Search results for: feature noise
235 Comparision of Neutrophil Response to Curvularia, Bipolaris and Aspergillus Species
Authors: Eszter J. Tóth, Alexandra Hoffmann, Csaba Vágvölgyi, Tamás Papp
Abstract:
Members of the genera Curvularia and Bipolaris are closely related melanin producing filamentous fungi; both of them have the teleomorph states in genus Cochliobolus. While Bipolaris species infect only plants and may cause serious agriculture damages, some Curvularia species was recovered from opportunistic human infections. The human pathogenic species typically cause phaeohyphomycoses, i.e. mould infections caused by melanised fungi, which can manifest as invasive mycoses with frequent involvement of the central nervous system in immunocompromised patients or as local infections (e.g. keratitis, sinusitis, and cutaneous lesions) in immunocompetent people. Although their plant-fungal interactions have been intensively studied, there is only little information available about the human pathogenic feature of these fungi. The aim of this study was to investigate the neutrophil granulocytes’ response to hyphal forms of Curvularia and Bipolaris in comparison with the response to Aspergillus. In the present study Curvularia lunata SZMC 23759 and Aspergillus fumigatus SZMC 23245 both isolated from human eye infection, and Bipolaris zeicola BRIP 19582b isolated from plant leaf were examined. Neutrophils were isolated from heparinised venous blood of healthy donors with dextran sedimentation followed by centrifugation over Ficoll and hypotonic lysis of erythrocytes. Viability and purity of the cells were checked with trypan blue and Wright staining, respectively. Infection of neutrophils was carried out with germinated conidia in a ratio of 5:1. Production of hydrogen peroxide, superoxide anion, and nitrogen monoxide was measured both intracellularly and extracellularly in response to the germinated spores with or without the supernatant and after serum treatment. ROS and NOS production of neutrophils in interaction with the three fungi were compared. It is already known that Aspergillus species induce ROS production of neutrophils only after serum treatment. Although, in case of C. lunata, serum opsonisation also induced an intensive production of reactive species, lower level of production was measured in the lack of serum as well. After interaction with the plant pathogenic B. zeicola, amount of reactive species found to be similar with and without serum treatment. The presence of germination supernatant decreased the reactive species production in case of each fungus. Interaction with Curvularia, Bipolaris and Aspergillus species induced different response of neutrophils. It seems that recognition of C. lunata and B. zeicola is independent of serum opsonisation, albeit it increases the level of the produced reactive species in response for C. lunata. The study was supported by the grant LP2016-8/2016.Keywords: Curvularia, neutrophils, NOS, ROS, serum opsonisation
Procedia PDF Downloads 197234 Evolution of Web Development Progress in Modern Information Technology
Authors: Abdul Basit Kiani
Abstract:
Web development, the art of creating and maintaining websites, has witnessed remarkable advancements. The aim is to provide an overview of some of the cutting-edge developments in the field. Firstly, the rise of responsive web design has revolutionized user experiences across devices. With the increasing prevalence of smartphones and tablets, web developers have adapted to ensure seamless browsing experiences, regardless of screen size. This progress has greatly enhanced accessibility and usability, catering to the diverse needs of users worldwide. Additionally, the evolution of web frameworks and libraries has significantly streamlined the development process. Tools such as React, Angular, and Vue.js have empowered developers to build dynamic and interactive web applications with ease. These frameworks not only enhance efficiency but also bolster scalability, allowing for the creation of complex and feature-rich web solutions. Furthermore, the emergence of progressive web applications (PWAs) has bridged the gap between native mobile apps and web development. PWAs leverage modern web technologies to deliver app-like experiences, including offline functionality, push notifications, and seamless installation. This innovation has transformed the way users interact with websites, blurring the boundaries between traditional web and mobile applications. Moreover, the integration of artificial intelligence (AI) and machine learning (ML) has opened new horizons in web development. Chatbots, intelligent recommendation systems, and personalization algorithms have become integral components of modern websites. These AI-powered features enhance user engagement, provide personalized experiences, and streamline customer support processes, revolutionizing the way businesses interact with their audiences. Lastly, the emphasis on web security and privacy has been a pivotal area of progress. With the increasing incidents of cyber threats, web developers have implemented robust security measures to safeguard user data and ensure secure transactions. Innovations such as HTTPS protocol, two-factor authentication, and advanced encryption techniques have bolstered the overall security of web applications, fostering trust and confidence among users. Hence, recent progress in web development has propelled the industry forward, enabling developers to craft innovative and immersive digital experiences. From responsive design to AI integration and enhanced security, the landscape of web development continues to evolve, promising a future filled with endless possibilities.Keywords: progressive web applications (PWAs), web security, machine learning (ML), web frameworks, advancement responsive web design
Procedia PDF Downloads 54233 Virtual Experiments on Coarse-Grained Soil Using X-Ray CT and Finite Element Analysis
Authors: Mohamed Ali Abdennadher
Abstract:
Digital rock physics, an emerging field leveraging advanced imaging and numerical techniques, offers a promising approach to investigating the mechanical properties of granular materials without extensive physical experiments. This study focuses on using X-Ray Computed Tomography (CT) to capture the three-dimensional (3D) structure of coarse-grained soil at the particle level, combined with finite element analysis (FEA) to simulate the soil's behavior under compression. The primary goal is to establish a reliable virtual testing framework that can replicate laboratory results and offer deeper insights into soil mechanics. The methodology involves acquiring high-resolution CT scans of coarse-grained soil samples to visualize internal particle morphology. These CT images undergo processing through noise reduction, thresholding, and watershed segmentation techniques to isolate individual particles, preparing the data for subsequent analysis. A custom Python script is employed to extract particle shapes and conduct a statistical analysis of particle size distribution. The processed particle data then serves as the basis for creating a finite element model comprising approximately 500 particles subjected to one-dimensional compression. The FEA simulations explore the effects of mesh refinement and friction coefficient on stress distribution at grain contacts. A multi-layer meshing strategy is applied, featuring finer meshes at inter-particle contacts to accurately capture mechanical interactions and coarser meshes within particle interiors to optimize computational efficiency. Despite the known challenges in parallelizing FEA to high core counts, this study demonstrates that an appropriate domain-level parallelization strategy can achieve significant scalability, allowing simulations to extend to very high core counts. The results show a strong correlation between the finite element simulations and laboratory compression test data, validating the effectiveness of the virtual experiment approach. Detailed stress distribution patterns reveal that soil compression behavior is significantly influenced by frictional interactions, with frictional sliding, rotation, and rolling at inter-particle contacts being the primary deformation modes under low to intermediate confining pressures. These findings highlight that CT data analysis combined with numerical simulations offers a robust method for approximating soil behavior, potentially reducing the need for physical laboratory experiments.Keywords: X-Ray computed tomography, finite element analysis, soil compression behavior, particle morphology
Procedia PDF Downloads 29232 Comprehensive Analysis of Electrohysterography Signal Features in Term and Preterm Labor
Authors: Zhihui Liu, Dongmei Hao, Qian Qiu, Yang An, Lin Yang, Song Zhang, Yimin Yang, Xuwen Li, Dingchang Zheng
Abstract:
Premature birth, defined as birth before 37 completed weeks of gestation is a leading cause of neonatal morbidity and mortality and has long-term adverse consequences for health. It has recently been reported that the worldwide preterm birth rate is around 10%. The existing measurement techniques for diagnosing preterm delivery include tocodynamometer, ultrasound and fetal fibronectin. However, they are subjective, or suffer from high measurement variability and inaccurate diagnosis and prediction of preterm labor. Electrohysterography (EHG) method based on recording of uterine electrical activity by electrodes attached to maternal abdomen, is a promising method to assess uterine activity and diagnose preterm labor. The purpose of this study is to analyze the difference of EHG signal features between term labor and preterm labor. Free access database was used with 300 signals acquired in two groups of pregnant women who delivered at term (262 cases) and preterm (38 cases). Among them, EHG signals from 38 term labor and 38 preterm labor were preprocessed with band-pass Butterworth filters of 0.08–4Hz. Then, EHG signal features were extracted, which comprised classical time domain description including root mean square and zero-crossing number, spectral parameters including peak frequency, mean frequency and median frequency, wavelet packet coefficients, autoregression (AR) model coefficients, and nonlinear measures including maximal Lyapunov exponent, sample entropy and correlation dimension. Their statistical significance for recognition of two groups of recordings was provided. The results showed that mean frequency of preterm labor was significantly smaller than term labor (p < 0.05). 5 coefficients of AR model showed significant difference between term labor and preterm labor. The maximal Lyapunov exponent of early preterm (time of recording < the 26th week of gestation) was significantly smaller than early term. The sample entropy of late preterm (time of recording > the 26th week of gestation) was significantly smaller than late term. There was no significant difference for other features between the term labor and preterm labor groups. Any future work regarding classification should therefore focus on using multiple techniques, with the mean frequency, AR coefficients, maximal Lyapunov exponent and the sample entropy being among the prime candidates. Even if these methods are not yet useful for clinical practice, they do bring the most promising indicators for the preterm labor.Keywords: electrohysterogram, feature, preterm labor, term labor
Procedia PDF Downloads 571231 Identifying the Effects of the Rural Demographic Changes in the Northern Netherlands: A Holistic Approach to Create Healthier Environment
Authors: A. R. Shokoohi, E. A. M. Bulder, C. Th. van Alphen, D. F. den Hertog, E. J. Hin
Abstract:
The Northern region of the Netherlands has beautiful landscapes, a nice diversity of green and blue areas, and dispersed settlements. However, some recent population changes can become threats to health and wellbeing in these areas. The rural areas in the three northern provinces -Groningen, Friesland, and Drenthe, see youngsters leave the region for which reason they are aging faster than other regions in the Netherlands. As a result, some villages have faced major population decline that is leading to loss of facilities/amenities and a decrease in accessibility and social cohesion. Those who still live in these villages are relatively old, low educated and have low-income. To develop a deeper understanding of the health status of the people living in these areas, and help them to improve their living environment, the GO!-Method is being applied in this study. This method has been developed by the National Institute for Public Health and the Environment (RIVM) of the Netherlands and is inspired by the broad definition of health by Machteld Huber: the ability to adapt and direct control, in terms of the physical, emotional and social challenges of life, while paying extra attention to vulnerable groups. A healthy living environment is defined as an environment that residents find it pleasant and encourages and supports healthy behavior. The GO!-method integrates six domains that constitute a healthy living environment: health and lifestyle, facilities and development, safety and hygiene, social cohesion and active citizens, green areas, and air and noise pollution. First of all, this method will identify opportunities for a healthier living environment using existing information and perceptions of residents and other local stakeholders in order to strengthen social participation and quality of life in these rural areas. Second, this approach will connect identified opportunities with available and effective evidence-based interventions in order to develop an action plan from the residents and local authorities perspective which will help them to design their municipalities healthier and more resilient. This method is being used for the first time in rural areas to our best knowledge, in close collaboration with the residents and local authorities of the three provinces to create a sustainable process and stimulate social participation. Our paper will present the outcomes of the first phase of this project in collaboration with the municipality of Westerkwartier, located in the northwest of the province of Groningen. And will describe the current situation, and identify local assets, opportunities, and policies relating to healthier environment; as well as needs and challenges to achieve goals. The preliminary results show that rural demographic changes in the northern Netherlands have negative impacts on service provisions and social cohesion, and there is a need to understand this complicated situation and improve the quality of life in those areas.Keywords: population decline, rural areas, healthy environment, Netherlands
Procedia PDF Downloads 96230 Integrated Geophysical Surveys for Sinkhole and Subsidence Vulnerability Assessment, in the West Rand Area of Johannesburg
Authors: Ramoshweu Melvin Sethobya, Emmanuel Chirenje, Mihlali Hobo, Simon Sebothoma
Abstract:
The recent surge in residential infrastructure development around the metropolitan areas of South Africa has necessitated conditions for thorough geotechnical assessments to be conducted prior to site developments to ensure human and infrastructure safety. This paper appraises the success in the application of multi-method geophysical techniques for the delineation of sinkhole vulnerability in a residential landscape. Geophysical techniques ERT, MASW, VES, Magnetics and gravity surveys were conducted to assist in mapping sinkhole vulnerability, using an existing sinkhole as a constraint at Venterspost town, West of Johannesburg city. A combination of different geophysical techniques and results integration from those proved to be useful in the delineation of the lithologic succession around sinkhole locality, and determining the geotechnical characteristics of each layer for its contribution to the development of sinkholes, subsidence and cavities at the vicinity of the site. Study results have also assisted in the determination of the possible depth extension of the currently existing sinkhole and the location of sites where other similar karstic features and sinkholes could form. Results of the ERT, VES and MASW surveys have uncovered dolomitic bedrock at varying depths around the sites, which exhibits high resistivity values in the range 2500-8000ohm.m and corresponding high velocities in the range 1000-2400 m/s. The dolomite layer was found to be overlain by a weathered chert-poor dolomite layer, which has resistivities between the range 250-2400ohm.m, and velocities ranging from 500-600m/s, from which the large sinkhole has been found to collapse/ cave in. A compiled 2.5D high resolution Shear Wave Velocity (Vs) map of the study area was created using 2D profiles of MASW data, offering insights into the prevailing lithological setup conducive for formation various types of karstic features around the site. 3D magnetic models of the site highlighted the regions of possible subsurface interconnections between the currently existing large sinkhole and the other subsidence feature at the site. A number of depth slices were used to detail the conditions near the sinkhole as depth increases. Gravity surveys results mapped the possible formational pathways for development of new karstic features around the site. Combination and correlation of different geophysical techniques proved useful in delineation of the site geotechnical characteristics and mapping the possible depth extend of the currently existing sinkhole.Keywords: resistivity, magnetics, sinkhole, gravity, karst, delineation, VES
Procedia PDF Downloads 80229 Determination of Friction and Damping Coefficients of Folded Cover Mechanism Deployed by Torsion Springs
Authors: I. Yilmaz, O. Taga, F. Kosar, O. Keles
Abstract:
In this study, friction and damping coefficients of folded cover mechanism were obtained in accordance with experimental studies and data. Friction and damping coefficients are the most important inputs to accomplish a mechanism analysis. Friction and damping are two objects that change the time of deployment of mechanisms and their dynamic behaviors. Though recommended friction coefficient values exist in literature, damping is differentiating feature according to mechanic systems. So the damping coefficient should be obtained from mechanism test outputs. In this study, the folded cover mechanism use torsion springs for deploying covers that are formerly close folded position. Torsion springs provide folded covers with desirable deploying time according to variable environmental conditions. To verify all design revisions with system tests will be so costly so that some decisions are taken in accordance with numerical methods. In this study, there are two folded covers required to deploy simultaneously. Scotch-yoke and crank-rod mechanisms were combined to deploy folded covers simultaneously. The mechanism was unlocked with a pyrotechnic bolt onto scotch-yoke disc. When pyrotechnic bolt was exploded, torsion springs provided rotational movement for mechanism. Quick motion camera was recording dynamic behaviors of system during deployment case. Dynamic model of mechanism was modeled as rigid body with Adams MBD (multi body dynamics) then torque values provided by torsion springs were used as an input. A well-advised range of friction and damping coefficients were defined in Adams DOE (design of experiment) then a large number of analyses were performed until deployment time of folded covers run in with test data observed in record of quick motion camera, thus the deployment time of mechanism and dynamic behaviors were obtained. Same mechanism was tested with different torsion springs and torque values then outputs were compared with numerical models. According to comparison, it was understood that friction and damping coefficients obtained in this study can be used safely when studying on folded objects required to deploy simultaneously. In addition to model generated with Adams as rigid body the finite element model of folded mechanism was generated with Abaqus then the outputs of rigid body model and finite element model was compared. Finally, the reasonable solutions were suggested about different outputs of these solution methods.Keywords: damping, friction, pyro-technic, scotch-yoke
Procedia PDF Downloads 322228 Innovative Technologies of Management of Personnel Processes in the Public Civil Service
Authors: O. V. Jurieva, O. U. Jurieva, R. H. Yagudin, P. B. Chursin
Abstract:
In the recent scientific researches on the problems of public service the idea of the use of innovative technologies of management of personnel processes is accurately formulated. Authors made an attempt to analyze the changes in the public service organizations and to understand how the studied situation is interpreted by the government employees themselves. For this purpose the strategy of sociological research was carried out on the basis of application of questionnaire developed by M. Rokich and focus group research. For the research purposes it was necessary to get to microlevel in order to include daily activities of employees of an organization, their life experience and values in the focus of the analysis. Based on P. Bourdieu's methodology, authors investigated the established patterns of consciousness and behavior of officials (doxa) and also analyzed the tendencies of re-thinking (change) of the settled content of values (heterodoxy) by them. The distinctive feature of the conducted research is that the public servants who have different length of service in the public service took part in the research procedure. The obtained data helped to answer the following question: what are the specifics of doxs of the public servants who work in the public civil service more than 7-10 years and what perception of values of civil service have junior experts whose work experience doesn't exceed 3 years. Respondents were presented by two groups: (1) public servants of the level of main positions in the public civil service of the Republic of Tatarstan. (2) Public servants of the level of lower positions in the ministries and departments of the Republic of Tatarstan. For the study of doxa or of the existing values of public servants, the research with use of the questionnaire based on M. Rokich's system is conducted. Two types of values are emphasised: terminal and instrumental, which are united by us in the collective concept doxa. Doxa: the instrument of research of the established patterns of consciousness and behavior which can either resist to changes in the organization or, on the contrary, support their implementation. In the following stage an attempt to deepen our understanding of the essence and specifics of doxa of officials by means of the applied sociological research which is carried out by focus group method is made. Information obtained by authors during the research convinces that for the success of policy of changes in the organizations of public service it is necessary to develop special technologies of informing employees about the essence and inevitability of the developed innovations, to involve them in the process of changes, to train and to develop the younger generation of civil servants, seriously to perceive additional training and retraining of officials.Keywords: innovative technologies, public service organizations, public servants
Procedia PDF Downloads 273227 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques
Authors: Soheila Sadeghi
Abstract:
In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes
Procedia PDF Downloads 39226 Spatial Ecology of an Endangered Amphibian Litoria Raniformis within Modified Tasmanian Landscapes
Authors: Timothy Garvey, Don Driscoll
Abstract:
Within Tasmania, the growling grass frog (Litoria raniformis) has experienced a rapid contraction in distribution. This decline is primarily attributed to habitat loss through landscape modification and improved land drainage. Reductions in seasonal water-sources have placed increasing importance on permanent water bodies for reproduction and foraging. Tasmanian agricultural and commercial forestry landscapes often feature small artificial ponds, utilized for watering livestock and fighting wildfires. Improved knowledge of how L. raniformis may be exploiting anthropogenic ponds is required for improved conservation management. We implemented telemetric tracking in order to evaluate the spatial ecology of L. raniformis (n = 20) within agricultural and managed forestry sites, with tracking conducted periodically over the breeding season (November/December, January/February, March/April). We investigated (1) potential differences in habitat utilization between agricultural and plantation sites, and (2) the post-breeding dispersal of individual frogs. Frogs were found to remain in close proximity to ponds throughout November/December, with individuals occupying vegetative depauperate water bodies beginning to disperse by January/February. Dispersing individuals traversed exposed plantation understory and agricultural pasture land in order to enter patches of native scrubland. By March/April all individuals captured at minimally vegetated ponds had retreated to adjacent scrub corridors. Animals found in ponds featuring dense riparian vegetation were not recorded to disperse. No difference in behavior was recorded between sexes. Rising temperatures coincided with increased movement by individuals towards native scrub refugia. The patterns of movement reported in this investigation emphasize the significant contribution of manmade water-bodies towards the conservation of L. raniformis within modified landscapes. The use of natural scrubland as cyclical retreats between breeding seasons also highlights the importance of the continued preservation of remnant vegetation corridors. Loss of artificial dams or buffering scrubland in heavily altered landscapes could see the breakdown of the greater L. raniformis meta-population further threatening their regional persistence.Keywords: habitat loss, modified landscapes, spatial ecology, telemetry
Procedia PDF Downloads 116225 Transgressing Gender Norms in Addiction Treatment
Authors: Sara Matsuzaka
Abstract:
At the center of emerging policy debates on the rights of transgender individuals in public accommodations is the collision of gender binary views with transgender perspectives that challenge conventional gender norms. The results of such socio-political debates could have significant ramifications for the policies and infrastructures of public and private institutions nationwide, including within the addiction treatment field. Despite having disproportionately high rates of substance use disorder compared to the general population, transgender individuals experience significant barriers to engaging in addiction treatment programs. Inpatient addiction treatment centers were originally designed to treat heterosexual cisgender populations and, as such, feature gender segregated housing, bathrooms, and counseling sessions. Such heteronormative structural barriers, combined with exposures to stigmatic al attitudes, may dissuade transgender populations from benefiting from the addiction treatment they so direly need. A literature review is performed to explore the mechanisms by which gender segregation alienates transgender populations within inpatient addiction treatment. The constituent parts of the current debate on the rights of transgender individuals in public accommodations are situated the context of inpatient addiction treatment facilities. Minority Stress Theory is used as a theoretical framework for understanding substance abuse issues among transgender populations as a maladaptive behavioral response for coping with chronic stressors related to gender minority status and intersecting identities. The findings include that despite having disproportionately high rates of substance use disorder compared to the general population, transgender individuals experience significant barriers to engaging in and benefiting from addiction treatment. These barriers are present in the form of anticipated or real interpersonal stigma and discrimination by service providers and structural stigma in the form of policy and programmatic components in addiction treatment that marginalize transgender populations. Transphobic manifestations within addiction treatment may dissuade transgender individuals from seeking help, if not reinforce a lifetime of stigmatic experience, potentially exacerbating their substance use issues. Conclusive recommendations for social workers and addiction treatment professionals include: (1) dismantling institutional policies around gender segregation that alienate transgender individuals, (2) developing policies that provide full protections for transgender clients against discrimination based on their gender identity, and (3) implementing trans-affirmative cultural competency training requirements for all staff. Directions for future research are provided.Keywords: addiction treatment, gender segregation, stigma, transgender
Procedia PDF Downloads 211224 Development of Allergenic and Melliferous Floral Pollen Spectrum Using Scanning Electron Microscopy
Authors: Mehwish Jamil Noor
Abstract:
Morphological features of pollen (sculpturing) were useful for identification of different floral taxa. In this study 49 pollen grains, types belonging to 25 families were studied using Scanning Electron Microscope. Shape and sculpturing of pollen ranging from Psilate, scabrate to reticulate, bireticulate and echinolophate. Honey pollen was identified using morphological features, number and arrangement of pore and colpi, size and shape. It presents the first attempt from Pakistan involving extraction of pollen from honey, its identification and taxonomic analysis. Among pollen studied diversity in shape and sculpturing has been observed ranging from Psilate, scabrate to reticulate to bireticulate and echinolophate condition. Pollen has been identified with the help of morphological feature, number and arrangement of pore and colpi, size and shape, reference slides, light microscopic data and previous literature have been consulted for pollen identification. Pollen of closely related species resemble each other therefore pollen identification of airborne and honey pollen is not possible till species level. Survey of flora was carried in parallel to keep the record about the allergenic and melliferous preference of specific sites through surveys and interviews. Their pollination season and geographical distribution were recorded. Two hundred and five including wild and cultivated taxa were identified belonging to sixty-seven families. Major bee attracting wild shrub and trees includes Justicia adhatoda, Acacia nilotica, Ziziphus jujuba, Taraxicum officinalis, Artemisia dubia, Casuarina sp., Ulmus sp., Broussonetia papyrifera, Cupressus sp. or Pinus roxburghii etc. Cultivated crops like Pennisetum typhoides, Nigella sativa, Triticum sativum along with fruit trees of Pyrus, Prunus, Eryobotria, Citrus etc. are popular melliferous floras. Exotic/ introduced species like Eucalyptus or Parthenium hysterophorus, are also frequently visited by bees indicating the significance of those plants in the honey industry. It is concluded that different microscopic analysis techniques give more clear and authentic pictures of and melliferous pollen identification which is well supported by the floral calendar. The diversity of pollen are observed in case of melliferous pollen, and most of the windborne pollen were found less sculptured or psilate expressing the adaptation to the specific mode of pollination. Pollen morphology and sculpturing would serve as a reference for future studies.Keywords: pollen, allergenic flora, sem, pollen key, Scanning Electron Microscopy (SEM)
Procedia PDF Downloads 201223 Colored Image Classification Using Quantum Convolutional Neural Networks Approach
Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins
Abstract:
Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning
Procedia PDF Downloads 129222 Transgenerational Impact of Intrauterine Hyperglycaemia to F2 Offspring without Pre-Diabetic Exposure on F1 Male Offspring
Authors: Jun Ren, Zhen-Hua Ming, He-Feng Huang, Jian-Zhong Sheng
Abstract:
Adverse intrauterine stimulus during critical or sensitive periods in early life, may lead to health risk not only in later life span, but also further generations. Intrauterine hyperglycaemia, as a major feature of gestational diabetes mellitus (GDM), is a typical adverse environment for both F1 fetus and F1 gamete cells development. However, there is scare information of phenotypic difference of metabolic memory between somatic cells and germ cells exposed by intrauterine hyperglycaemia. The direct transmission effect of intrauterine hyperglycaemia per se has not been assessed either. In this study, we built a GDM mice model and selected male GDM offspring without pre-diabetic phenotype as our founders, to exclude postnatal diabetic influence on gametes, thereby investigate the direct transmission effect of intrauterine hyperglycaemia exposure on F2 offspring, and we further compared the metabolic difference of affected F1-GDM male offspring and F2 offspring. A GDM mouse model of intrauterine hyperglycemia was established by intraperitoneal injection of streptozotocin after pregnancy. Pups of GDM mother were fostered by normal control mothers. All the mice were fed with standard food. Male GDM offspring without metabolic dysfunction phenotype were crossed with normal female mice to obtain F2 offspring. Body weight, glucose tolerance test, insulin tolerance test and homeostasis model of insulin resistance (HOMA-IR) index were measured in both generations at 8 week of age. Some of F1-GDM male mice showed impaired glucose tolerance (p < 0.001), none of F1-GDM male mice showed impaired insulin sensitivity. Body weight of F1-GDM mice showed no significance with control mice. Some of F2-GDM offspring exhibited impaired glucose tolerance (p < 0.001), all the F2-GDM offspring exhibited higher HOMA-IR index (p < 0.01 of normal glucose tolerance individuals vs. control, p < 0.05 of glucose intolerance individuals vs. control). All the F2-GDM offspring exhibited higher ITT curve than control (p < 0.001 of normal glucose tolerance individuals, p < 0.05 of glucose intolerance individuals, vs. control). F2-GDM offspring had higher body weight than control mice (p < 0.001 of normal glucose tolerance individuals, p < 0.001 of glucose intolerance individuals, vs. control). While glucose intolerance is the only phenotype that F1-GDM male mice may exhibit, F2 male generation of healthy F1-GDM father showed insulin resistance, increased body weight and/or impaired glucose tolerance. These findings imply that intrauterine hyperglycaemia exposure affects germ cells and somatic cells differently, thus F1 and F2 offspring demonstrated distinct metabolic dysfunction phenotypes. And intrauterine hyperglycaemia exposure per se has a strong influence on F2 generation, independent of postnatal metabolic dysfunction exposure.Keywords: inheritance, insulin resistance, intrauterine hyperglycaemia, offspring
Procedia PDF Downloads 238221 Refractory Visceral Leishmaniasis Responding to Second-Line Therapy
Authors: Preet Shah, Om Shrivastav
Abstract:
Introduction : In India, Leishmania donovani is the only parasite causing Leishmaniasis. The parasite infects the reticuloendothelial system and is found in the bone marrow, spleen and liver. Treatment of choice is amphotericin-B with sodium stibogluconate being an alternative. Miltefosine is useful in refractory cases. In our case, Leishmaniasis occurred in a person residing in western India (which is quite rare) and it failed to respond to two different drugs (again an uncommon feature) before it finally responded to a third one. Description: A 50 year old lady, a resident of western India, with no history of recent travel, presented with an ulcer on the left side of the nose since 8 months. She was apparently alright 8 months back, when she noticed a small ulcerated lesion on the left ala of the nose which was immediately biopsied. The biopsy revealed amastigotes of Leishmania for which she was administered intra-lesional sodium stibogluconate for 1 month (4 doses every 8 days).Despite this, there was no regression of the ulcer and hence she presented to us for further management. On examination, her vital parameters were normal. Barring an ulcer on the left side of the nose, rest of the examination findings were unremarkable. Complete blood count was normal. Ultrasound abdomen showed hepatomegaly. PET-CT scan showed increased metabolic activity in left ala of nose, hepatosplenomegaly and increased metabolic activity in spleen and bone marrow. Bone marrow biopsy was done which showed hypercellular marrow with erythroid preponderance. Considering a diagnosis of leishmaniasis which had so far been unresponsive to sodium stibogluconate, she was started on liposomal amphotericin-B. At the time of admission, her creatinine level was normal, but it started rising with the administration of liposomal amphotericin-B, hence the dose was reduced. Despite this, creatinine levels did not improve, and she started developing hypokalemia and hypomagnesemia as side effects of the drug, hence further reductions in the dosage were made. Despite a total of 3 weeks of liposomal amphotericin-B, there was no improvement in the ulcer. As had so far failed to respond to sodium stibogluconate and liposomal amphotericin-B, it was decided to start her on miltefosine. She received the miltefosine for a total of 12 weeks. At the end of this duration, there was a marked regression of the cutaneous lesion. Conclusion: Refractoriness to amphotericin-B in leishmaniasis may be seen in up to 5 % cases. Here, an alternative drug such as miltefosine is useful and hence we decided to use it, to which she responded adequately. Furthermore, although leishmaniasis is common in the eastern part of India, it is a relatively unknown entity in the western part of the country with the occurrence being very rare. Because of these 2 reasons, we consider our case to be a unique one.Keywords: amphotericin-b, leishmaniasis, miltefosine, tropical diseases
Procedia PDF Downloads 139220 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers
Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya
Abstract:
In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.Keywords: IVF, embryo, machine learning, time-lapse imaging data
Procedia PDF Downloads 92219 Shameful Heroes of Queer Cinema: A Critique of Mumbai Police (2013) and My Life Partner (2014)
Authors: Payal Sudhan
Abstract:
Popular films in India, Bollywood, and other local industries make a range of commercial films that attract vast viewership. Love, Heroism, Action, Adventure, Revenge, etc., are some of the dearest themes chosen by many filmmakers of various popular film Industries across the world. However, sexuality has become an issue to address within the cinema. Such films feature in small numbers compared to other themes. One can easily assume that homosexuality is unlikely to be a favorite theme found in Indian popular cinema. It doesn’t mean that there is absolutely no film made on the issues of homosexuality. There have been several attempts. Earlier, some movies depicted homosexual (gay) characters as comedians, which continued until the beginning of the 21st century. The study aims to explore how modern homophobia and stereotype are represented in the films and how it affects homosexuality in the recent Malayalam Cinema. The study wills primarily focusing on Mumbai Police (2013) and My Life Partner (2014). The study tries to explain social space, the idea of a cure, and criminality. The film that has been selected for the analysis Mumbai Police (2013) is a crime thriller. The nonlinear narration of the movie reveals, towards the end, the murderer of ACP Aryan IPS, who was shot dead in a public meeting. In the end, the culprit is the enquiring officer, ACP Antony Moses, himself a close friend and colleague of the victim. Much to one’s curiosity, the primary cause turns out to be the sexual relation Antony has. My Life Partner generically can be classified as a drama. The movie puts forth male bonding and visibly riddles the notions of love and sex between Kiran and his roommate Richard. Running through the same track, the film deals with a different ‘event.’ The ‘event’ is the exclusive celebration of male bonding. The socio-cultural background of the cinema is heterosexual. The elements of heterosexual social setup meet the ends of diplomacy of the Malayalam queer visual culture. The film reveals the life of two gays who were humiliated by the larger heterosexual society. In the end, Kiran dies because of extreme humiliation. The paper is a comparative and cultural analysis of the two movies, My Life Partner and Mumbai Police. I try to bring all the points of comparison together and explain the similarities and differences, how one movie differs from another. Thus, my attempt here explains how stereotypes and homophobia with other related issues are represented in these two movies.Keywords: queer cinema, homophobia, malayalam cinema, queer films
Procedia PDF Downloads 233218 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction
Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong
Abstract:
Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.Keywords: data refinement, machine learning, mutual information, short-term latency prediction
Procedia PDF Downloads 169217 Depressive-Like Behavior in a Murine Model of Colorectal Cancer Associated with Altered Cytokine Levels in Stress-Related Brain Regions
Authors: D. O. Miranda, L. R. Azevedo, J. F. C. Cordeiro, A. H. Dos Santos, S. F. Lisboa, F. S. Guimarães, G. S. Bisson
Abstract:
Background: The Colorectal cancer (CRC) is one of the most common cancers and the fourth leading cause of cancer death in the world. The prevalence of psychiatric-disorders among CRC patients, mainly depression, is high, resulting in impaired quality of life and side effects of primary treatment. High levels of proinflammatory cytokines at tumor microenvironment is a feature of CRC and the literature suggests that those mediators could contribute to the development of psychiatric disorders. Nevertheless, the ability of tumor-associated biological processes to affect the central nervous system (CNS) has only recently been explored in the context of symptoms of depression and is still not well understood. Therefore, the aim of the present study was to test the hypothesis that depressive-like behavior in an experimental model of CCR induced by N-methyl-N-nitro-N-nitrosoguanidine (MNNG) was correlated to proinflammatory profile in the periphery and in the brain. Methods: Colorectal carcinogenesis was induced in adult C57BL/6 mice (n=12) by administration of MNNG (5mg/kg, 0.1ml/intrarectal instillation) 2 times a week, for 2 week. Control group (n=12) received saline (0.1ml/intrarectal instillation). Eight weeks after beginning of MNNG administration animals were submitted to the forced swim test (FST) and the sucrose preference test for evaluation, respectively, of depressive- and anhedonia-like behaviors. After behavioral evaluation, the colon was collected and brain regions dissected (cortex-C, striatum-ST and hippocampus-HIP) for posterior evaluation of cytokine levels (IL-1β, IL-10, IL-17, and CX3CL1) by ELISA. Results: MNNG induced depressive-like behavior, represented by increased immobility time in the FST (Student t test, p < 0.05) and lower sucrose preference (Student t test, p < 0.05). Moreover, there were increased levels of IL-1β, IL-17 and CX3CL1 in the colonic tissue (Student t test, p < 0.05) and in the brain (IL-1 β in the ST and HIP, Student t test, p < 0.05; IL-17 and CX3CL1 in the C and HIP, p < 0.05). IL-10 levels, in contrast, were decreased in both the colon (p < 0.05) and the brain (C and HIP, p < 0.05). Conclusions: The results obtained in the present work support the notion that tumor growth induces neuroinflammation in stress-related brain regions and depressive-like behavior, which could be related to the high incidence of depression in colorectal carcinogenesis. This work have important clinical and research implications, taken into account that cytokine levels may be a marker promissory for the developing depression in CRC patients. New therapeutic strategies to assist in alleviating mental suffering in cancer patients might result from a better understanding of the role of cytokines in the pathophysiology of depression in these subjects.Keywords: cytokines, brain, depression, colorectal cancer
Procedia PDF Downloads 270216 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection
Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa
Abstract:
Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.Keywords: classification, airborne LiDAR, parameters selection, support vector machine
Procedia PDF Downloads 147215 Investigation of Ground Disturbance Caused by Pile Driving: Case Study
Authors: Thayalan Nall, Harry Poulos
Abstract:
Piling is the most widely used foundation method for heavy structures in poor soil conditions. The geotechnical engineer can choose among a variety of piling methods, but in most cases, driving piles by impact hammer is the most cost-effective alternative. Under unfavourable conditions, driving piles can cause environmental problems, such as noise, ground movements and vibrations, with the risk of ground disturbance leading to potential damage to proposed structures. In one of the project sites in which the authors were involved, three offshore container terminals, namely CT1, CT2 and CT3, were constructed over thick compressible marine mud. The seabed was around 6m deep and the soft clay thickness within the project site varied between 9m and 20m. CT2 and CT3 were connected together and rectangular in shape and were 2600mx800m in size. CT1 was 400m x 800m in size and was located on south opposite of CT2 towards its eastern end. CT1 was constructed first and due to time and environmental limitations, it was supported on a “forest” of large diameter driven piles. CT2 and CT3 are now under construction and are being carried out using a traditional dredging and reclamation approach with ground improvement by surcharging with vertical drains. A few months after the installation of the CT1 piles, a 2600m long sand bund to 2m above mean sea level was constructed along the southern perimeter of CT2 and CT3 to contain the dredged mud that was expected to be pumped. The sand bund was constructed by sand spraying and pumping using a dredging vessel. About 2000m length of the sand bund in the west section was constructed without any major stability issues or any noticeable distress. However, as the sand bund approached the section parallel to CT1, it underwent a series of deep seated failures leading the displaced soft clay materials to heave above the standing water level. The crest of the sand bund was about 100m away from the last row of piles. There were no plausible geological reasons to conclude that the marine mud only across the CT1 region was weaker than over the rest of the site. Hence it was suspected that the pile driving by impact hammer may have caused ground movements and vibrations, leading to generation of excess pore pressures and cyclic softening of the marine mud. This paper investigates the probable cause of failure by reviewing: (1) All ground investigation data within the region; (2) Soil displacement caused by pile driving, using theories similar to spherical cavity expansion; (3) Transfer of stresses and vibrations through the entire system, including vibrations transmitted from the hammer to the pile, and the dynamic properties of the soil; and (4) Generation of excess pore pressure due to ground vibration and resulting cyclic softening. The evidence suggests that the problems encountered at the site were primarily caused by the “side effects” of the pile driving operations.Keywords: pile driving, ground vibration, excess pore pressure, cyclic softening
Procedia PDF Downloads 235214 Evaluating the Business Improvement District Redevelopment Model: An Ethnography of a Tokyo Shopping Mall
Authors: Stefan Fuchs
Abstract:
Against the backdrop of the proliferation of shopping malls in Japan during the last two decades, this paper presents the results of an ethnography conducted at a recently built suburban shopping mall in Western Tokyo. Through the analysis of the lived experiences of local residents, mall customers and the mall management this paper evaluates the benefits and disadvantages of the Business Improvement District (BID) model, which was implemented as urban redevelopment strategy in the area surrounding the shopping mall. The results of this research project show that while the BID model has in some respects contributed to the economic prosperity and to the perceived convenience of the area, it has led to gentrification and the redevelopment shows some deficiencies with regard to the inclusion of the elderly population as well as to the democratization of the decision-making process within the area. In Japan, shopping malls have been steadily growing both in size and number since a series of deregulation policies was introduced in the year 2000 in an attempt to push the domestic economy and to rejuvenate urban landscapes. Shopping malls have thereby become defining spaces of the built environment and are arguably important places of social interaction. Notwithstanding the vital role they play as factors of urban transformation, they have been somewhat overlooked in the research on Japan; especially with respect to their meaning for people’s everyday lives. By examining the ways, people make use of space in a shopping mall the research project presented in this paper addresses this gap in the research. Moreover, the research site of this research project is one of the few BIDs of Japan and the results presented in this paper can give indication on the scope of the future applicability of this urban redevelopment model. The data presented in this research was collected during a nine-months ethnographic fieldwork in and around the shopping mall. This ethnography includes semi-structured interviews with ten key informants as well as direct and participant observations examining the lived experiences and perceptions of people living, shopping or working at the shopping mall. The analysis of the collected data focused on recurring themes aiming at ultimately capturing different perspectives on the same aspects. In this manner, the research project documents the social agency of different groups within one communal network. The analysis of the perceptions towards the urban redevelopment around the shopping mall has shown that mainly the mall customers and large businesses benefit from the BID redevelopment model. While local residents benefit to some extent from their neighbourhood becoming more convenient for shopping they perceive themselves as being disadvantaged by changing demographics due to rising living expenses, the general noise level and the prioritisation of a certain customer segment or age group at the shopping mall. Although the shopping mall examined in this research project is just an example, the findings suggest that in future urban redevelopment politics have to provide incentives for landowners and developing companies to think of other ways of transforming underdeveloped areas.Keywords: business improvement district, ethnography, shopping mall, urban redevelopment
Procedia PDF Downloads 136213 The Potential Involvement of Platelet Indices in Insulin Resistance in Morbid Obese Children
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Association between insulin resistance (IR) and hematological parameters has long been a matter of interest. Within this context, body mass index (BMI), red blood cells, white blood cells and platelets were involved in this discussion. Parameters related to platelets associated with IR may be useful indicators for the identification of IR. Platelet indices such as mean platelet volume (MPV), platelet distribution width (PDW) and plateletcrit (PCT) are being questioned for their possible association with IR. The aim of this study was to investigate the association between platelet (PLT) count as well as PLT indices and the surrogate indices used to determine IR in morbid obese (MO) children. A total of 167 children participated in the study. Three groups were constituted. The number of cases was 34, 97 and 36 children in the normal BMI, MO and metabolic syndrome (MetS) groups, respectively. Sex- and age-dependent BMI-based percentile tables prepared by World Health Organization were used for the definition of morbid obesity. MetS criteria were determined. BMI values, homeostatic model assessment for IR (HOMA-IR), alanine transaminase-to-aspartate transaminase ratio (ALT/AST) and diagnostic obesity notation model assessment laboratory (DONMA-lab) index values were computed. PLT count and indices were analyzed using automated hematology analyzer. Data were collected for statistical analysis using SPSS for Windows. Arithmetic mean and standard deviation were calculated. Mean values of PLT-related parameters in both control and study groups were compared by one-way ANOVA followed by Tukey post hoc tests to determine whether a significant difference exists among the groups. The correlation analyses between PLT as well as IR indices were performed. Statistically significant difference was accepted as p-value < 0.05. Increased values were detected for PLT (p < 0.01) and PCT (p > 0.05) in MO group compared to those observed in children with N-BMI. Significant increases for PLT (p < 0.01) and PCT (p < 0.05) were observed in MetS group in comparison with the values obtained in children with N-BMI (p < 0.01). Significantly lower MPV and PDW values were obtained in MO group compared to the control group (p < 0.01). HOMA-IR (p < 0.05), DONMA-lab index (p < 0.001) and ALT/AST (p < 0.001) values in MO and MetS groups were significantly increased compared to the N-BMI group. On the other hand, DONMA-lab index values also differed between MO and MetS groups (p < 0.001). In the MO group, PLT was negatively correlated with MPV and PDW values. These correlations were not observed in the N-BMI group. None of the IR indices exhibited a correlation with PLT and PLT indices in the N-BMI group. HOMA-IR showed significant correlations both with PLT and PCT in the MO group. All of the three IR indices were well-correlated with each other in all groups. These findings point out the missing link between IR and PLT activation. In conclusion, PLT and PCT may be related to IR in addition to their identities as hemostasis markers during morbid obesity. Our findings have suggested that DONMA-lab index appears as the best surrogate marker for IR due to its discriminative feature between morbid obesity and MetS.Keywords: children, insulin resistance, metabolic syndrome, plateletcrit, platelet indices
Procedia PDF Downloads 106212 Corpus Linguistics as a Tool for Translation Studies Analysis: A Bilingual Parallel Corpus of Students’ Translations
Authors: Juan-Pedro Rica-Peromingo
Abstract:
Nowadays, corpus linguistics has become a key research methodology for Translation Studies, which broadens the scope of cross-linguistic studies. In the case of the study presented here, the approach used focuses on learners with little or no experience to study, at an early stage, general mistakes and errors, the correct or incorrect use of translation strategies, and to improve the translational competence of the students. Led by Sylviane Granger and Marie-Aude Lefer of the Centre for English Corpus Linguistics of the University of Louvain, the MUST corpus (MUltilingual Student Translation Corpus) is an international project which brings together partners from Europe and worldwide universities and connects Learner Corpus Research (LCR) and Translation Studies (TS). It aims to build a corpus of translations carried out by students including both direct (L2 > L1) an indirect (L1 > L2) translations, from a great variety of text types, genres, and registers in a wide variety of languages: audiovisual translations (including dubbing, subtitling for hearing population and for deaf population), scientific, humanistic, literary, economic and legal translation texts. This paper focuses on the work carried out by the Spanish team from the Complutense University (UCMA), which is part of the MUST project, and it describes the specific features of the corpus built by its members. All the texts used by UCMA are either direct or indirect translations between English and Spanish. Students’ profiles comprise translation trainees, foreign language students with a major in English, engineers studying EFL and MA students, all of them with different English levels (from B1 to C1); for some of the students, this would be their first experience with translation. The MUST corpus is searchable via Hypal4MUST, a web-based interface developed by Adam Obrusnik from Masaryk University (Czech Republic), which includes a translation-oriented annotation system (TAS). A distinctive feature of the interface is that it allows source texts and target texts to be aligned, so we can be able to observe and compare in detail both language structures and study translation strategies used by students. The initial data obtained point out the kind of difficulties encountered by the students and reveal the most frequent strategies implemented by the learners according to their level of English, their translation experience and the text genres. We have also found common errors in the graduate and postgraduate university students’ translations: transfer errors, lexical errors, grammatical errors, text-specific translation errors, and cultural-related errors have been identified. Analyzing all these parameters will provide more material to bring better solutions to improve the quality of teaching and the translations produced by the students.Keywords: corpus studies, students’ corpus, the MUST corpus, translation studies
Procedia PDF Downloads 147211 Edge Enhancement Visual Methodology for Fat Amount and Distribution Assessment in Dry-Cured Ham Slices
Authors: Silvia Grassi, Stefano Schiavon, Ernestina Casiraghi, Cristina Alamprese
Abstract:
Dry-cured ham is an uncooked meat product particularly appreciated for its peculiar sensory traits among which lipid component plays a key role in defining quality and, consequently, consumers’ acceptability. Usually, fat content and distribution are chemically determined by expensive, time-consuming, and destructive analyses. Moreover, different sensory techniques are applied to assess product conformity to desired standards. In this context, visual systems are getting a foothold in the meat market envisioning more reliable and time-saving assessment of food quality traits. The present work aims at developing a simple but systematic and objective visual methodology to assess the fat amount of dry-cured ham slices, in terms of total, intermuscular and intramuscular fractions. To the aim, 160 slices from 80 PDO dry-cured hams were evaluated by digital image analysis and Soxhlet extraction. RGB images were captured by a flatbed scanner, converted in grey-scale images, and segmented based on intensity histograms as well as on a multi-stage algorithm aimed at edge enhancement. The latter was performed applying the Canny algorithm, which consists of image noise reduction, calculation of the intensity gradient for each image, spurious response removal, actual thresholding on corrected images, and confirmation of strong edge boundaries. The approach allowed for the automatic calculation of total, intermuscular and intramuscular fat fractions as percentages of the total slice area. Linear regression models were run to estimate the relationships between the image analysis results and the chemical data, thus allowing for the prediction of the total, intermuscular and intramuscular fat content by the dry-cured ham images. The goodness of fit of the obtained models was confirmed in terms of coefficient of determination (R²), hypothesis testing and pattern of residuals. Good regression models have been found being 0.73, 0.82, and 0.73 the R2 values for the total fat, the sum of intermuscular and intramuscular fat and the intermuscular fraction, respectively. In conclusion, the edge enhancement visual procedure brought to a good fat segmentation making the simple visual approach for the quantification of the different fat fractions in dry-cured ham slices sufficiently simple, accurate and precise. The presented image analysis approach steers towards the development of instruments that can overcome destructive, tedious and time-consuming chemical determinations. As future perspectives, the results of the proposed image analysis methodology will be compared with those of sensory tests in order to develop a fast grading method of dry-cured hams based on fat distribution. Therefore, the system will be able not only to predict the actual fat content but it will also reflect the visual appearance of samples as perceived by consumers.Keywords: dry-cured ham, edge detection algorithm, fat content, image analysis
Procedia PDF Downloads 176210 High-Pressure Polymorphism of 4,4-Bipyridine Hydrobromide
Authors: Michalina Aniola, Andrzej Katrusiak
Abstract:
4,4-Bipyridine is an important compound often used in chemical practice and more recently frequently applied for designing new metal organic framework (MoFs). Here we present a systematic high-pressure study of its hydrobromide salt. 4,4-Bipyridine hydrobromide monohydrate, 44biPyHBrH₂O, at ambient-pressure is orthorhombic, space group P212121 (phase a). Its hydrostatic compression shows that it is stable to 1.32 GPa at least. However, the recrystallization above 0.55 GPa reveals a new hidden b-phase (monoclinic, P21/c). Moreover, when the 44biPyHBrH2O is heated to high temperature the chemical reactions of this compound in methanol solution can be observed. High-pressure experiments were performed using a Merrill-Bassett diamond-anvil cell (DAC), modified by mounting the anvils directly on the steel supports, and X-ray diffraction measurements were carried out on a KUMA and Excalibur diffractometer equipped with an EOS CCD detector. At elevated pressure, the crystal of 44biPyHBrH₂O exhibits several striking and unexpected features. No signs of instability of phase a were detected to 1.32 GPa, while phase b becomes stable at above 0.55 GPa, as evidenced by its recrystallizations. Phases a and b of 44biPyHBrH2O are partly isostructural: their unit-cell dimensions and the arrangement of ions and water molecules are similar. In phase b the HOH-Br- chains double the frequency of their zigzag motifs, compared to phase a, and the 44biPyH+ cations change their conformation. Like in all monosalts of 44biPy determined so far, in phase a the pyridine rings are twisted by about 30 degrees about bond C4-C4 and in phase b they assume energy-unfavorable planar conformation. Another unusual feature of 44biPyHBrH2O is that all unit-cell parameters become longer on the transition from phase a to phase b. Thus the volume drop on the transition to high-pressure phase b totally depends on the shear strain of the lattice. Higher temperature triggers chemical reactions of 44biPyHBrH2O with methanol. When the saturated methanol solution compound precipitated at 0.1 GPa and temperature of 423 K was required to dissolve all the sample, the subsequent slow recrystallization at isochoric conditions resulted in disalt 4,4-bipyridinium dibromide. For the 44biPyHBrH2O sample sealed in the DAC at 0.35 GPa, then dissolved at isochoric conditions at 473 K and recrystallized by slow controlled cooling, a reaction of N,N-dimethylation took place. It is characteristic that in both high-pressure reactions of 44biPyHBrH₂O the unsolvated disalt products were formed and that free base 44biPy and H₂O remained in the solution. The observed reactions indicate that high pressure destabilized ambient-pressure salts and favors new products. Further studies on pressure-induced reactions are carried out in order to better understand the structural preferences induced by pressure.Keywords: conformation, high-pressure, negative area compressibility, polymorphism
Procedia PDF Downloads 246209 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes
Authors: Angela U. Makolo
Abstract:
Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation
Procedia PDF Downloads 68208 The Usage of Negative Emotive Words in Twitter
Authors: Martina Katalin Szabó, István Üveges
Abstract:
In this paper, the usage of negative emotive words is examined on the basis of a large Hungarian twitter-database via NLP methods. The data is analysed from a gender point of view, as well as changes in language usage over time. The term negative emotive word refers to those words that, on their own, without context, have semantic content that can be associated with negative emotion, but in particular cases, they may function as intensifiers (e.g. rohadt jó ’damn good’) or a sentiment expression with positive polarity despite their negative prior polarity (e.g. brutális, ahogy ez a férfi rajzol ’it’s awesome (lit. brutal) how this guy draws’. Based on the findings of several authors, the same phenomenon can be found in other languages, so it is probably a language-independent feature. For the recent analysis, 67783 tweets were collected: 37818 tweets (19580 tweets written by females and 18238 tweets written by males) in 2016 and 48344 (18379 tweets written by females and 29965 tweets written by males) in 2021. The goal of the research was to make up two datasets comparable from the viewpoint of semantic changes, as well as from gender specificities. An exhaustive lexicon of Hungarian negative emotive intensifiers was also compiled (containing 214 words). After basic preprocessing steps, tweets were processed by ‘magyarlanc’, a toolkit is written in JAVA for the linguistic processing of Hungarian texts. Then, the frequency and collocation features of all these words in our corpus were automatically analyzed (via the analysis of parts-of-speech and sentiment values of the co-occurring words). Finally, the results of all four subcorpora were compared. Here some of the main outcomes of our analyses are provided: There are almost four times fewer cases in the male corpus compared to the female corpus when the negative emotive intensifier modified a negative polarity word in the tweet (e.g., damn bad). At the same time, male authors used these intensifiers more frequently, modifying a positive polarity or a neutral word (e.g., damn good and damn big). Results also pointed out that, in contrast to female authors, male authors used these words much more frequently as a positive polarity word as well (e.g., brutális, ahogy ez a férfi rajzol ’it’s awesome (lit. brutal) how this guy draws’). We also observed that male authors use significantly fewer types of emotive intensifiers than female authors, and the frequency proportion of the words is more balanced in the female corpus. As for changes in language usage over time, some notable differences in the frequency and collocation features of the words examined were identified: some of the words collocate with more positive words in the 2nd subcorpora than in the 1st, which points to the semantic change of these words over time.Keywords: gender differences, negative emotive words, semantic changes over time, twitter
Procedia PDF Downloads 205207 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features
Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh
Abstract:
In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve
Procedia PDF Downloads 262206 Design, Simulation and Fabrication of Electro-Magnetic Pulse Welding Coil and Initial Experimentation
Authors: Bharatkumar Doshi
Abstract:
Electro-Magnetic Pulse Welding (EMPW) is a solid state welding process carried out at almost room temperature, in which joining is enabled by high impact velocity deformation. In this process, high voltage capacitor’s stored energy is discharged in an EM coil resulting in a damped, sinusoidal current with an amplitude of several hundred kiloamperes. Due to these transient magnetic fields of few tens of Tesla near the coil is generated. As the conductive (tube) part is positioned in this area, an opposing eddy current is induced in this part. Consequently, high Lorentz forces act on the part, leading to acceleration away from the coil. In case of a tube, it gets compressed under forming velocities of more than 300 meters per second. After passing the joining gap it collides with the second metallic joining rod, leading to the formation of a jet under appropriate collision conditions. Due to the prevailing high pressure, metallurgical bonding takes place. A characteristic feature is the wavy interface resulting from the heavy plastic deformations. In the process, the formation of intermetallic compounds which might deteriorate the weld strength can be avoided, even for metals with dissimilar thermal properties. In order to optimize the process parameters like current, voltage, inductance, coil dimensions, workpiece dimensions, air gap, impact velocity, effective plastic strain, shear stress acting in the welding zone/impact zone etc. are very critical and important to establish. These process parameters could be determined by simulation using Finite Element Methods (FEM) in which electromagnetic –structural couple field analysis is performed. The feasibility of welding could thus be investigated by varying the parameters in the simulation using COMSOL. Simulation results shall be applied in performing the preliminary experiments of welding the different alloy steel tubes and/or alloy steel to other materials. The single turn coil (S.S.304) with field shaper (copper) has been designed and manufactured. The preliminary experiments are performed using existing EMPW facility available Institute for Plasma Research, Gandhinagar, India. The experiments are performed at 22kV charged into 64µF capacitor bank and the energy is discharged into single turn EM coil. Welding of axi-symetric components such as aluminum tube and rod has been proven experimentally using EMPW techniques. In this paper EM coil design, manufacturing, Electromagnetic-structural FEM simulation of Magnetic Pulse Welding and preliminary experiment results is reported.Keywords: COMSOL, EMPW, FEM, Lorentz force
Procedia PDF Downloads 184