Search results for: doubly fed induction machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3559

Search results for: doubly fed induction machine

1159 Classifications of Sleep Apnea (Obstructive, Central, Mixed) and Hypopnea Events Using Wavelet Packet Transform and Support Vector Machines (VSM)

Authors: Benghenia Hadj Abd El Kader

Abstract:

Sleep apnea events as obstructive, central, mixed or hypopnea are characterized by frequent breathing cessations or reduction in upper airflow during sleep. An advanced method for analyzing the patterning of biomedical signals to recognize obstructive sleep apnea and hypopnea is presented. In the aim to extract characteristic parameters, which will be used for classifying the above stated (obstructive, central, mixed) sleep apnea and hypopnea, the proposed method is based first on the analysis of polysomnography signals such as electrocardiogram signal (ECG) and electromyogram (EMG), then classification of the (obstructive, central, mixed) sleep apnea and hypopnea. The analysis is carried out using the wavelet transform technique in order to extract characteristic parameters whereas classification is carried out by applying the SVM (support vector machine) technique. The obtained results show good recognition rates using characteristic parameters.

Keywords: obstructive, central, mixed, sleep apnea, hypopnea, ECG, EMG, wavelet transform, SVM classifier

Procedia PDF Downloads 370
1158 Data Analysis to Uncover Terrorist Attacks Using Data Mining Techniques

Authors: Saima Nazir, Mustansar Ali Ghazanfar, Sanay Muhammad Umar Saeed, Muhammad Awais Azam, Saad Ali Alahmari

Abstract:

Terrorism is an important and challenging concern. The entire world is threatened by only few sophisticated terrorist groups and especially in Gulf Region and Pakistan, it has become extremely destructive phenomena in recent years. Predicting the pattern of attack type, attack group and target type is an intricate task. This study offers new insight on terrorist group’s attack type and its chosen target. This research paper proposes a framework for prediction of terrorist attacks using the historical data and making an association between terrorist group, their attack type and target. Analysis shows that the number of attacks per year will keep on increasing, and Al-Harmayan in Saudi Arabia, Al-Qai’da in Gulf Region and Tehreek-e-Taliban in Pakistan will remain responsible for many future terrorist attacks. Top main targets of each group will be private citizen & property, police, government and military sector under constant circumstances.

Keywords: data mining, counter terrorism, machine learning, SVM

Procedia PDF Downloads 405
1157 Estimation of Subgrade Resilient Modulus from Soil Index Properties

Authors: Magdi M. E. Zumrawi, Mohamed Awad

Abstract:

Determination of Resilient Modulus (MR) is quite important for characterizing materials in pavement design and evaluation. The main focus of this study is to develop a correlation that predict the resilient modulus of subgrade soils from simple and easy measured soil index properties. To achieve this objective, three subgrade soils representing typical Khartoum soils were selected and tested in the laboratory for measuring resilient modulus. Other basic laboratory tests were conducted on the soils to determine their physical properties. Several soil samples were prepared and compacted at different moisture contents and dry densities and then tested using resilient modulus testing machine. Based on experimental results, linear relationship of MR with the consistency factor ‘Fc’ which is a combination of dry density, void ratio and consistency index had been developed. The results revealed that very good linear relationship found between the MR and the consistency factor with a coefficient of linearity (R2) more than 0.9. The consistency factor could be used for the prediction of the MR of compacted subgrade soils with precise and reliable results.

Keywords: Consistency factor, resilient modulus, subgrade soil, properties

Procedia PDF Downloads 190
1156 Enhance the Power of Sentiment Analysis

Authors: Yu Zhang, Pedro Desouza

Abstract:

Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modelling and testing work was done in R and Greenplum in-database analytic tools.

Keywords: sentiment analysis, social media, Twitter, Amazon, data mining, machine learning, text mining

Procedia PDF Downloads 350
1155 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents

Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Abstract:

With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.

Keywords: document processing, framework, formal definition, machine learning

Procedia PDF Downloads 213
1154 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.

Keywords: multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations

Procedia PDF Downloads 429
1153 Efficient Motion Estimation by Fast Three Step Search Algorithm

Authors: S. M. Kulkarni, D. S. Bormane, S. L. Nalbalwar

Abstract:

The rapid development in the technology have dramatic impact on the medical health care field. Medical data base obtained with latest machines like CT Machine, MRI scanner requires large amount of memory storage and also it requires large bandwidth for transmission of data in telemedicine applications. Thus, there is need for video compression. As the database of medical images contain number of frames (slices), hence while coding of these images there is need of motion estimation. Motion estimation finds out movement of objects in an image sequence and gets motion vectors which represents estimated motion of object in the frame. In order to reduce temporal redundancy between successive frames of video sequence, motion compensation is preformed. In this paper three step search (TSS) block matching algorithm is implemented on different types of video sequences. It is shown that three step search algorithm produces better quality performance and less computational time compared with exhaustive full search algorithm.

Keywords: block matching, exhaustive search motion estimation, three step search, video compression

Procedia PDF Downloads 489
1152 Evaluation of Neuroprotective Potential of Olea europaea and Malus domestica in Experimentally Induced Stroke Rat Model

Authors: Humaira M. Khan, Kanwal Asif

Abstract:

Ischemic stroke is a neurological disorder with a complex pathophysiology associated with motor, sensory and cognitive deficits. Major approaches developed to treat acute ischemic stroke fall into two categories, thrombolysis and neuroprotection. The objectives of this study were to evaluate the neuroprotective and anti-thrombolytic effects of Olea europaea (olive oil) and Malus domestica (apple cider vinegar) and their combination in rat stroke model. Furthermore, histopathological analysis was also performed to assess the severity of ischemia among treated and reference groups. Male albino rats (12 months age) weighing 300- 350gm were acclimatized and subjected to middle cerebral artery occlusion method for stroke induction. Olea europaea and Malus domestica was administered orally in dose of 0.75ml/kg and 3ml/kg and combination was administered at dose of 0.375ml/kg and 1.5ml/kg prophylactically for consecutive 21 days. Negative control group was dosed with normal saline whereas piracetam (250mg/kg) was administered as reference. Neuroprotective activity of standard piracetam, Olea europaea, Malus domestica and their combination was evaluated by performing functional outcome tests i.e. Cylinder, pasta, ladder run, pole and water maize tests. Rats were subjected to surgery after 21 days of treatment for analysis from stroke recovery. Olea europaea and Malus domestica in individual doses of 0.75ml/kg and 3ml/kg respectively showed neuroprotection by significant improvement in ladder run test (121.6± 0.92;128.2 ± 0.73) as compare to reference (125.4 ± 0.74). Both test doses showed significant neuroprotection as compare to reference (9.60 ± 0.50) in pasta test (8.40 ± 0.24;9.80 ± 0.37) whereas with cylinder test, experimental groups showed significant increase in movements (6.60 ± 0.24; 8.40 ± 0.24) in contrast to reference (7.80 ± 0.37).There was a decrease in percentage time taken f to reach the hidden maize in water maize test (56.80 ± 0.58;61.80 ± 0.66) at doses 0.75ml/kg and 3ml/kg respectively as compare to piracetam (59.40 ± 1.07). Olea europaea and Malus domestica individually showed significant reduction in duration of mobility (127.0 ± 0.44; 123.0 ± 0.44) in pole test as compare to piracetam (124.0 ± 0.70). Histopathological analysis revealed the significant extent of protection from ischemia after prophylactic treatments. Hence it is concluded that Olea europaea and Malus domestica are effective neuroprotective agents alone as compare to their combination.

Keywords: ischemia, Malus domestica, neuroprotection, Olea europaea

Procedia PDF Downloads 125
1151 Biopolymer Nanoparticles Loaded with Calcium as a Source of Fertilizer

Authors: Erwin San Juan Martinez, Miguel Angel Aguilar Mendez, Manuel Sandoval Villa, Libia Iris Trejo Tellez

Abstract:

Some nanomaterials may improve the vegetal growth in certain concentration intervals, and could be used as nanofertilizers in order to increase crops yield, and decreasing the environmental pollution due to non-controlled use of conventional fertilizers, therefore the present investigation’s objective was to synthetize and characterize gelatin nanoparticles loaded with calcium generated through pulverization technique and be used as nanofertilizers. To obtain these materials, a fractional factorial design 27-4 was used in order to evaluate the largest number of factors (concentration of Ca2+, temperature and agitation time of the solution and calcium concentration, drying temperature, and % spray) with a possible effect on the size, distribution and morphology of nanoparticles. For the formation of nanoparticles, a Nano Spray-Dryer B - 90® (Buchi, Flawil, Switzerland), equipped with a spray cap of 4 µm was used. Size and morphology of the obtained nanoparticles were evaluated using a scanning electron microscope (JOEL JSM-6390LV model; Tokyo, Japan) equipped with an energy dispersive x-ray X (EDS) detector. The total quantification of Ca2+ as well as its release by the nanoparticles was carried out in an equipment of induction atomic emission spectroscopy coupled plasma (ICP-ES 725, Agilent, Mulgrave, Australia). Of the seven factors evaluated, only the concentration of fertilizer, % spray and concentration of polymer presented a statistically significant effect on particle size. Micrographs of SEM from six of the eight conditions evaluated in this research showed particles separated and with a good degree of sphericity, while in the other two particles had amorphous morphology and aggregation. In all treatments, most of the particles showed smooth surfaces. The average size of smallest particle obtained was 492 nm, while EDS results showed an even distribution of Ca2+ in the polymer matrix. The largest concentration of Ca2+ in ICP was 10.5%, which agrees with the theoretical value calculated, while the release kinetics showed an upward trend within 24 h. Using the technique employed in this research, it was possible to obtain nanoparticles loaded with calcium, of good size, sphericity and with release controlled properties. The characteristics of nanoparticles resulted from manipulation of the conditions of synthesis which allow control of the size and shape of the particles, and provides the means to adapt the properties of the materials to an specific application.

Keywords: calcium, controlled release, gelatin, nano spraydryer, nanofertilizer

Procedia PDF Downloads 178
1150 Investigation of the Multiaxial Pedicle Screw Tulip Design Using Finite Element Analysis

Authors: S. Daqiqeh Rezaei, S. Mohajerzadeh, M. R. Sharifi

Abstract:

Pedicle screws are used to stabilize vertebrae and treat several types of spinal diseases and injuries. Multiaxial pedicle screws are a type of pedicle screw that increase surgical versatility, but they also increase design complexity. Failure of multiaxial pedicle screws caused by static loading, dynamic loading and fatigue can lead to irreparable damage to the patient. Inappropriate deformation of the multiaxial pedicle screw tulip can cause system failure. Investigation of deformation and stress in these tulips can be employed to optimize multiaxial pedicle screw design. The sensitivity of this matter necessitates precise analyzing and modeling of pedicle screws. In this work, three commercial multiaxial pedicle screw tulips and a newly designed tulip are investigated using finite element analysis. Employing video measuring machine (VMM), tulips are modeled. Afterwards, utilizing ANSYS, static analysis is performed on these models. In the end, stresses and displacements of the models are compared.

Keywords: pedicle screw, multiaxial pedicle screw, finite element analysis, static analysis

Procedia PDF Downloads 366
1149 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context

Authors: Nicole Merkle, Stefan Zander

Abstract:

Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.

Keywords: ambient intelligence, machine learning, semantic web, software agents

Procedia PDF Downloads 281
1148 Managing of Cobalt and Chromium Ions by Patients with Metal-on-Metal Hip Prosthesis

Authors: Alina Beraudi, Simona Catalani, Dalila De Pasquale, Eva Bianconi, Umberto Santoro, Susanna Stea, Pietro Apostoli

Abstract:

Recently the European Community, in line with the international scientific community such as with the Consensus Statement, has determined to stop the use of metal-on-metal big head stemmed hip prosthesis. Among the factors accounted as responsible for the high failure rates of these hip implants are the release and accumulation of metal ions. Many studies have correlated the presence of these ions, besides other factors, with the induction of oxidative stress response. In our study on 12 subjects, we observed the patient specific capability to eliminate metal ions after revision surgery. While for cobalt all the patients were able to completely excrete cobalt ions within 5-7 months after metal-on-metal bearing removal, for chromium ions it didn’t happen. If on the one hand the toxicokinetic differences between the two types of ions are confirmed by toxicological and occupational studies, on the other hand, this peculiar way of exposition represents a novel and important point of view. Thus, two different approaches were performed to better understand the subject specific capability to transport metal ions (albumin study) and to manage the response to them (heme-oxygenase-1 study): - a mutational screening of ALBUMIN gene was conducted in 30 MoM prosthetic patients resulting in the absence of nucleotidic changes compared with the ALB reference sequence. To this study was also added the analysis of expression of modified albumin protein; - a gene and protein expression study on 44 patients of heme-oxygenase-1, that is one of the most important antioxidant enzyme induced by metallic ions, was performed. This study resulted in no statistically significant differences in the expression of the gene and protein heme-oxygenase-1 between prosthetic and non-prosthetic patients, as well as between patients with high and low ions levels. Our results show that the protein studied (albumin and heme-oxygenase-1) seem to be not involved in determining chromium and cobalt ions level. On the other hand, achromium and cobalt elimination rates are different, but similar in all patients analyzed, suggesting that this process could be not patient-related. We support the importance of researching more about ions transport within the organism once released by hip prosthesis, about the chemical species involved, the districts where they are contained and the mechanisms of elimination, not excluding the existence of a subjective susceptibility to these metals ions.

Keywords: chromium, cobalt, hip prosthesis, individual susceptibility

Procedia PDF Downloads 380
1147 Feature Extraction Based on Contourlet Transform and Log Gabor Filter for Detection of Ulcers in Wireless Capsule Endoscopy

Authors: Nimisha Elsa Koshy, Varun P. Gopi, V. I. Thajudin Ahamed

Abstract:

The entire visualization of GastroIntestinal (GI) tract is not possible with conventional endoscopic exams. Wireless Capsule Endoscopy (WCE) is a low risk, painless, noninvasive procedure for diagnosing diseases such as bleeding, polyps, ulcers, and Crohns disease within the human digestive tract, especially the small intestine that was unreachable using the traditional endoscopic methods. However, analysis of massive images of WCE detection is tedious and time consuming to physicians. Hence, researchers have developed software methods to detect these diseases automatically. Thus, the effectiveness of WCE can be improved. In this paper, a novel textural feature extraction method is proposed based on Contourlet transform and Log Gabor filter to distinguish ulcer regions from normal regions. The results show that the proposed method performs well with a high accuracy rate of 94.16% using Support Vector Machine (SVM) classifier in HSV colour space.

Keywords: contourlet transform, log gabor filter, ulcer, wireless capsule endoscopy

Procedia PDF Downloads 540
1146 Recognition of Voice Commands of Mentor Robot in Noisy Environment Using Hidden Markov Model

Authors: Khenfer Koummich Fatma, Hendel Fatiha, Mesbahi Larbi

Abstract:

This paper presents an approach based on Hidden Markov Models (HMM: Hidden Markov Model) using HTK tools. The goal is to create a human-machine interface with a voice recognition system that allows the operator to teleoperate a mentor robot to execute specific tasks as rotate, raise, close, etc. This system should take into account different levels of environmental noise. This approach has been applied to isolated words representing the robot commands pronounced in two languages: French and Arabic. The obtained recognition rate is the same in both speeches, Arabic and French in the neutral words. However, there is a slight difference in favor of the Arabic speech when Gaussian white noise is added with a Signal to Noise Ratio (SNR) equals 30 dB, in this case; the Arabic speech recognition rate is 69%, and the French speech recognition rate is 80%. This can be explained by the ability of phonetic context of each speech when the noise is added.

Keywords: Arabic speech recognition, Hidden Markov Model (HMM), HTK, noise, TIMIT, voice command

Procedia PDF Downloads 383
1145 Beneficial Effects of Whey Protein Concentrate in Venous Thrombosis

Authors: Anna Tokajuk, Agnieszka Zakrzeska, Ewa Chabielska, Halina Car

Abstract:

Whey is a by-product generated mainly in the production of cheese and casein. Powder forms of whey are used widely in the food industry as well as a high-protein food for infants, for convalescents, by athletes and especially by bodybuilders to increase muscle mass during exercise. Whey protein concentrate-80 (WPC-80) is a source of bioactive peptides with beneficial effects on the cardiovascular system. It is known that whey proteins health beneficial properties include antidiabetic, blood pressure lowering, improving cardiovascular system function, antibacterial, antiviral and other effects. To study its influence on the development of thrombosis, venous thrombosis model was performed according to the protocol featured by Reyers with modification by Chabielska and Gromotowicz. Male Wistar-Crl: WI (Han) rats from researched groups were supplemented with two doses of WPC-80 (0.3 or 0.5 g/kg) for 7, 14 or 21 days and after these periods, one-hour venous thrombosis model was performed. Control group received 0.9 % NaCl solution and was sham operated. The statistical significance of results was computed by Mann – Whitney’s test. We observed that thrombus weight was decreased in animals obtaining WPC-8080 and that was statistically significant in 14 and 21-day supplemented groups. Blood count parameters did not differ significantly in rats with and without thrombosis induction whether they were fed with WPC-80 or not. Moreover, the number of platelets (PLT) was within the normal range in each group. The examined coagulation parameters in rats of the control groups were within normal limits. After WPC-80 supplementation there was the tendency to prolonged activated partial thromboplastin time (aPTT), but in comparison, the results did not turn out significant. In animals that received WPC-80 0.3 g·kg-1 for 21 days with and without induced thrombosis, prothrombin time (PT) and an international normalized ratio (INR) was somewhat decreased, remaining within the normal range, but the nature and significance of this observation are beyond the framework of the current study. Additionally, fibrinogen and thrombin time (TT) did not differ significantly between groups. Therefore the exact effect of WPC-80 on coagulation system is still elusive and requires further thorough research including mechanisms of action. Determining the potential clinical application of WPC-80 requires the selection of the optimal dose and duration of supplementation.

Keywords: antithrombotic, rats, venous thrombosis, WPC-80

Procedia PDF Downloads 117
1144 'Low Electronic Noise' Detector Technology in Computed Tomography

Authors: A. Ikhlef

Abstract:

Image noise in computed tomography, is mainly caused by the statistical noise, system noise reconstruction algorithm filters. Since last few years, low dose x-ray imaging became more and more desired and looked as a technical differentiating technology among CT manufacturers. In order to achieve this goal, several technologies and techniques are being investigated, including both hardware (integrated electronics and photon counting) and software (artificial intelligence and machine learning) based solutions. From a hardware point of view, electronic noise could indeed be a potential driver for low and ultra-low dose imaging. We demonstrated that the reduction or elimination of this term could lead to a reduction of dose without affecting image quality. Also, in this study, we will show that we can achieve this goal using conventional electronics (low cost and affordable technology), designed carefully and optimized for maximum detective quantum efficiency. We have conducted the tests using large imaging objects such as 30 cm water and 43 cm polyethylene phantoms. We compared the image quality with conventional imaging protocols with radiation as low as 10 mAs (<< 1 mGy). Clinical validation of such results has been performed as well.

Keywords: computed tomography, electronic noise, scintillation detector, x-ray detector

Procedia PDF Downloads 120
1143 Unearthing Air Traffic Control Officers Decision Instructional Patterns From Simulator Data for Application in Human Machine Teams

Authors: Zainuddin Zakaria, Sun Woh Lye

Abstract:

Despite the continuous advancements in automated conflict resolution tools, there is still a low rate of adoption of automation from Air Traffic Control Officers (ATCOs). Trust or acceptance in these tools and conformance to the individual ATCO preferences in strategy execution for conflict resolution are two key factors that impact their use. This paper proposes a methodology to unearth and classify ATCO conflict resolution strategies from simulator data of trained and qualified ATCOs. The methodology involves the extraction of ATCO executive control actions and the establishment of a system of strategy resolution classification based on ATCO radar commands and prevailing flight parameters in deconflicting a pair of aircraft. Six main strategies used to handle various categories of conflict were identified and discussed. It was found that ATCOs were about twice more likely to choose only vertical maneuvers in conflict resolution compared to horizontal maneuvers or a combination of both vertical and horizontal maneuvers.

Keywords: air traffic control strategies, conflict resolution, simulator data, strategy classification system

Procedia PDF Downloads 147
1142 Perspectives of Computational Modeling in Sanskrit Lexicons

Authors: Baldev Ram Khandoliyan, Ram Kishor

Abstract:

India has a classical tradition of Sanskrit Lexicons. Research work has been done on the study of Indian lexicography. India has seen amazing strides in Information and Communication Technology (ICT) applications for Indian languages in general and for Sanskrit in particular. Since Machine Translation from Sanskrit to other Indian languages is often the desired goal, traditional Sanskrit lexicography has attracted a lot of attention from the ICT and Computational Linguistics community. From Nighaŋţu and Nirukta to Amarakośa and Medinīkośa, Sanskrit owns a rich history of lexicography. As these kośas do not follow the same typology or standard in the selection and arrangement of the words and the information related to them, several types of Kośa-styles have emerged in this tradition. The model of a grammar given by Aṣṭādhyāyī is well appreciated by Indian and western linguists and grammarians. But the different models provided by lexicographic tradition also have importance. The general usefulness of Sanskrit traditional Kośas is well discussed by some scholars. That is most of the matter made available in the text. Some also have discussed the good arrangement of lexica. This paper aims to discuss some more use of the different models of Sanskrit lexicography especially focusing on its computational modeling and its use in different computational operations.

Keywords: computational lexicography, Sanskrit Lexicons, nighanṭu, kośa, Amarkosa

Procedia PDF Downloads 162
1141 Wear Performance of Stellite 21 Cladded Overlay on Aisi 304L

Authors: Sandeep Singh Sandhua, Karanvir Singh Ghuman, Arun Kumar

Abstract:

Stellite 21 is cobalt based super alloy used in improving the wear performance of stainless steel engineering components subjected to harsh environmental conditions. This piece of research focuses on the wear analysis of satellite 21 cladded on AISI 304 L substrate using SMAW process. Bead on plate experiments were carried out by varying current and electrode manipulation techniques to optimize the dilution and microhardness. 80 Amp current and weaving technique was found to be optimum set of parameters for overlaying which were further used for multipass multilayer cladding of AISI 304 L substrate. The wear performance was examined on pin on dics wear testing machine under room temperature conditions. The results from this study show that Stellite 21 overlays show a significant improvement in the frictional wear resistance after TIG remelting. It is also established that low dilution procedures are important in controlling the metallurgical composition of these overlays which has a consequent effect in enhancing hardness and wear resistance of these overlays.

Keywords: surfacing, stellite 21, dilution, SMAW, frictional wear, micro-hardness

Procedia PDF Downloads 248
1140 A Resource Optimization Strategy for CPU (Central Processing Unit) Intensive Applications

Authors: Junjie Peng, Jinbao Chen, Shuai Kong, Danxu Liu

Abstract:

On the basis of traditional resource allocation strategies, the usage of resources on physical servers in cloud data center is great uncertain. It will cause waste of resources if the assignment of tasks is not enough. On the contrary, it will cause overload if the assignment of tasks is too much. This is especially obvious when the applications are the same type because of its resource preferences. Considering CPU intensive application is one of the most common types of application in the cloud, we studied the optimization strategy for CPU intensive applications on the same server. We used resource preferences to analyze the case that multiple CPU intensive applications run simultaneously, and put forward a model which can predict the execution time for CPU intensive applications which run simultaneously. Based on the prediction model, we proposed the method to select the appropriate number of applications for a machine. Experiments show that the model can predict the execution time accurately for CPU intensive applications. To improve the execution efficiency of applications, we propose a scheduling model based on priority for CPU intensive applications. Extensive experiments verify the validity of the scheduling model.

Keywords: cloud computing, CPU intensive applications, resource optimization, strategy

Procedia PDF Downloads 276
1139 User-Based Cannibalization Mitigation in an Online Marketplace

Authors: Vivian Guo, Yan Qu

Abstract:

Online marketplaces are not only digital places where consumers buy and sell merchandise, and they are also destinations for brands to connect with real consumers at the moment when customers are in the shopping mindset. For many marketplaces, brands have been important partners through advertising. There can be, however, a risk of advertising impacting a consumer’s shopping journey if it hurts the use experience or takes the user away from the site. Both could lead to the loss of transaction revenue for the marketplace. In this paper, we present user-based methods for cannibalization control by selectively turning off ads to users who are likely to be cannibalized by ads subject to business objectives. We present ways of measuring cannibalization of advertising in the context of an online marketplace and propose novel ways of measuring cannibalization through purchase propensity and uplift modeling. A/B testing has shown that our methods can significantly improve user purchase and engagement metrics while operating within business objectives. To our knowledge, this is the first paper that addresses cannibalization mitigation at the user-level in the context of advertising.

Keywords: cannibalization, machine learning, online marketplace, revenue optimization, yield optimization

Procedia PDF Downloads 159
1138 The Impact of Recurring Events in Fake News Detection

Authors: Ali Raza, Shafiq Ur Rehman Khan, Raja Sher Afgun Usmani, Asif Raza, Basit Umair

Abstract:

Detection of Fake news and missing information is gaining popularity, especially after the advancement in social media and online news platforms. Social media platforms are the main and speediest source of fake news propagation, whereas online news websites contribute to fake news dissipation. In this study, we propose a framework to detect fake news using the temporal features of text and consider user feedback to identify whether the news is fake or not. In recent studies, the temporal features in text documents gain valuable consideration from Natural Language Processing and user feedback and only try to classify the textual data as fake or true. This research article indicates the impact of recurring and non-recurring events on fake and true news. We use two models BERT and Bi-LSTM to investigate, and it is concluded from BERT we get better results and 70% of true news are recurring and rest of 30% are non-recurring.

Keywords: natural language processing, fake news detection, machine learning, Bi-LSTM

Procedia PDF Downloads 21
1137 Corrosion Fatigue of Al-Mg Alloy 5052 in Sodium Chloride Solution Contains Some Inhibitors

Authors: Khalid Ahmed Eldwaib

Abstract:

In this study, Al-Mg alloy 5052 was used as the testing material. Corrosion fatigue life was studied for the alloy in 3.5% NaCl (pH=1, 3, 5, 7, 9, and 11), and 3.5% NaCl (pH=1) with inhibitors. The compound inhibitors were composed mainly of phosphate (PO4³-), adding a certain proportion of other nontoxic inhibitors so as to select alternatives to environmentally hazardous chromate (Cr2O7²-). The inhibitors were sodium dichromate Na2Cr2O7, sodium phosphate Na3PO4, sodium molybdate Na2MoO4, and sodium citrate Na3C6H5O7. The total amount of inhibiting pigments was at different concentrations (250,500,750, and 1000 ppm) in the solutions. Corrosion fatigue behavior was studied by using plane-bending corrosion fatigue machine with stress ratio R=0.5 and under the constant frequency of 13.3 Hz. Results show that in 3.5% NaCl the highest fatigue life (number of cycles to failure Nf) is obtained at pH=5 where the oxide film on aluminum has very low solubility, and the lowest number of cycles is obtained at pH=1, where the media is too aggressive (extremely acidic). When the concentration of inhibitor increases the cycles to failure increase. The surface morphology and fracture section of the specimens had been characterized through scanning electron microscope (SEM).

Keywords: Al-Mg alloy 5052, corrosion, fatigue, inhibitors

Procedia PDF Downloads 459
1136 Cross Coupling Sliding Mode Synchronization Control of Dual-Driving Feed System

Authors: Hong Lu, Wei Fan, Yongquan Zhang, Junbo Zhang

Abstract:

A cross coupling sliding synchronization control strategy is proposed for the dual-driving feed system. This technology will minimize the position error oscillation and achieve the precise synchronization performance in the high speed and high precision drive system, especially some high speed and high precision machine. Moreover, a cross coupling compensation matrix is provided to offset the mismatched disturbance and the disturbance observer is established to eliminate the chattering phenomenon. Performance comparisons of proposed dual-driving cross coupling sliding mode control (CCSMC), normal cross coupling control (CCC) strategy with PID control, and electronic virtual main shaft control (EVMSC) strategy with SMC control are investigated by simulation and a dual-driving control system; the results show the effectiveness of the proposed control scheme.

Keywords: cross coupling matrix, dual motors, synchronization control, sliding mode control

Procedia PDF Downloads 364
1135 Evaluation of Human Amnion Hemocompatibility as a Substitute for Vessels

Authors: Ghasem Yazdanpanah, Mona Kakavand, Hassan Niknejad

Abstract:

Objectives: An important issue in tissue engineering (TE) is hemocompatibility. The current engineered vessels are seriously at risk of thrombus formation and stenosis. Amnion (AM) is the innermost layer of fetal membranes that consists of epithelial and mesenchymal sides. It has the advantages of low immunogenicity, anti-inflammatory and anti-bacterial properties as well as good mechanical properties. We recently introduced the amnion as a natural biomaterial for tissue engineering. In this study, we have evaluated hemocompatibility of amnion as potential biomaterial for tissue engineering. Materials and Methods: Amnions were derived from placentas of elective caesarean deliveries which were in the gestational ages 36 to 38 weeks. Extracted amnions were washed by cold PBS to remove blood remnants. Blood samples were obtained from healthy adult volunteers who had not previously taken anti-coagulants. The blood samples were maintained in sterile tubes containing sodium citrate. Plasma or platelet rich plasma (PRP) were collected by blood sample centrifuging at 600 g for 10 min. Hemocompatibility of the AM samples (n=7) were evaluated by measuring of activated partial thromboplastin time (aPTT), prothrombin time (PT), hemolysis, and platelet aggregation tests. P-selectin was also assessed by ELISA. Both epithelial and mesenchymal sides of amnion were evaluated. Glass slide and expanded polytetrafluoroethylene (ePTFE) samples were defined as control. Results: In comparison with glass as control (13.3 ± 0.7 s), prothrombin time was increased significantly while each side of amnion was in contact with plasma (p<0.05). There was no significant difference in PT between epithelial and mesenchymal surfaces (17.4 ± 0.7 s vs. 15.8 ± 0.7 s, respectively). However, aPPT was not significantly changed after incubation of plasma with amnion epithelial and mesenchymal surfaces or glass (28.61 ± 1.39 s, 31.4 ± 2.66 s, glass, 30.76 ± 2.53 s, respectively, p>0.05). Amnion surfaces, ePTFE and glass samples have less hemolysis induction than water considerably (p<0.001), in which no differences were detected. Platelet aggregation measurements showed that platelets were less stimulated by the amnion epithelial and mesenchymal sides, in comparison with ePTFE and glass. In addition, reduction in amount of p-selectin, as platelet activation factor, after incubation of samples with PRP indicated that amnion has less stimulatory effects on platelets than ePTFE and glass. Conclusion: Amnion as a natural biomaterial has the potential to be used in tissue engineering. Our results suggest that amnion has appropriate hemocompatibility to be employed as a vascular substitute.

Keywords: amnion, hemocompatibility, tissue engineering, biomaterial

Procedia PDF Downloads 393
1134 On the Bias and Predictability of Asylum Cases

Authors: Panagiota Katsikouli, William Hamilton Byrne, Thomas Gammeltoft-Hansen, Tijs Slaats

Abstract:

An individual who demonstrates a well-founded fear of persecution or faces real risk of being subjected to torture is eligible for asylum. In Danish law, the exact legal thresholds reflect those established by international conventions, notably the 1951 Refugee Convention and the 1950 European Convention for Human Rights. These international treaties, however, remain largely silent when it comes to how states should assess asylum claims. As a result, national authorities are typically left to determine an individual’s legal eligibility on a narrow basis consisting of an oral testimony, which may itself be hampered by several factors, including imprecise language interpretation, insecurity or lacking trust towards the authorities among applicants. The leaky ground, on which authorities must assess their subjective perceptions of asylum applicants' credibility, questions whether, in all cases, adjudicators make the correct decision. Moreover, the subjective element in these assessments raises questions on whether individual asylum cases could be afflicted by implicit biases or stereotyping amongst adjudicators. In fact, recent studies have uncovered significant correlations between decision outcomes and the experience and gender of the assigned judge, as well as correlations between asylum outcomes and entirely external events such as weather and political elections. In this study, we analyze a publicly available dataset containing approximately 8,000 summaries of asylum cases, initially rejected, and re-tried by the Refugee Appeals Board (RAB) in Denmark. First, we look for variations in the recognition rates, with regards to a number of applicants’ features: their country of origin/nationality, their identified gender, their identified religion, their ethnicity, whether torture was mentioned in their case and if so, whether it was supported or not, and the year the applicant entered Denmark. In order to extract those features from the text summaries, as well as the final decision of the RAB, we applied natural language processing and regular expressions, adjusting for the Danish language. We observed interesting variations in recognition rates related to the applicants’ country of origin, ethnicity, year of entry and the support or not of torture claims, whenever those were made in the case. The appearance (or not) of significant variations in the recognition rates, does not necessarily imply (or not) bias in the decision-making progress. None of the considered features, with the exception maybe of the torture claims, should be decisive factors for an asylum seeker’s fate. We therefore investigate whether the decision can be predicted on the basis of these features, and consequently, whether biases are likely to exist in the decisionmaking progress. We employed a number of machine learning classifiers, and found that when using the applicant’s country of origin, religion, ethnicity and year of entry with a random forest classifier, or a decision tree, the prediction accuracy is as high as 82% and 85% respectively. tentially predictive properties with regards to the outcome of an asylum case. Our analysis and findings call for further investigation on the predictability of the outcome, on a larger dataset of 17,000 cases, which is undergoing.

Keywords: asylum adjudications, automated decision-making, machine learning, text mining

Procedia PDF Downloads 92
1133 Clarifier Dialogue Interface to resolve linguistic ambiguities in E-Learning Environment

Authors: Dalila Souilem, Salma Boumiza, Abdelkarim Abdelkader

Abstract:

The Clarifier Dialogue Interface (CDI) is a part of an online teaching system based on human-machine communication in learning situation. This interface used in the system during the learning action specifically in the evaluation step, to clarify ambiguities in the learner's response. The CDI can generate patterns allowing access to an information system, using the selectors associated with lexical units. To instantiate these patterns, the user request (especially learner’s response), must be analyzed and interpreted to deduce the canonical form, the semantic form and the subject of the sentence. For the efficiency of this interface at the interpretation level, a set of substitution operators is carried out in order to extend the possibilities of manipulation with a natural language. A second approach that will be presented in this paper focuses on the object languages with new prospects such as combination of natural language with techniques of handling information system in the area of online education. So all operators, the CDI and other interfaces associated to the domain expertise and teaching strategies will be unified using FRAME representation form.

Keywords: dialogue, e-learning, FRAME, information system, natural language

Procedia PDF Downloads 376
1132 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification

Procedia PDF Downloads 346
1131 Detecting Paraphrases in Arabic Text

Authors: Amal Alshahrani, Allan Ramsay

Abstract:

Paraphrasing is one of the important tasks in natural language processing; i.e. alternative ways to express the same concept by using different words or phrases. Paraphrases can be used in many natural language applications, such as Information Retrieval, Machine Translation, Question Answering, Text Summarization, or Information Extraction. To obtain pairs of sentences that are paraphrases we create a system that automatically extracts paraphrases from a corpus, which is built from different sources of news article since these are likely to contain paraphrases when they report the same event on the same day. There are existing simple standard approaches (e.g. TF-IDF vector space, cosine similarity) and alignment technique (e.g. Dynamic Time Warping (DTW)) for extracting paraphrase which have been applied to the English. However, the performance of these approaches could be affected when they are applied to another language, for instance Arabic language, due to the presence of phenomena which are not present in English, such as Free Word Order, Zero copula, and Pro-dropping. These phenomena will affect the performance of these algorithms. Thus, if we can analysis how the existing algorithms for English fail for Arabic then we can find a solution for Arabic. The results are promising.

Keywords: natural language processing, TF-IDF, cosine similarity, dynamic time warping (DTW)

Procedia PDF Downloads 384
1130 Study of Atmospheric Cascades Generated by Primary Comic Rays, from Simulations in Corsika for the City of Tunja in Colombia

Authors: Tathiana Yesenia Coy Mondragón, Jossitt William Vargas Cruz, Cristian Leonardo Gutiérrez Gómez

Abstract:

The study of cosmic rays is based on two fundamental pillars: the detection of secondary cosmic rays on the Earth's surface and the detection of the source and origin of the cascade. In addition, the constant flow of RC generates a lot of interest for study due to the incidence of various natural phenomena, which makes it relevant to characterize their incidence parameters to determine their effect not only at subsoil or terrestrial surface levels but also throughout the atmosphere. To determine the physical parameters of the primary cosmic ray, the implementation of robust algorithms capable of reconstructing the cascade from the measured values is required, with a high level of reliability. Therefore, it is proposed to build a machine learning system that will be fed from the cosmic ray simulations in CORSIKA at different energies that lie in a range [10⁹-10¹²] eV. in order to generate a trained particle and pattern recognition system to obtain greater efficiency when inferring the nature of the origin of the cascade for EAS in the atmosphere considering atmospheric models.

Keywords: CORSIKA, cosmic rays, eas, Colombia

Procedia PDF Downloads 80