-α, IL-6, IL-1α, IL-1β, INFr, MCP-1MIP, RANTES, and Nox) levels and MPO activity in the paw edema exudates were measured. Total antioxidant capacity (TAC) was also determined. Histopathological alterations of paw tissues were scored. Results: All the tested extracts showed significant (p < 0.1) anti-inflammatory activities. The highest percentage of heat induced albumin denaturation (66%) was exhibited by the 50% ethanol (250 μg/ml). The 70 and 90% ethanol extracts (500 μg/ml) were more potent as membrane stabilizers (34.5 and 37%, respectively) than diclofenac (33%). The 80 and 90% ethanol extracts (500 μg/ml) showed maximum protease inhibition (56%). The strongest anti-lipoxygenase activity was observed for the AE. It showed more significant lipoxygenase inhibition activity than that of diclofenac (58% and 52%, respectively) at the same concentration (125 μg/ml). Fractionation of AE yielded four main fractions (Fr I-IV) which showed significant in vitro anti-inflammatory. Purification of Fr-III and IV led to the isolation of 6-poradol (G1), 6-shogaol (G2); methyl 6- gingerol (G3), 5-gingerol (G4), 6-gingerol (G5), 8-gingerol (G6), 10-gingerol (G7), and 1-dehydro-6-gingerol (G8). G2 (62.5 ug/ml), G1 (250 ug/ml), and G8 (250 ug/ml) exhibited potent anti-inflammatory activity in all studied assays, while G4 and G5 exhibited moderate activity. In vivo administration of AE ameliorated rat paw oedema in a dose-dependent manner. AE (at 200 mg/kg) showed significant reduction (60%) of PGE2 production. The AE at different doses (at 25-200 mg/kg) showed significant reduction in inflammatory markers except for IL-1α. AE (at 25 mg/kg) is superior to indomethacin in reduction of IL-1β. Treatment of animals with the AE (100, 200 mg/kg) or indomethacin (10 mg/kg) showed significant reduction in TNF-α, IL-6, MCP-1, and RANTES levels, and MPO activity by about (31, 57 and 32% ) (65, 60 and 57%) (27, 41 and 28%) (23, 32 and 23%) (66, 67 and 67%) respectively. AE at 100 and 200 mg/kg was equipotent to indomethacin in reduction of NOₓ level and in increasing the TAC. Histopathological examination revealed very few inflammatory cells infiltration and oedema after administration of AE (200 mg/kg) prior to carrageenan. Conclusion: Ginger anti-inflammatory activity is mediated by inhibiting macrophage and neutrophils activation as well as negatively affecting monocyte and leukocyte migration. Moreover, it produced dose-dependent decrease in pro-inflammatory cytokines and chemokines and replenished the total antioxidant capacity. We strongly recommend future investigations of ginger in the potential signal transduction pathways.Keywords: anti-lipoxygenase activity, inflammatory markers, 1-dehydro-6-gingerol, 6-shogaol
Procedia PDF Downloads 252107 Effects of Butea superba Roxb. on Skeletal Muscle Functions and Parvalbumin Levels of Orchidectomized Rat
Authors: Surapong Vongvatcharanon, Fardeela Binalee, Wandee Udomuksorn, Ekkasit Kumarnsit, Uraporn Vongvatcharanon
Abstract:
Hypogonadism is characterized by a decline in sex hormone levels, especially testosterone. It has been shown to be an important contributor to the decrease in muscle mass, muscle strength and performance, a condition known as sarcopenia. Preparations from Butea superba Roxb. (red Kwao Krua) have been reported to have androgenic properties. The active compounds are proposed to be flavonoids and flavonoid glycosides. Treatment with B. superba has been shown to improve erectile dysfunction in males. Parvalbumin (PV) is a relaxing factor and identified in fast twitch fibers. Alterations of the PV levels affects skeletal muscle functions. This study aimed to investigate the effects of orhchidectomy, testosterone replacement and different doses of Butea superba Roxb. on the structure, performance, levels of parvalbumin, parvalbumin and androgen receptor immunoreactivities in the extensor digitorum longus (EDL) and gastrocnemius muscles of orchidectomized rats. Twelve-week old male Wistar rats were randomly divided into 6 groups; sham-operated (SHAM), orchidectomized (BS-0), orchidectomized group that was treated with testosterone replacement of 6 µg/kg (TP) or an orchidectomized group that was treated with various doses of an extract from Butea superba Roxb.; 5 mg/kg (BS-5), 50 mg/kg (BS-50) and 500 mg/kg (BS-500) all for 90 days. The testosterone level, epididymis, seminal vesicle, prostate gland, vas deference weight, muscle fiber size, strength and endurance in both the EDL and gastrocnemius muscle were decreased in the BS-0 group but increased in the testosterone replacement group. Treatment with the B. superba Roxb. extract replacement group improved muscle fiber size, strength and endurance, but not total testosterone levels, or the epididymis, seminal vesicle, prostate gland, vas deference weight. Furthermore, the parvalbumin level, parvalbumin and androgen receptor immunoreactivities were reduced in the BS-0 group but increased in the testosterone replacement group and the B. superba Roxb. extract groups for both the EDL and gastrocnemius muscle. This study indicated that the reduction of testosterone level led to a decrease of the androgen receptor density resulting in a decline in the muscle mass and parvalbumin levels. The decrease of parvalbumin levels affected muscle performance. Testosterone replacement increased the androgen receptor density and led to an increase of muscle mass and parvalbumin levels. The increase in the parvalbumin levels may result in an improvement of muscle performance. This may explain one mechanism of testosterone on muscle mass and strength in the testosterone dependent sarcopenia. The B. superba Roxb. extract groups also had improved muscle mass, strength and endurance, parvalbumin level, parvalbumin and androgen immunoreactivities compared to the BS-O group . Butea superba Roxb. Extracts contains a flavonoid (3, 7, 3'-Trihydroxy-4'-methoxyflavone), flavonoiglycoside (3, 3'-dihydroxy-4'-methoxyflavone-7-O-β-D-glucopyranoside) and isoflavanolignans (butesuperins A and butesuperins B) all known to inhibit the cAMP phosphodiesterase enzyme. Therefore, cAMP signaling may have adaptive effects on skeletal muscle by increasing muscle mass, strength and endurance.Keywords: Butea superba, parvalbumin, skeletal muscle, orchidectomy
Procedia PDF Downloads 424106 Evaluating the Effectiveness of Mesotherapy and Topical 2% Minoxidil for Androgenic Alopecia in Females, Using Topical 2% Minoxidil as a Common Treatment
Authors: Hamed Delrobai Ghoochan Atigh
Abstract:
Androgenic alopecia (AGA) is a common form of hair loss, impacting approximately 50% of females, which leads to reduced self-esteem and quality of life. It causes progressive follicular miniaturization in genetically predisposed individuals. Mesotherapy -- a minimally invasive procedure, topical 2% minoxidil, and oral finasteride have emerged as popular treatment options in the realm of cosmetics. However, the efficacy of mesotherapy compared to other options remains unclear. This study aims to assess the effectiveness of mesotherapy when it is added to topical 2% minoxidil treatment on female androgenic alopecia. Mesotherapy, also known as intradermotherapy, is a technique that entails administering multiple intradermal injections of a carefully composed mixture of compounds in low doses, applied at various points in close proximity to or directly over the affected areas. This study involves a randomized controlled trial with 100 female participants diagnosed with androgenic alopecia. The subjects were randomly assigned to two groups: Group A used topical 2% minoxidil twice daily and took Finastride oral tablet. For Group B, 10 mesotherapy sessions were added to the prior treatment. The injections were administered every week in the first month of treatment, every two weeks in the second month, and after that the injections were applied monthly for four consecutive months. The response assessment was made at baseline, the 4th session, and finally after 6 months when the treatment was complete. Clinical photographs, 7-point Likert scale patient self-evaluation, and 7-point Likert scale assessment tool were used to measure the effectiveness of the treatment. During this evaluation, a significant and visible improvement in hair density and thickness was observed. The study demonstrated a significant increase in treatment efficacy in Group B compared to Group A post-treatment, with no adverse effects. Based on the findings, it appears that mesotherapy offers a significant improvement in female AGA over minoxidil. Hair loss was stopped in Group B after one month and improvement in density and thickness of hair was observed after the third month. The findings from this study provide valuable insights into the efficacy of mesotherapy in treating female androgenic alopecia. Our evaluation offers a detailed assessment of hair growth parameters, enabling a better understanding of the treatments' effectiveness. The potential of this promising technique is significantly enhanced when carried out in a medical facility, guided by appropriate indications and skillful execution. An interesting observation in our study is that in areas where the hair had turned grey, the newly regrown hair does not retain its original grey color; instead, it becomes darker. The results contribute to evidence-based decision-making in dermatological practice and offer different insights into the treatment of female pattern hair loss.Keywords: androgenic alopecia, female hair loss, mesotherapy, topical 2% minoxidil
Procedia PDF Downloads 102105 Assessment of Commercial Antimicrobials Incorporated into Gelatin Coatings and Applied to Conventional Heat-Shrinking Material for the Prevention of Blown Pack Spoilage in Vacuum Packaged Beef Cuts
Authors: Andrey A. Tyuftin, Rachael Reid, Paula Bourke, Patrick J. Cullen, Seamus Fanning, Paul Whyte, Declan Bolton , Joe P. Kerry
Abstract:
One of the primary spoilage issues associated with vacuum-packed beef products is blown pack spoilage (BPS) caused by the psychrophilic spore-forming strain of Clostridium spp. Spores derived from this organism can be activated after heat-shrinking (eg. 90°C for 3 seconds). To date, research into the control of Clostridium spp in beef packaging is limited. Active packaging in the form of antimicrobially-active coatings may be one approach to its control. Antimicrobial compounds may be incorporated into packaging films or coated onto the internal surfaces of packaging films using a carrier matrix. Three naturally-sourced, commercially-available antimicrobials, namely; Auranta FV (AFV) (bitter oranges extract) from Envirotech Innovative Products Ltd, Ireland; Inbac-MDA (IMDA) from Chemital LLC, Spain, mixture of different organic acids and sodium octanoate (SO) from Sigma-Aldrich, UK, were added into gelatin solutions at 2 concentrations: 2.5 and 3.5 times their minimum inhibition concentration (MIC) against Clostridium estertheticum (DSMZ 8809). These gelatin solutions were coated onto the internal polyethylene layer of cold plasma treated, heat-shrinkable laminates conventionally used for meat packaging applications. Atmospheric plasma was used in order to enhance adhesion between packaging films and gelatin coatings. Pouches were formed from these coated packaging materials, and beef cuts which had been inoculated with C. estertheticum were vacuum packaged. Inoculated beef was vacuum packaged without employing active films and this treatment served as the control. All pouches were heat-sealed and then heat-shrunk at 90°C for 3 seconds and incubated at 2°C for 100 days. During this storage period, packs were monitored for the indicators of blown pack spoilage as follows; gas bubbles in drip, loss of vacuum (onset of BPS), blown, the presence of sufficient gas inside the packs to produce pack distension and tightly stretched, “overblown” packs/ packs leaking. Following storage and assessment of indicator date, it was concluded that AFV- and SO-containing packaging inhibited the growth of C. estertheticum, significantly delaying the blown pack spoilage of beef primals. IMDA did not inhibit the growth of C. estertheticum. This may be attributed to differences in release rates and possible reactions with gelatin. Overall, active films were successfully produced following plasma surface treatment, and experimental data demonstrated clearly that the use of antimicrobially-active films could significantly prolong the storage stability of beef primals through the effective control of BPS.Keywords: active packaging, blown pack spoilage, Clostridium, antimicrobials, edible coatings, food packaging, gelatin films, meat science
Procedia PDF Downloads 265104 Engineering Packaging for a Sustainable Food Chain
Authors: Ezekiel Olukayode Akintunde
Abstract:
There is a high level of inadequate methods at all levels of food supply in the global food industry. The inadequacies have led to vast wastages of food. Hence there is a need to curb the wastages that can later affect natural resources, water resources, and energy to avoid negative impacts on the climate and the environment. There is a need to engage multifaceted engineering packaging approaches for a sustainable food chain to ensure active packaging, intelligent packaging, new packaging materials, and a sustainable packaging system. Packaging can be regarded as an indispensable component approach that can be applied to solve major problems of sustainable food consumption globally; this is about controlling the environmental impact of packed food. The creative innovation will ensure that packaged foods are free from food-borne diseases and food chemical pollution. This paper evaluates the key shortcomings that must be addressed by innovative food packaging to ensure a safe, natural environment that will preserve energy and sustain water resources. Certain solutions, including fabricating microbial biodegradable chemical compounds/polymers from agro-food waste remnants, appear a bright path to ensure a strong and innovative waste-based food packaging system. Over the years, depletion in the petroleum reserves has brought about the emergence of biodegradable polymers as a proper replacement for traditional plastics; moreover, the increase in the production of traditional plastics has raised serious concerns about environmental threats. Biodegradable polymers have proven to be biocompatible, which can also be processed for other useful applications. Therefore, this study will showcase a workable guiding framework for designing a sustainable food packaging system that will not constitute a danger to our present society and that will surely preserve natural water resources. Various assessment methods will be deployed at different stages of the packaging design to enhance the package's sustainability. Every decision that will be made must be facilitated with methods that will be engaged per stage to allow for corrective measures throughout the cycle of the design process. Basic performance appraisal of packaging innovations. Food wastage can result in inimical environmental impacts, and ethical practices must be carried out for food loss at home. An examination in West Africa quantified preventable food wastage over the entire food value chain at almost 180kg per person per year. That is preventable food wastage, 35% of which originated at the household level. Many food losses reported, which happened at the harvesting, storage, transportation, and processing stages, are not preventable and are without much environmental impact because such wastage can be used for feeding. Other surveys have shown that 15%-20% of household food losses can be traced to food packaging. Therefore, new innovative packaging systems can lessen the environmental effect of food wastage to extend shelf‐life to lower food loss in the process distribution chain and at the household level.Keywords: food packaging, biodegradable polymer, intelligent packaging, shelf-life
Procedia PDF Downloads 57103 Efficient Treatment of Azo Dye Wastewater with Simultaneous Energy Generation by Microbial Fuel Cell
Authors: Soumyadeep Bhaduri, Rahul Ghosh, Rahul Shukla, Manaswini Behera
Abstract:
The textile industry consumes a substantial amount of water throughout the processing and production of textile fabrics. The water eventually turns into wastewater, where it acts as an immense damaging nuisance due to its dye content. Wastewater streams contain a percentage ranging from 2.0% to 50.0% of the total weight of dye used, depending on the dye class. The management of dye effluent in textile industries presents a formidable challenge to global sustainability. The current focus is on implementing wastewater treatment technology that enable the recycling of wastewater, reduce energy usage and offset carbon emissions. Microbial fuel cell (MFC) is a device that utilizes microorganisms as a bio-catalyst to effectively treat wastewater while also producing electricity. The MFC harnesses the chemical energy present in wastewater by oxidizing organic compounds in the anodic chamber and reducing an electron acceptor in the cathodic chamber, thereby generating electricity. This research investigates the potential of MFCs to tackle this challenge of azo dye removal with simultaneously generating electricity. Although MFCs are well-established for wastewater treatment, their application in dye decolorization with concurrent electricity generation remains relatively unexplored. This study aims to address this gap by assessing the effectiveness of MFCs as a sustainable solution for treating wastewater containing azo dyes. By harnessing microorganisms as biocatalysts, MFCs offer a promising avenue for environmentally friendly dye effluent management. The performance of MFCs in treating azo dyes and generating electricity was evaluated by optimizing the Chemical Oxygen Demand (COD) and Hydraulic Retention Time (HRT) of influent. COD and HRT values ranged from 1600 mg/L to 2400 mg/L and 5 to 9 days, respectively. Results showed that the maximum open circuit voltage (OCV) reached 648 mV at a COD of 2400 mg/L and HRT of 5 days. Additionally, maximum COD removal of 98% and maximum color removal of 98.91% were achieved at a COD of 1600 mg/L and HRT of 9 days. Furthermore, the study observed a maximum power density of 19.95 W/m3 at a COD of 2400 mg/L and HRT of 5 days. Electrochemical analysis, including linear sweep voltammetry (LSV), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were done to find out the response current and internal resistance of the system. To optimize pH and dye concentration, pH values were varied from 4 to 10, and dye concentrations ranged from 25 mg/L to 175 mg/L. The highest voltage output of 704 mV was recorded at pH 7, while a dye concentration of 100 mg/L yielded the maximum output of 672 mV. This study demonstrates that MFCs offer an efficient and sustainable solution for treating azo dyes in textile industry wastewater, while concurrently generating electricity. These findings suggest the potential of MFCs to contribute to environmental remediation and sustainable development efforts on a global scale.Keywords: textile wastewater treatment, microbial fuel cell, renewable energy, sustainable wastewater treatment
Procedia PDF Downloads 22102 Protective Effect of Cinnamomum zeylanicum Bark Extract against Doxorubicin Induced Cardiotoxicity: A Preliminary Study
Authors: J. A. N. Sandamali, R. P. Hewawasam, K. A. P. W. Jayatilaka, L. K. B. Mudduwa
Abstract:
Introduction: Doxorubicin is widely used in the treatment of solid organ tumors and hematological malignancies, but the dose-dependent cardiotoxicity due to free radical formation compromises its clinical utility. Therapeutic strategies which enhance cellular endogenous defense systems have been identified as promising approaches to combat oxidative stress-associated conditions. Cinnamomum zeylanicum (Ceylon cinnamon) has a number antioxidant compounds, which can effectively scavenge reactive oxygen including superoxide anions, hydroxyl radicals and as well as other free radicals. Therefore, the objective of the study was to elucidate the most effective dose of Cinnamomum bark extract which ameliorates doxorubicin-induced cardiotoxicity. Materials and methods: Wistar rats were divided into seven groups of 10 animals in each. Group 1: normal control (distilled water, orally, for 14 days, 10 mL/kg saline, ip, after 16 hours fast on the 11th day); Group 2: doxorubicin control (distilled water, orally, for 14 days, 18 mg/kg doxorubicin, ip, after 16 hour fast on the 11th day); Groups 3-7: five doses of freeze dried aqueous bark extracts (0.125, 0.25, 0.5, 1.0, 2.0g/kg, orally, daily for 14 days, 18 mg/kg doxorubicin, ip, after 16 hours fast on the 11th day). Animals were sacrificed on the 15th day and blood was collected for the estimation of cardiac troponin I (cTnI), AST and LDH concentrations and myocardial tissues were collected for histopathological assessment of myocardial damage and irreversible changes were graded by developing a score. Results: cTnI concentration of groups 1-7 were 0, 161.9, 128.6, 95.9, 38, 19.41 & 12.36 pg/mL showing significant differences (p<0.05) between group 2 and groups 4-7. In groups 1-7, serum AST concentration were 26.82, 68.1, 37.18, 36.23, 26.8, 26.62 & 22.43U/L and LDH concentrations were 1166.13, 2428.84, 1658.35, 1474.34, 1277.58, 1110.21 & 974.40U/L and a significant difference (p<0.05) was observed between group 2 and groups 3-7. The maximum score for myocardial necrosis was observed in group 2. Parallel to the increase of the dosage of plant extract, a gradual reduction of the score for myocardial necrosis was observed in groups 3-7. Reversible histological changes such as vacuolation, congestion were observed in group 2 and all plant treated groups. Haemorrhages, inflammatory cell infiltrations, and interstitial oedema were observed in group 2, but absent in groups treated with higher doses of the plant extract. Discussion & Conclusion: According to the in vitro antioxidant assays performed, Cinnamomum zeylanicum (Ceylon cinnamon) bark possesses high amounts of polyphenolic substances and high antioxidant activity. The present study showed that Cinnamomum zeylanicum extract at 2.0 g/kg possesses the most significant cardioprotective effect against doxorubicin-induced cardiotoxicity. It can be postulated that pretreatment with Cinnamomum bark extract may replenish the cardiomyocytes with antioxidants that are needed for the defense against oxidative stress induced by doxorubicin.Keywords: cardioprotection, Cinnamomum zeylanicum, doxorubicin, free radicals
Procedia PDF Downloads 162101 The Structural Alteration of DNA Native Structure of Staphylococcus aureus Bacteria by Designed Quinoxaline Small Molecules Result in Their Antibacterial Properties
Authors: Jeet Chakraborty, Sanjay Dutta
Abstract:
Antibiotic resistance by bacteria has proved to be a severe threat to mankind in recent times, and this fortifies an urgency to design and develop potent antibacterial small molecules/compounds with nonconventional mechanisms than the conventional ones. DNA carries the genetic signature of any organism, and bacteria maintain their genomic DNA inside the cell in a well-regulated compact form with the help of various nucleoid associated proteins like HU, HNS, etc. These proteins control various fundamental processes like gene expression, replication, etc., inside the cell. Alteration of the native DNA structure of bacteria can lead to severe consequences in cellular processes inside the bacterial cell that ultimately result in the death of the organism. The change in the global DNA structure by small molecules initiates a plethora of cellular responses that have not been very well investigated. Echinomycin and Triostin-A are biologically active Quinoxaline small molecules that typically consist of a quinoxaline chromophore attached with an octadepsipeptide ring. They bind to double-stranded DNA in a sequence-specific way and have high activity against a wide variety of bacteria, mainly against Gram-positive ones. To date, few synthetic quinoxaline scaffolds were synthesized, displaying antibacterial potential against a broad scale of pathogenic bacteria. QNOs (Quinoxaline N-oxides) are known to target DNA and instigate reactive oxygen species (ROS) production in bacteria, thereby exhibiting antibacterial properties. The divergent role of Quinoxaline small molecules in medicinal research qualifies them for the evaluation of their antimicrobial properties as a potential candidate. The previous study from our lab has given new insights on a 6-nitroquinoxaline derivative 1d as an intercalator of DNA, which induces conformational changes in DNA upon binding.7 The binding event observed was dependent on the presence of a crucial benzyl substituent on the quinoxaline moiety. This was associated with a large induced CD (ICD) appearing in a sigmoidal pattern upon the interaction of 1d with dsDNA. The induction of DNA superstructures by 1d at high Drug:DNA ratios was observed that ultimately led to DNA condensation. Eviction of invitro-assembled nucleosome upon treatment with a high dose of 1d was also observed. In this work, monoquinoxaline derivatives of 1d were synthesized by various modifications of the 1d scaffold. The set of synthesized 6-nitroquinoxaline derivatives along with 1d were all subjected to antibacterial evaluation across five different bacteria species. Among the compound set, 3a displayed potent antibacterial activity against Staphylococcus aureus bacteria. 3a was further subjected to various biophysical studies to check whether the DNA structural alteration potential was still intact. The biological response of S. aureus cells upon treatment with 3a was studied using various cell biology processes, which led to the conclusion that 3d can initiate DNA damage in the S. aureus cells. Finally, the potential of 3a in disrupting preformed S.aureus and S.epidermidis biofilms was also studied.Keywords: DNA structural change, antibacterial, intercalator, DNA superstructures, biofilms
Procedia PDF Downloads 169100 Highly Selective Phosgene Free Synthesis of Methylphenylcarbamate from Aniline and Dimethyl Carbonate over Heterogeneous Catalyst
Authors: Nayana T. Nivangune, Vivek V. Ranade, Ashutosh A. Kelkar
Abstract:
Organic carbamates are versatile compounds widely employed as pesticides, fungicides, herbicides, dyes, pharmaceuticals, cosmetics and in the synthesis of polyurethanes. Carbamates can be easily transformed into isocyanates by thermal cracking. Isocyantes are used as precursors for manufacturing agrochemicals, adhesives and polyurethane elastomers. Manufacture of polyurethane foams is a major application of aromatic ioscyanates and in 2007 the global consumption of polyurethane was about 12 million metric tons/year and the average annual growth rate was about 5%. Presently Isocyanates/carbamates are manufactured by phosgene based process. However, because of high toxicity of phoegene and formation of waste products in large quantity; there is a need to develop alternative and safer process for the synthesis of isocyanates/carbamates. Recently many alternative processes have been investigated and carbamate synthesis by methoxycarbonylation of aromatic amines using dimethyl carbonate (DMC) as a green reagent has emerged as promising alternative route. In this reaction methanol is formed as a by-product, which can be converted to DMC either by oxidative carbonylation of methanol or by reacting with urea. Thus, the route based on DMC has a potential to provide atom efficient and safer route for the synthesis of carbamates from DMC and amines. Lot of work is being carried out on the development of catalysts for this reaction and homogeneous zinc salts were found to be good catalysts for the reaction. However, catalyst/product separation is challenging with these catalysts. There are few reports on the use of supported Zn catalysts; however, deactivation of the catalyst is the major problem with these catalysts. We wish to report here methoxycarbonylation of aniline to methylphenylcarbamate (MPC) using amino acid complexes of Zn as highly active and selective catalysts. The catalysts were characterized by XRD, IR, solid state NMR and XPS analysis. Methoxycarbonylation of aniline was carried out at 170 °C using 2.5 wt% of the catalyst to achieve >98% conversion of aniline with 97-99% selectivity to MPC as the product. Formation of N-methylated products in small quantity (1-2%) was also observed. Optimization of the reaction conditions was carried out using zinc-proline complex as the catalyst. Selectivity was strongly dependent on the temperature and aniline:DMC ratio used. At lower aniline:DMC ratio and at higher temperature, selectivity to MPC decreased (85-89% respectively) with the formation of N-methylaniline (NMA), N-methyl methylphenylcarbamate (MMPC) and N,N-dimethyl aniline (NNDMA) as by-products. Best results (98% aniline conversion with 99% selectivity to MPC in 4 h) were observed at 170oC and aniline:DMC ratio of 1:20. Catalyst stability was verified by carrying out recycle experiment. Methoxycarbonylation preceded smoothly with various amine derivatives indicating versatility of the catalyst. The catalyst is inexpensive and can be easily prepared from zinc salt and naturally occurring amino acids. The results are important and provide environmentally benign route for MPC synthesis with high activity and selectivity.Keywords: aniline, heterogeneous catalyst, methoxycarbonylation, methylphenyl carbamate
Procedia PDF Downloads 27499 Effect of Juvenile Hormone on Respiratory Metabolism during Non-Diapausing Sesamia cretica Wandering Larvae (Lepidoptera: Noctuidae)
Authors: E. A. Abdel-Hakim
Abstract:
The corn stemborer Sesamia cretica (Lederer), has been viewed in many parts of the world as a major pest of cultivated maize, graminaceous crops and sugarcane. Its life cycle is comprised of two different phases, one is the growth and developmental phase (non-diapause) and the other is diapause phase which takes place at the last larval instar. Several problems associated with the use of conventional insecticides, have strongly demonstrated the need for applying alternative safe compounds. Prominent among the prototypes of such prospective chemicals are the juvenoids; i.e. the insect (JH) mimics. In fact, the hormonal effect on metabolism has long been viewed as a secondary consequence of its direct action on specific energy-requiring biosynthetic mechanisms. Therefore, the present study was undertaken essentially in a rather systematic fashion as a contribution towards clarifying metabolic and energetic changes taking place during non-diapause wandering larvae as regulated by (JH) mimic. For this purpose, we applied two different doses of JH mimic (Ro 11-0111) in a single (standard) dose of 100µg or in a single dose of 20 µg/g bw in1µl acetone topically at the onset of nondiapause wandering larvae (WL). Energetic data were obtained by indirect calorimetry methods by conversion of respiratory gas exchange volumetric data, as measured manometrically using a Warburg constant respirometer, to caloric units (g-cal/g fw/h). The findings obtained can be given in brief; these treated larvae underwent supernumerary larval moults. However, this potential the wandering larvae proved to possess whereby restoration of larval programming for S. cretica to overcome stresses even at this critical developmental period. The results obtained, particularly with the high dose used, show that 98% wandering larvae were rescued to survive up to one month (vs. 5 days for normal controls), finally the formation of larval-adult intermediates. Also, the solvent controls had resulted in about 22% additional, but stationary moultings. The basal respiratory metabolism (O2 uptake and CO2 output) of the (WL), whether un-treated or larvae not had followed reciprocal U-shaped curves all along of their developmental duration. The lowest points stood nearly to the day of prepupal formation (571±187 µl O2/gfw/h and 553±181 µl CO2/gfw/h) during un-treated in contrast to the larvae treated with JH (210±48 µl O2/gfw/h and 335±81 µl CO2/gfw/h). Un-treated (normal) larvae proved to utilize carbohydrates as the principal source for energy supply; being fully oxidised without sparing any appreciable amount for endergonic conversion to fats. While, the juvenoid-treated larvae and compared with the acetone-treated control equivalents, there existed no distinguishable differences between them; both had been observed utilising carbohydrates as the sole source of energy demand and converting endergonically almost similar percentages to fats. The overall profile, treated and un-treated (WL) utilized carbohydrates as the principal source for energy demand during this stage.Keywords: juvenile hormone, respiratory metabolism, Sesamia cretica, wandering phase
Procedia PDF Downloads 29398 Liquid Waste Management in Cluster Development
Authors: Abheyjit Singh, Kulwant Singh
Abstract:
There is a gradual depletion of the water table in the earth's crust, and it is required to converse and reduce the scarcity of water. This is only done by rainwater harvesting, recycling of water and by judicially consumption/utilization of water and adopting unique treatment measures. Domestic waste is generated in residential areas, commercial settings, and institutions. Waste, in general, is unwanted, undesirable, and nevertheless an inevitable and inherent product of social, economic, and cultural life. In a cluster, a need-based system is formed where the project is designed for systematic analysis, collection of sewage from the cluster, treating it and then recycling it for multifarious work. The liquid waste may consist of Sanitary sewage/ Domestic waste, Industrial waste, Storm waste, or Mixed Waste. The sewage contains both suspended and dissolved particles, and the total amount of organic material is related to the strength of the sewage. The untreated domestic sanitary sewage has a BOD (Biochemical Oxygen Demand) of 200 mg/l. TSS (Total Suspended Solids) about 240 mg/l. Industrial Waste may have BOD and TSS values much higher than those of sanitary sewage. Another type of impurities of wastewater is plant nutrients, especially when there are compounds of nitrogen N phosphorus P in the sewage; raw sanitary contains approx. 35 mg/l Nitrogen and 10 mg/l of Phosphorus. Finally, the pathogen in the waste is expected to be proportional to the concentration of facial coliform bacteria. The coliform concentration in raw sanitary sewage is roughly 1 billion per liter. The system of sewage disposal technique has been universally applied to all conditions, which are the nature of soil formation, Availability of land, Quantity of Sewage to be disposed of, The degree of treatment and the relative cost of disposal technique. The adopted Thappar Model (India) has the following designed parameters consisting of a Screen Chamber, a Digestion Tank, a Skimming Tank, a Stabilization Tank, an Oxidation Pond and a Water Storage Pond. The screening Chamber is used to remove plastic and other solids, The Digestion Tank is designed as an anaerobic tank having a retention period of 8 hours, The Skimming Tank has an outlet that is kept 1 meter below the surface anaerobic condition at the bottom and also help in organic solid remover, Stabilization Tank is designed as primary settling tank, Oxidation Pond is a facultative pond having a depth of 1.5 meter, Storage Pond is designed as per the requirement. The cost of the Thappar model is Rs. 185 Lakh per 3,000 to 4,000 population, and the Area required is 1.5 Acre. The complete structure will linning as per the requirement. The annual maintenance will be Rs. 5 lakh per year. The project is useful for water conservation, silage water for irrigation, decrease of BOD and there will be no longer damage to community assets and economic loss to the farmer community by inundation. There will be a healthy and clean environment in the community.Keywords: collection, treatment, utilization, economic
Procedia PDF Downloads 7697 Thermosensitive Hydrogel Development for Its Possible Application in Cardiac Cell Therapy
Authors: Lina Paola Orozco Marin, Yuliet Montoya Osorio, John Bustamante Osorno
Abstract:
Ischemic events can culminate in acute myocardial infarction by irreversible cardiac lesions that cannot be restored due to the limited regenerative capacity of the heart. Cell therapy seeks to replace these injured or necrotic cells by transplanting healthy and functional cells. The therapeutic alternatives proposed by tissue engineering and cardiovascular regenerative medicine are the use of biomaterials to mimic the native extracellular medium, which is full of proteins, proteoglycans, and glycoproteins. The selected biomaterials must provide structural support to the encapsulated cells to avoid their migration and death in the host tissue. In this context, the present research work focused on developing a natural thermosensitive hydrogel, its physical and chemical characterization, and the determination of its biocompatibility in vitro. The hydrogel was developed by mixing hydrolyzed bovine and porcine collagen at 2% w/v, chitosan at 2.5% w/v, and beta-glycerolphosphate at 8.5% w/w and 10.5% w/w in magnetic stirring at 4°C. Once obtained, the thermosensitivity and gelation time were determined, incubating the samples at 37°C and evaluating them through the inverted tube method. The morphological characterization of the hydrogels was carried out through scanning electron microscopy. Chemical characterization was carried out employing infrared spectroscopy. The biocompatibility was determined using the MTT cytotoxicity test according to the ISO 10993-5 standard for the hydrogel’s precursors using the fetal human ventricular cardiomyocytes cell line RL-14. The RL-14 cells were also seeded on the top of the hydrogels, and the supernatants were subculture at different periods to their observation under a bright field microscope. Four types of thermosensitive hydrogels were obtained, which differ in their composition and concentration, called A1 (chitosan/bovine collagen/beta-glycerolphosphate 8.5%w/w), A2 (chitosan/porcine collagen/beta-glycerolphosphate 8.5%), B1 (chitosan/bovine collagen/beta-glycerolphosphate 10.5%) and B2 (chitosan/porcine collagen/beta-glycerolphosphate 10.5%). A1 and A2 had a gelation time of 40 minutes, and B1 and B2 had a gelation time of 30 minutes at 37°C. Electron micrographs revealed a three-dimensional internal structure with interconnected pores for the four types of hydrogels. This facilitates the exchange of nutrients, oxygen, and the exit of metabolites, allowing to preserve a microenvironment suitable for cell proliferation. In the infrared spectra, it was possible to observe the interaction that occurs between the amides of polymeric compounds with the phosphate groups of beta-glycerolphosphate. Finally, the biocompatibility tests indicated that cells in contact with the hydrogel or with each of its precursors are not affected in their proliferation capacity for a period of 16 days. These results show the potential of the hydrogel to increase the cell survival rate in the cardiac cell therapies under investigation. Moreover, the results lay the foundations for its characterization and biological evaluation in both in vitro and in vivo models.Keywords: cardiac cell therapy, cardiac ischemia, natural polymers, thermosensitive hydrogel
Procedia PDF Downloads 19196 Halloysite Based Adsorbents for Removing Pollutants from Water Reservoirs
Authors: Agata Chelminska, Joanna Goscianska
Abstract:
The rapid growth of the world’s population and the resulting economic development have had an enormous influence on the environment. Multiple industrial processes generate huge amounts of wastewater containing dangerous substances, most of which are discharged into water bodies. These contaminants include pharmaceuticals and synthetic dyes. Regardless of the presence of wastewater treatment plants, a lot of pollutants cannot be easily eliminated by well-known technologies. Hence, more effective methods of removing resistant chemicals are being developed. Due to cost-effectiveness as well as the availability of a wide range of adsorbents, a large interest in the adsorption process as an alternative way of water purification has been observed. Clay minerals, e.g., halloysite, are one of the most researched natural adsorbents because of their availability, non-toxicity, high specific surface area, porosity, layered structure, and low cost. The negatively charged surface makes them ideal for binding cations and organic compounds. Halloysite can be subjected to modifications which enhance its adsorptive properties. The aim of the presented research was to apply pure and modified halloysite in removing particular pollutants (tetracycline, tartrazine, and phosphates) from aqueous solutions. Halloysite was modified with alcoholic and aqueous solutions of hexadecyltrimethylammonium bromide (CTAB) and urea in different concentrations and subsequently impregnated with lanthanum(III) chloride. Acidic and basic oxygen groups located on the surface of all materials were determined. Moreover, the adsorbents obtained were characterized by X-ray diffraction, low-temperature nitrogen adsorption, scanning, and transmission electron microscopy. The effectiveness of samples in tetracycline, tartrazine, and phosphates adsorption from the liquid phase was then studied in order to determine their potential application in eliminating contaminants from water reservoirs. Modifiers’ employment enabled obtaining materials that possess better adsorption properties, which makes them useful for removing various pollutants from water. Modifying the pure halloysite with CTAB and urea solutions and impregnating LaCl₃ led to the formation of acidic and basic oxygen functional groups on the surface. Their amount increases with an increasing percentage of lanthanum content. The acid-base properties of materials, as well as the type of functional groups that appear on their surface, have a significant influence on their sorption capacities towards antibiotics, dyes, and phosphate(V) anions. The selected contaminants adsorb onto the halloysite studied following the Langmuir type isotherm. The thermodynamic study indicated that the adsorption was a spontaneous and exothermic process. The adsorption equilibrium was rapidly attained after 120 min of contact time. Research showed that synthesized materials based on halloysite may be applied as adsorbents for antibiotics, organic dyes, and PO₄³- ions which are difficult to eliminate.Keywords: adsorption processes, halloysite, minerals, water reservoirs pollutants
Procedia PDF Downloads 18095 Intended Use of Genetically Modified Organisms, Advantages and Disadvantages
Authors: Pakize Ozlem Kurt Polat
Abstract:
GMO (genetically modified organism) is the result of a laboratory process where genes from the DNA of one species are extracted and artificially forced into the genes of an unrelated plant or animal. This technology includes; nucleic acid hybridization, recombinant DNA, RNA, PCR, cell culture and gene cloning techniques. The studies are divided into three groups of properties transferred to the transgenic plant. Up to 59% herbicide resistance characteristic of the transfer, 28% resistance to insects and the virus seems to be related to quality characteristics of 13%. Transgenic crops are not included in the commercial production of each product; mostly commercial plant is soybean, maize, canola, and cotton. Day by day increasing GMO interest can be listed as follows; Use in the health area (Organ transplantation, gene therapy, vaccines and drug), Use in the industrial area (vitamins, monoclonal antibodies, vaccines, anti-cancer compounds, anti -oxidants, plastics, fibers, polyethers, human blood proteins, and are used to produce carotenoids, emulsifiers, sweeteners, enzymes , food preservatives structure is used as a flavor enhancer or color changer),Use in agriculture (Herbicide resistance, Resistance to insects, Viruses, bacteria, fungi resistance to disease, Extend shelf life, Improving quality, Drought , salinity, resistance to extreme conditions such as frost, Improve the nutritional value and quality), we explain all this methods step by step in this research. GMO has advantages and disadvantages, which we explain all of them clearly in full text, because of this topic, worldwide researchers have divided into two. Some researchers thought that the GMO has lots of disadvantages and not to be in use, some of the researchers has opposite thought. If we look the countries law about GMO, we should know Biosafety law for each country and union. For this Biosecurity reasons, the problems caused by the transgenic plants, including Turkey, to minimize 130 countries on 24 May 2000, ‘the United Nations Biosafety Protocol’ signed nudes. This protocol has been prepared in addition to Cartagena Biosafety Protocol entered into force on September 11, 2003. This protocol GMOs in general use by addressing the risks to human health, biodiversity and sustainable transboundary movement of all GMOs that may affect the prevention, transit covers were dealt and used. Under this protocol we have to know the, ‘US Regulations GMO’, ‘European Union Regulations GMO’, ‘Turkey Regulations GMO’. These three different protocols have different applications and rules. World population increasing day by day and agricultural fields getting smaller for this reason feeding human and animal we should improve agricultural product yield and quality. Scientists trying to solve this problem and one solution way is molecular biotechnology which is including the methods of GMO too. Before decide to support or against the GMO, should know the GMO protocols and it effects.Keywords: biotechnology, GMO (genetically modified organism), molecular marker
Procedia PDF Downloads 233