Search results for: currents and potentials matrix
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3015

Search results for: currents and potentials matrix

615 Sensorless Machine Parameter-Free Control of Doubly Fed Reluctance Wind Turbine Generator

Authors: Mohammad R. Aghakashkooli, Milutin G. Jovanovic

Abstract:

The brushless doubly-fed reluctance generator (BDFRG) is an emerging, medium-speed alternative to a conventional wound rotor slip-ring doubly-fed induction generator (DFIG) in wind energy conversion systems (WECS). It can provide competitive overall performance and similar low failure rates of a typically 30% rated back-to-back power electronics converter in 2:1 speed ranges but with the following important reliability and cost advantages over DFIG: the maintenance-free operation afforded by its brushless structure, 50% synchronous speed with the same number of rotor poles (allowing the use of a more compact, and more efficient two-stage gearbox instead of a vulnerable three-stage one), and superior grid integration properties including simpler protection for the low voltage ride through compliance of the fractional converter due to the comparatively higher leakage inductances and lower fault currents. Vector controlled pulse-width-modulated converters generally feature a much lower total harmonic distortion relative to hysteresis counterparts with variable switching rates and as such have been a predominant choice for BDFRG (and DFIG) wind turbines. Eliminating a shaft position sensor, which is often required for control implementation in this case, would be desirable to address the associated reliability issues. This fact has largely motivated the recent growing research of sensorless methods and developments of various rotor position and/or speed estimation techniques for this purpose. The main limitation of all the observer-based control approaches for grid-connected wind power applications of the BDFRG reported in the open literature is the requirement for pre-commissioning procedures and prior knowledge of the machine inductances, which are usually difficult to accurately identify by off-line testing. A model reference adaptive system (MRAS) based sensor-less vector control scheme to be presented will overcome this shortcoming. The true machine parameter independence of the proposed field-oriented algorithm, offering robust, inherently decoupled real and reactive power control of the grid-connected winding, is achieved by on-line estimation of the inductance ratio, the underlying rotor angular velocity and position MRAS observer being reliant upon. Such an observer configuration will be more practical to implement and clearly preferable to the existing machine parameter dependent solutions, and especially bearing in mind that with very little modifications it can be adapted for commercial DFIGs with immediately obvious further industrial benefits and prospects of this work. The excellent encoder-less controller performance with maximum power point tracking in the base speed region will be demonstrated by realistic simulation studies using large-scale BDFRG design data and verified by experimental results on a small laboratory prototype of the WECS emulation facility.

Keywords: brushless doubly fed reluctance generator, model reference adaptive system, sensorless vector control, wind energy conversion

Procedia PDF Downloads 49
614 Behavioural Studies on Multidirectional Reinforced 4-D Orthogonal Composites on Various Preform Configurations

Authors: Sriram Venkatesh, V. Murali Mohan, T. V. Karthikeyan

Abstract:

The main advantage of multi-directionally reinforced composites is the freedom to orient selected fibre types and hence derives the benefits of varying fibre volume fractions and there by accommodate the design loads of the final structure of composites. This technology provides the means to produce tailored composites with desired properties. Due to the high level of fibre integrity with through thickness reinforcement those composites are expected to exhibit superior load bearing characteristics with capability to carry load even after noticeable and apparent fracture. However a survey of published literature indicates inadequacy in the design and test data base for the complete characterization of the multidirectional composites. In this paper the research objective is focused on the development and testing of 4-D orthogonal composites with different preform configurations and resin systems. A preform is the skeleton 4D reinforced composite other than the matrix. In 4-D preforms fibre bundles are oriented in three directions at 1200 with respect to each other and they are on orthogonal plane with the fibre in 4th direction. This paper addresses the various types of 4-D composite manufacturing processes and the mechanical test methods followed for the material characterization. A composite analysis is also made, experiments on course and fine woven preforms are conducted and the findings of test results are discussed in this paper. The interpretations of the test results reveal several useful and interesting features. This should pave the way for more widespread use of the perform configurations for allied applications.

Keywords: multi-directionally reinforced composites, 4-D orthogonal preform, course weave, fine weave, fibre bundle spools, unit cell, fibre architecture, fibre volume fraction, fibre distribution

Procedia PDF Downloads 221
613 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment

Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali

Abstract:

This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.

Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis

Procedia PDF Downloads 416
612 Increasing Solubility and Bioavailability of Fluvastatin through Transdermal Nanoemulsion Gel Delivery System for the Treatment of Osteoporosis

Authors: Ramandeep Kaur, Makula Ajitha

Abstract:

Fluvastatin has been reported for increasing bone mineral density in osteoporosis since last decade. Systemically administered drug undergoes extensive hepatic first-pass metabolism, thus very small amount of drug reaches the bone tissue which is highly insignificant. The present study aims to deliver fluvastatin in the form of nanoemulsion (NE) gel directly to the bone tissue through transdermal route thereby bypassing hepatic first pass metabolism. The NE formulation consisted of isopropyl myristate as oil, tween 80 as surfactant, transcutol as co-surfactant and water as the aqueous phase. Pseudoternary phase diagrams were constructed using aqueous titration method and NE’s obtained were subjected to thermodynamic-kinetic stability studies. The stable NE formulations were evaluated for their droplet size, zeta potential, and transmission electron microscopy (TEM). The nano-sized formulations were incorporated into 0.5% carbopol 934 gel matrix. Ex-vivo permeation behaviour of selected formulations through rat skin was investigated and compared with the conventional formulations (suspension and emulsion). Further, in-vivo pharmacokinetic study was carried using male Wistar rats. The optimized NE formulations mean droplet size was 11.66±3.2 nm with polydispersity index of 0.117. Permeation flux of NE gel formulations was found significantly higher than the conventional formulations i.e. suspension and emulsion. In vivo pharmacokinetic study showed significant increase in bioavailability (1.25 fold) of fluvastatin than oral formulation. Thus, it can be concluded that NE gel was successfully developed for transdermal delivery of fluvastatin for the treatment of osteoporosis.

Keywords: fluvastatin, nanoemulsion gel, osteoporosis, transdermal

Procedia PDF Downloads 175
611 Humoral and Cytokine Responses to Major Human Cytomegalovirus Antigens in Mouse Model

Authors: Sahar Essa, Hussain A. Safar, Raj Raghupathy

Abstract:

Human cytomegalovirus (CMV) continues to be a source of severe complications in immunologically immature and immunocompromised hosts. Effective CMV vaccines that help diminish CMV disease in transplant patients and avoid congenital infection are of great importance. Though the exact roles of defense mechanisms are unidentified, viral-specific antibodies and cytokine responses are known to be involved in controlling CMV infections. CMV envelope glycoprotein B (UL55/gB), matrix proteins (UL83/pp65, UL99/pp28, UL32/pp150), and assembly protein UL80a/pp38 are known to be targets of antiviral immune responses. We immunized mice intraperitoneally with these five CMV-related proteins (commercial) for their ability to induce specific antibody responses (in-house immunoassay) and cytokine production (commercial assay) in a mouse model. We observed a significant CMV-antigen-specific antibody response to pp38 and pp65 (E/C ˃2.0, p˂0.001). Mice immunized with pp38 had significantly higher concentrations of GM-CSF, IFN-α, IL-2 IL-4, IL-5, and IL-17A (p˂0.05). Mice immunized with pp65 showed significantly higher concentrations of GM-CSF, IFN-γ, IL-2 IL-4, IL-10, IL-12, IL-17A, and TNF-α. Th1 to Th2 cytokines ratios revealed a Th1 cytokine bias in mice immunized with pp38, pp65, pp150, and gB. We suggest that stimulation with multiple CMV-related proteins, which include pp38, pp65, and gB antigens, will allow both humoral and cellular immune responses to be efficiently activated, thus serving as appropriate CMV antigens for future vaccines.

Keywords: cytomegalovirus, UL99/pp28, UL80a/pp38, UL83/pp65, UL32/pp150, UL55/gB, CMV-antigen-specific antibody, CMV antigen-specific cytokine responses

Procedia PDF Downloads 64
610 Reinforced Concrete Foundation for Turbine Generators

Authors: Siddhartha Bhattacharya

Abstract:

Steam Turbine-Generators (STG) and Combustion Turbine-Generator (CTG) are used in almost all modern petrochemical, LNG plants and power plant facilities. The reinforced concrete table top foundations are required to support these high speed rotating heavy machineries and is one of the most critical and challenging structures on any industrial project. The paper illustrates through a practical example, the step by step procedure adopted in designing a table top foundation supported on piles for a steam turbine generator with operating speed of 60 Hz. Finite element model of a table top foundation is generated in ANSYS. Piles are modeled as springs-damper elements (COMBIN14). Basic loads are adopted in analysis and design of the foundation based on the vendor requirements, industry standards, and relevant ASCE & ACI codal provisions. Static serviceability checks are performed with the help of Misalignment Tolerance Matrix (MTM) method in which the percentage of misalignment at a given bearing due to displacement at another bearing is calculated and kept within the stipulated criteria by the vendor so that the machine rotor can sustain the stresses developed due to this misalignment. Dynamic serviceability checks are performed through modal and forced vibration analysis where the foundation is checked for resonance and allowable amplitudes, as stipulated by the machine manufacturer. Reinforced concrete design of the foundation is performed by calculating the axial force, bending moment and shear at each of the critical sections. These values are calculated through area integral of the element stresses at these critical locations. Design is done as per ACI 318-05.

Keywords: steam turbine generator foundation, finite element, static analysis, dynamic analysis

Procedia PDF Downloads 280
609 Continuity of Place-Identity: Identifying Regional Components of Kerala Architecture through 1805-1950

Authors: Manoj K. Kumar, Deepthi Bathala

Abstract:

Man has the need to know and feel as a part of the historical continuum and it is this continuum that reinforces his identity. Architecture and the built environment contribute to this identity as established by the various identity theories exploring the relationship between the two. Architecture which is organic has been successful in maintaining a continuum of identity until the advent of globalization when the world saw a drastic shift to architecture of ‘placelessness’. The answer to the perfect synthesis of ‘universalization’ and ‘regionalism’ is an ongoing quest. However, history has established a smooth transition from vernacular to colonial to modern unlike the architecture of today. The traditional Kerala architecture has evolved from the tropical climate, geography, local needs, materials, skills and foreign influences. It is unique in contrast to the architecture of the neighboring states as a result of the geographical barriers however influenced by the architecture of the Orient due to trade relations. Through 1805 to 1950, the European influence on the architecture of Kerala resulted in the emergence of the colonial style which managed to establish a continuum of the traditional architecture. The paper focuses on the identification of the components of architecture that established the continuity of place-identity in the architecture of Kerala and examines the transition from the traditional Kerala architecture to colonial architecture during the colonial period. Visual surveys based on the principles of urban design, cognitive mapping, typology analysis followed by the strong understanding of the morphological and built environment along with the matrix method are the research tools used. The understanding of these components of continuity can be useful in creating buildings which people can relate to in the present day. South-Asia shares the history of colonialism and the understanding of these components can pave the way for further research on how to establish a regional identity in the era of globalization.

Keywords: colonial, identity, place, regional

Procedia PDF Downloads 392
608 Urban Planning Patterns after (COVID-19): An Assessment toward Resiliency

Authors: Mohammed AL-Hasani

Abstract:

The Pandemic COVID-19 altered the daily habits and affected the functional performance of the cities after this crisis leaving remarkable impacts on many metropolises worldwide. It is so obvious that having more densification in the city leads to more threats altering this main approach that was called for achieving sustainable development. The main goal to achieve resiliency in the cities, especially in forcing risks, is to deal with a planning system that is able to resist, absorb, accommodate and recover from the impacts that had been affected. Many Cities in London, Wuhan, New York, and others worldwide carried different planning approaches and varied in reaction to safeguard the impacts of the pandemic. The cities globally varied from the radiant pattern predicted by Le Corbusier, or having multi urban centers more like the approach of Frank Lloyd Wright’s Broadacre City, or having linear growth or gridiron expansion that was common by Doxiadis, compact pattern, and many other hygiene patterns. These urban patterns shape the spatial distribution and Identify both open and natural spaces with gentrified and gentrifying areas. This crisis paid attention to reassess many planning approaches and examine the existing urban patterns focusing more on the aim of continuity and resiliency in managing the crises within the rapid transformation and the power of market forces. According to that, this paper hypothesized that those urban planning patterns determine the method of reaction in assuring quarantine for the inhabitance and the performance of public services and need to be updated through carrying out an innovative urban management system and adopt further resilience patterns in prospective urban planning approaches. This paper investigates the adaptivity and resiliency of variant urban planning patterns regarding selected cities worldwide that affected by COVID-19 and their role in applying certain management strategies in controlling the pandemic spread, finding out the main potentials that should be included in prospective planning approaches. The examination encompasses the spatial arrangement, blocks definition, plots arrangement, and urban space typologies. This paper aims to investigate the urban patterns to deliberate also the debate between densification as one of the more sustainable planning approaches and disaggregation tendency that was followed after the pandemic by restructuring and managing its application according to the assessment of the spatial distribution and urban patterns. The biggest long-term threat to dense cities proves the need to shift to online working and telecommuting, creating a mixture between using cyber and urban spaces to remobilize the city. Reassessing spatial design and growth, open spaces, urban population density, and public awareness are the main solutions that should be carried out to face the outbreak in our current cities that should be managed from global to tertiary levels and could develop criteria for designing the prospective cities

Keywords: COVID-19, densification, resiliency, urban patterns

Procedia PDF Downloads 114
607 Atomic Layer Deposition of Metal Oxides on Si/C Materials for the Improved Cycling Stability of High-Capacity Lithium-Ion Batteries

Authors: Philipp Stehle, Dragoljub Vrankovic, Montaha Anjass

Abstract:

Due to its high availability and extremely high specific capacity, silicon (Si) is the most promising anode material for next generation lithium-ion batteries (LIBs). However, Si anodes are suffering from high volume changes during cycling causing unstable solid-electrolyte interface (SEI). One approach for mitigation of these effects is to embed Si particles into a carbon matrix to create silicon/carbon composites (Si/C). These typically show more stable electrochemical performance than bare silicon materials. Nevertheless, the same failure mechanisms mentioned earlier appear in a less pronounced form. In this work, we further improved the cycling performance of two commercially available Si/C materials by coating thin metal oxide films of different thicknesses on the powders via Atomic Layer Deposition (ALD). The coated powders were analyzed via ICP-OES and AFM measurements. Si/C-graphite anodes with automotive-relevant loadings (~3.5 mAh/cm2) were processed out of the materials and tested in half coin cells (HCCs) and full pouch cells (FPCs). During long-term cycling in FPCs, a significant improvement was observed for some of the ALD-coated materials. After 500 cycles, the capacity retention was already up to 10% higher compared to the pristine materials. Cycling of the FPCs continued until they reached a state of health (SOH) of 80%. By this point, up to the triple number of cycles were achieved by ALD-coated compared to pristine anodes. Post-mortem analysis via various methods was carried out to evaluate the differences in SEI formation and thicknesses.

Keywords: silicon anodes, li-ion batteries, atomic layer deposition, silicon-carbon composites, surface coatings

Procedia PDF Downloads 104
606 Effect of Roughness and Microstructure on Tribological Behaviour of 35NCD16 Steel

Authors: A. Jourani, C. Trevisiol, S. Bouvier

Abstract:

The aim of this work is to study the coupled effect of microstructure and surface roughness on friction coefficient, wear resistance and wear mechanisms. Friction tests on 35NCD16 steel are performed under different normal loads (50-110 N) on a pin-on-plane configuration at cyclic sliding with abrasive silicon carbide grains ranging from 35 µm to 200 µm. To vary hardness and microstructure, the specimens are subjected to water quenching and tempering at various temperatures from 200°C to 600°C. The evolution of microstructures and wear mechanisms of worn surfaces are analyzed using scanning electron microscopy (SEM). For a given microstructure and hardness, the friction coefficient decreases with increasing of normal load and decreasing of the abrasive particle size. The wear rate increase with increasing of normal load and abrasive particle size. The results also reveal that there is a critical hardness Hcᵣᵢₜᵢcₐₗ around 430 Hv which maximizes the friction coefficient and wear rate. This corresponds to a microstructure transition from martensite laths to carbides and equiaxed grains, for a tempering around 400°C. Above Hcᵣᵢₜᵢcₐₗ the friction coefficient and the amount of material loss decrease with an increase of hardness and martensite volume fraction. This study also shows that the debris size and the space between the abrasive particles decrease with a reduction in the particle size. The coarsest abrasive grains lost their cutting edges, accompanied by particle damage and empty space due to the particle detachment from the resin matrix. The compact packing nature of finer abrasive papers implicates lower particle detachment and facilitates the clogging and the transition from abrasive to adhesive wear.

Keywords: martensite, microstructure, friction, wear, surface roughness

Procedia PDF Downloads 145
605 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis

Authors: Meng Su

Abstract:

High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.

Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis

Procedia PDF Downloads 85
604 Exploring Paper Mill Sludge and Sugarcane Bagasse as Carrier Matrix in Solid State Fermentation for Carotenoid Pigment Production by Planococcus sp. TRC1

Authors: Subhasree Majumdar, Sovan Dey, Sayari Mukherjee, Sourav Dutta, Dalia Dasgupta Mandal

Abstract:

Bacterial isolates from Planococcus genus are known for the production of yellowish orange pigment that belongs to the carotenoid family. These pigments are of immense pharmacological importance as antioxidant, anticancer, eye and liver protective agent, etc. The production of this pigment in a cost effective manner is a challenging task. The present study explored paper mill sludge (PMS), a solid lignocellulosic waste generated in large quantities from pulp and paper mill industry as a substrate for carotenoid pigment production by Planococcus sp. TRC1. PMS was compared in terms of efficacy with sugarcane bagasse, which is a highly explored substrate for valuable product generation via solid state fermentation. The results showed that both the biomasses yielded the highest carotenoid during 48 hours of incubation, 31.6 mg/gm and 42.1 mg/gm for PMS and bagasse respectively. Compositional alterations of both the biomasses showed reduction in lignin, hemicellulose and cellulose content by 41%, 15%, 1% for PMS and 38%, 25% and 6% for sugarcane bagasse after 72 hours of incubation. Structural changes in the biomasses were examined by FT-IR, FESEM, and XRD which further confirmed modification of solid biomasses by bacterial isolate. This study revealed the potential of PMS to act as cheap substrate for carotenoid pigment production by Planococcus sp. TRC1, as it showed a significant production in comparison to sugarcane bagasse which gave only 1.3 fold higher production than PMS. Delignification of PMS by TRC1 during pigment production is another important finding for the reuse of this waste from the paper industry.

Keywords: carotenoid, lignocellulosic, paper mill sludge, Planococcus sp. TRC1, solid state fermentation, sugarcane bagasse

Procedia PDF Downloads 222
603 Liquid Illumination: Fabricating Images of Fashion and Architecture

Authors: Sue Hershberger Yoder, Jon Yoder

Abstract:

“The appearance does not hide the essence, it reveals it; it is the essence.”—Jean-Paul Sartre, Being and Nothingness Three decades ago, transarchitect Marcos Novak developed an early form of algorithmic animation he called “liquid architecture.” In that project, digitally floating forms morphed seamlessly in cyberspace without claiming to evolve or improve. Change itself was seen as inevitable. And although some imagistic moments certainly stood out, none was hierarchically privileged over another. That project challenged longstanding assumptions about creativity and artistic genius by posing infinite parametric possibilities as inviting alternatives to traditional notions of stability, originality, and evolution. Through ephemeral processes of printing, milling, and projecting, the exhibition “Liquid Illumination” destabilizes the solid foundations of fashion and architecture. The installation is neither worn nor built in the conventional sense, but—like the sensual art forms of fashion and architecture—it is still radically embodied through the logics and techniques of design. Appearances are everything. Surface pattern and color are no longer understood as minor afterthoughts or vapid carriers of dubious content. Here, they become essential but ever-changing aspects of precisely fabricated images. Fourteen silk “colorways” (a term from the fashion industry) are framed selections from ongoing experiments with intricate pattern and complex color configurations. Whether these images are printed on fabric, milled in foam, or illuminated through projection, they explore and celebrate the untapped potentials of the surficial and superficial. Some components of individual prints appear to float in front of others through stereoscopic superimpositions; some figures appear to melt into others due to subtle changes in hue without corresponding changes in value; and some layers appear to vibrate via moiré effects that emerge from unexpected pattern and color combinations. The liturgical atmosphere of Liquid Illumination is intended to acknowledge that, like the simultaneously sacred and superficial qualities of rose windows and illuminated manuscripts, artistic and religious ideologies are also always malleable. The intellectual provocation of this paper pushes the boundaries of current thinking concerning viable applications for fashion print designs and architectural images—challenging traditional boundaries between fine art and design. The opportunistic installation of digital printing, CNC milling, and video projection mapping in a gallery that is normally reserved for fine art exhibitions raises important questions about cultural/commercial display, mass customization, digital reproduction, and the increasing prominence of surface effects (color, texture, pattern, reflection, saturation, etc.) across a range of artistic practices and design disciplines.

Keywords: fashion, print design, architecture, projection mapping, image, fabrication

Procedia PDF Downloads 79
602 Structural Characterization of the 3D Printed Silicon Carbon/Carbon Fibers Nanocomposites

Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao

Abstract:

A process that utilizes a combination of additive manufacturing (AM), a preceramic polymer, and a chopped carbon fiber precursorto fabricate Silicon Carbon/ Carbon fibers (SiC/C) composites have been developed. The study has shown a promising, cost-effective, and efficient route to fabricate complex SiC/C composites using additive manufacturing. A key part of this effort was the mapping of the material’s microstructure through the thickness of the composite. Microstructural features in the pyrolyzed composites through the successive AM layers, such as defects, crystal size and their distribution, interatomic spacing, chemical bonds, were investigated using high-resolution scanning and transmission electron microscopy. As a result, the microstructure developed in SiC/C composites after printing, cure, and pyrolysis has been successfully mapped through the thickness of the derived composites. Dense and nearly defect-free parts after polymer to ceramic conversion were observed. The ceramic matrix composite displayed three coexisting phases, including silicon carbide, silicon oxycarbide, and turbostratic carbon. Lattice fringes imaging and X-Ray Diffraction analysis showed well-defined SiC and turbostratic carbon features. The cross-sectional mapping of the printed-then-pyrolyzed structures has confirmed consistent structural and chemical features within the internal layers of the AM parts. Noteworthy, however, is that a crust-like area with high crystallinity has been observed in the first and last external layers. Not only do these crust-like regions have structural characteristics distinct from the internal layers, but they also have elemental distributions different than the internal layers.

Keywords: SiC, preceramic polymer, additive manufacturing, ceramic

Procedia PDF Downloads 60
601 Design of Two-Channel Quadrature Mirror Filter Banks Using a Transformation Approach

Authors: Ju-Hong Lee, Yi-Lin Shieh

Abstract:

Two-dimensional (2-D) quadrature mirror filter (QMF) banks have been widely considered for high-quality coding of image and video data at low bit rates. Without implementing subband coding, a 2-D QMF bank is required to have an exactly linear-phase response without magnitude distortion, i.e., the perfect reconstruction (PR) characteristics. The design problem of 2-D QMF banks with the PR characteristics has been considered in the literature for many years. This paper presents a transformation approach for designing 2-D two-channel QMF banks. Under a suitable one-dimensional (1-D) to two-dimensional (2-D) transformation with a specified decimation/interpolation matrix, the analysis and synthesis filters of the QMF bank are composed of 1-D causal and stable digital allpass filters (DAFs) and possess the 2-D doubly complementary half-band (DC-HB) property. This facilitates the design problem of the two-channel QMF banks by finding the real coefficients of the 1-D recursive DAFs. The design problem is formulated based on the minimax phase approximation for the 1-D DAFs. A novel objective function is then derived to obtain an optimization for 1-D minimax phase approximation. As a result, the problem of minimizing the objective function can be simply solved by using the well-known weighted least-squares (WLS) algorithm in the minimax (L∞) optimal sense. The novelty of the proposed design method is that the design procedure is very simple and the designed 2-D QMF bank achieves perfect magnitude response and possesses satisfactory phase response. Simulation results show that the proposed design method provides much better design performance and much less design complexity as compared with the existing techniques.

Keywords: Quincunx QMF bank, doubly complementary filter, digital allpass filter, WLS algorithm

Procedia PDF Downloads 213
600 Pattern of Structural Relationships of Quality of Life Based on Anxiety and Rumination Mediated by Personality Types in Psoriasis Patients

Authors: Alireza Monzavi Chaleshtari, Mahnaz Aliakbari Dehkordi, Afsaneh Bayat, Amin Asadi Hieh

Abstract:

The purpose of this research was to investigate the pattern of structural relationships of quality of life based on anxiety and rumination with the mediation of personality types in psoriasis patients. Methods: The community of this research is made up of the members of Psoriasis Society of Iran - Sadafak. In the sample size of 2266 people, according to Morgan's table, 327 people will be considered as a statistical sample. To assess the quality of life, the 26-item questionnaire of the World Health Organization, anxiety with software SPSS and appropriate to the conditions were used to test the hypotheses, correlation matrix tests and factor analysis. Results: There is a relationship between quality of life with anxiety and rumination in psoriasis patients. The mediating role of personality types showed Psychotic annoyance has a significant relationship with anxiety (physical and emotional symptoms). Extraversion, agreeing and being conscientious play a mediating role in a significant relationship between quality of life in psoriasis patients. Also, irritability plays a mediating role in a meaningful relationship between rumination in psoriasis patients. Conclusion: According to the obtained results, it can be said that psoriasis patients with physical and emotional symptoms of anxiety and rumination have a low quality of life. Also, negative personality types (perfectionism and neuroticism) can cause or aggravate skin disorders in these patients. In other words, psychological factors are considered predisposing, accelerating and perpetuating factors in psoriasis skin disorders, so it is suggested to pay attention to these variables in the success of treating patients with psoriasis.

Keywords: quality of life, anxiety, rumination, personality types, psoriasis.

Procedia PDF Downloads 51
599 Atom Probe Study of Early Stage of Precipitation on Binary Al-Li, Al-Cu Alloys and Ternary Al-Li-Cu Alloys

Authors: Muna Khushaim

Abstract:

Aluminum-based alloys play a key role in modern engineering, especially in the aerospace industry. Introduction of solute atoms such as Li and Cu is the main approach to improve the strength in age-hardenable Al alloys via the precipitation hardening phenomenon. Knowledge of the decomposition process of the microstructure during the precipitation reaction is particularly important for future technical developments. The objective of this study is to investigate the nano-scale chemical composition in the Al-Cu, Al-Li and Al-Li-Cu during the early stage of the precipitation sequence and to describe whether this compositional difference correlates with variations in the observed precipitation kinetics. Comparing the random binomial frequency distribution and the experimental frequency distribution of concentrations in atom probe tomography data was used to investigate the early stage of decomposition in the different binary and ternary alloys which were experienced different heat treatments. The results show that an Al-1.7 at.% Cu alloy requires a long ageing time of approximately 8 h at 160 °C to allow the diffusion of Cu atoms into Al matrix. For the Al-8.2 at.% Li alloy, a combination of both the natural ageing condition (48 h at room temperature) and a short artificial ageing condition (5 min at 160 °C) induces increasing on the number density of the Li clusters and hence increase number of precipitated δ' particles. Applying this combination of natural ageing and short artificial ageing conditions onto the ternary Al-4 at.% Li-1.7 at.% Cu alloy induces the formation of a Cu-rich phase. Increasing the Li content in the ternary alloy up to 8 at.% and increasing the ageing time to 30 min resulted in the precipitation processes ending with δ' particles. Thus, the results contribute to the understanding of Al-alloy design.

Keywords: aluminum alloy, atom probe tomography, early stage, decomposition

Procedia PDF Downloads 328
598 Drivers of Satisfaction and Dissatisfaction in Camping Tourism: A Case Study from Croatia

Authors: Darko Prebežac, Josip Mikulić, Maja Šerić, Damir Krešić

Abstract:

Camping tourism is recognized as a growing segment of the broader tourism industry, currently evolving from an inexpensive, temporary sojourn in a rural environment into a highly fragmented niche tourism sector. The trends among public-managed campgrounds seem to be moving away from rustic campgrounds that provide only a tent pad and a fire ring to more developed facilities that offer a range of different amenities, where campers still search for unique experiences that go above the opportunity to experience nature and social interaction. In addition, while camping styles and options changed significantly over the last years, coastal camping in particular became valorized as is it regarded with a heightened sense of nostalgia. Alongside this growing interest in the camping tourism, a demand for quality servicing infrastructure emerged in order to satisfy the wide variety of needs, wants, and expectations of an increasingly demanding traveling public. However, camping activity in general and quality of camping experience and campers’ satisfaction in particular remain an under-researched area of the tourism and consumption behavior literature. In this line, very few studies addressed the issue of quality product/service provision in satisfying nature based tourists and in driving their future behavior with respect to potential re-visitation and recommendation intention. The present study thus aims to investigate the drivers of positive and negative campsite experience using the case of Croatia. Due to the well-preserved nature and indented coastline, camping tourism has a long tradition in Croatia and represents one of the most important and most developed tourism products. During the last decade the number of tourist overnights in Croatian camps has increased by 26% amounting to 16.5 million in 2014. Moreover, according to Eurostat the market share of campsites in the EU is around 14%, indicating that the market share of Croatian campsites is almost double large compared to the EU average. Currently, there are a total of 250 camps in Croatia with approximately 75.8 thousands accommodation units. It is further noteworthy that Croatian camps have higher average occupancy rates and a higher average length of stay as compared to the national average of all types of accommodation. In order to explore the main drivers of positive and negative campsite experiences, this study uses principal components analysis (PCA) and an impact-asymmetry analysis (IAA). Using the PCA, first the main dimensions of the campsite experience are extracted in an exploratory manner. Using the IAA, the extracted factors are investigated for their potentials to create customer delight and/or frustration. The results provide valuable insight to both researchers and practitioners regarding the understanding of campsite satisfaction.

Keywords: Camping tourism, campsite, impact-asymmetry analysis, satisfaction

Procedia PDF Downloads 172
597 Development of Drug Delivery Systems for Endoplasmic Reticulum Amino Peptidases Modulators Using Electrospinning

Authors: Filipa Vasconcelos

Abstract:

The administration of endoplasmic reticulum amino peptidases (ERAP1 or ERAP2) inhibitors can be used for therapeutic approaches against cancer and auto-immune diseases. However, one of the main shortcomings of drug delivery systems (DDS) is associated with the drug off-target distribution, which can lead to an increase in its side effects on the patient’s body. To overcome such limitations, the encapsulation of four representative compounds of ERAP inhibitors into Polycaprolactone (PCL), Polyvinyl-alcohol (PVA), crosslinked PVA, and PVA with nanoparticles (liposomes) electrospun fibrous meshes is proposed as a safe and controlled drug release system. The use of electrospun fibrous meshes as a DDS allows efficient solvent evaporation giving limited time to the encapsulated drug to recrystallize, continuous delivery of the drug while the fibers degrade, prevention of initial burst release (sustained release), tunable dosages, and the encapsulation of other agents. This is possible due to the fibers' small diameters and resemblance to the extracellular matrix (confirmed by scanning electron microscopy results), high specific surface area, and good mechanical strength/stability. Furthermore, release studies conducted on PCL, PVA, crosslinked PVA, and PVA with nanoparticles (liposomes) electrospun fibrous meshes with each of the ERAP compounds encapsulated demonstrated that they were capable of releasing >60%, 50%, 40%, and 45% of the total ERAP concentration, respectively. Fibrous meshes with ERAP_E compound encapsulated achieved higher released concentrations (75.65%, 62.41%, 56.05%, and 65.39%, respectively). Toxicity studies of fibrous meshes with encapsulated compounds are currently being accessed in vitro, as well as pharmacokinetics and dynamics studies. The last step includes the implantation of the drug-loaded fibrous meshes in vivo.

Keywords: drug delivery, electrospinning, ERAP inhibitors, liposomes

Procedia PDF Downloads 88
596 Preservation of Phenytoin and Sodium Valproate Induced Bone Loss by Raloxifene through Modulating Serum Estradiol and TGF-β3 Content in Bone of Female Mice

Authors: Divya Vohora, Md. Jamir Anwar

Abstract:

Antiepileptic drugs (AEDs)-induced adverse consequences on bone are now well recognized. Despite this, there is limited data on the effect of anti-osteoporotic therapies on AEDs-induced bone loss. Both phenytoin (PHT) and sodium valproate (SVP) inhibit human aromatase enzyme and stimulate microsomal catabolism of oestrogens. Estrogen deficiency states are known to reduce the deposition of transforming growth factor-β (TGF-β3), a bone matrix protein, having anti-osteoclastic property. Thus, an attempt was made to investigate the effect of raloxifene, a selective oestrogen receptor modulator, in comparison with CVD supplementation, on PHT and SVP-induced alterations in bone in mice. Further, the effect of raloxifene on seizures and on the antiepileptic efficacy of AEDs was also investigated. Swiss strains of female mice were treated with PHT (35 mg/kg, p.o.) and SVP (300 mg/kg, p.o.) for 120 days to induce bone loss as evidenced by reduced bone mineral density (BMD) and altered bone turnover markers in lumbar bones (alkaline phosphatase, tartarate resistant acid phosphatase, hydroxyproline) and urine (calcium). The bone loss was accompanied by reduced serum estradiol levels and bone TGF-β3 content. Preventive and curative treatment with raloxifene ameliorated bony alterations and was more effective than CVD. Deprived estrogen levels (that in turn reduced lumbar TGF-β3 content) following PHT and SVP, thus, might represent one of the various mechanisms of AEDs-induced bone loss. Raloxifene preserved the bony changes without interfering with their antiepileptic efficacy, and hence raloxifene could be a potential therapeutic option in the management of PHT and SVP-induced bone disease if clinically approved.

Keywords: antiepileptic drugs, osteoporosis, raloxifene, TGF-β3

Procedia PDF Downloads 328
595 Effect of Cryogenic Treatment on Hybrid Natural Fiber Reinforced Polymer Composites

Authors: B. Vinod, L. J. Sudev

Abstract:

Natural fibers as reinforcement in polymer matrix material are gaining lot of attention in recent years. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites are gaining importance. These materials need to possess good mechanical and physical properties at cryogenic temperatures to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature.

Keywords: liquid nitrogen temperature, polymer composite, tensile properties, flexural properties

Procedia PDF Downloads 379
594 Vibration Analysis of Stepped Nanoarches with Defects

Authors: Jaan Lellep, Shahid Mubasshar

Abstract:

A numerical solution is developed for simply supported nanoarches based on the non-local theory of elasticity. The nanoarch under consideration has a step-wise variable cross-section and is weakened by crack-like defects. It is assumed that the cracks are stationary and the mechanical behaviour of the nanoarch can be modeled by Eringen’s non-local theory of elasticity. The physical and thermal properties are sensitive with respect to changes of dimensions in the nano level. The classical theory of elasticity is unable to describe such changes in material properties. This is because, during the development of the classical theory of elasticity, the speculation of molecular objects was avoided. Therefore, the non-local theory of elasticity is applied to study the vibration of nanostructures and it has been accepted by many researchers. In the non-local theory of elasticity, it is assumed that the stress state of the body at a given point depends on the stress state of each point of the structure. However, within the classical theory of elasticity, the stress state of the body depends only on the given point. The system of main equations consists of equilibrium equations, geometrical relations and constitutive equations with boundary and intermediate conditions. The system of equations is solved by using the method of separation of variables. Consequently, the governing differential equations are converted into a system of algebraic equations whose solution exists if the determinant of the coefficients of the matrix vanishes. The influence of cracks and steps on the natural vibration of the nanoarches is prescribed with the aid of additional local compliance at the weakened cross-section. An algorithm to determine the eigenfrequencies of the nanoarches is developed with the help of computer software. The effects of various physical and geometrical parameters are recorded and drawn graphically.

Keywords: crack, nanoarches, natural frequency, step

Procedia PDF Downloads 115
593 Structure Domains Tuning Magnetic Anisotropy and Motivating Novel Electric Behaviors in LaCoO₃ Films

Authors: Dechao Meng, Yongqi Dong, Qiyuan Feng, Zhangzhang Cui, Xiang Hu, Haoliang Huang, Genhao Liang, Huanhua Wang, Hua Zhou, Hawoong Hong, Jinghua Guo, Qingyou Lu, Xiaofang Zhai, Yalin Lu

Abstract:

Great efforts have been taken to reveal the intrinsic origins of emerging ferromagnetism (FM) in strained LaCoO₃ (LCO) films. However, some macro magnetic performances of LCO are still not well understood and even controversial, such as magnetic anisotropy. Determining and understanding magnetic anisotropy might help to find the true causes of FM in turn. Perpendicular magnetic anisotropy (PMA) was the first time to be directly observed in high-quality LCO films with different thickness. The in-plane (IP) and out of plane (OOP) remnant magnetic moment ratio of 30 unit cell (u.c.) films is as large as 20. The easy axis lays in the OOP direction with an IP/OOP coercive field ratio of 10. What's more, the PMA could be simply tuned by changing the thickness. With the thickness increases, the IP/OOP magnetic moment ratio remarkably decrease with magnetic easy axis changing from OOP to IP. Such a huge and tunable PMA performance exhibit strong potentials in fundamental researches or applications. What causes PMA is the first concern. More OOP orbitals occupation may be one of the micro reasons of PMA. A cluster-like magnetic domain pattern was found in 30 u.c. with no obvious color contrasts, similar to that of LaAlO₃/SrTiO₃ films. And the nanosize domains could not be totally switched even at a large OOP magnetic field of 23 T. It indicates strong IP characters or none OOP magnetism of some clusters. The IP magnetic domains might influence the magnetic performance and help to form PMA. Meanwhile some possible nonmagnetic clusters might be the reason why the measured moments of LCO films are smaller than the calculated values 2 μB/Co, one of the biggest confusions in LCO films.What tunes PMA seems much more interesting. Totally different magnetic domain patterns were found in 180 u.c. films with cluster magnetic domains surrounded by < 110 > cross-hatch lines. These lines were regarded as structure domain walls (DWs) determined by 3D reciprocal space mapping (RSM). Two groups of in-plane features with fourfold symmetry were observed near the film diffraction peaks in (002) 3D-RSM. One is along < 110 > directions with a larger intensity, which is well match the lines on the surfaces. The other is much weaker and along < 100 > directions, which is from the normal lattice titling of films deposited on cubic substrates. The < 110 > domain features obtained from (103) and (113) 3D-RSMs exhibit similar evolution of the DWs percentages and magnetic behavior. Structure domains and domain walls are believed to tune PMA performances by transform more IP magnetic moments to OOP. Last but not the least, thick films with lots of structure domains exhibit different electrical transport behaviors. A metal-to-insulator transition (MIT) and an angular dependent negative magnetic resistivity were observed near 150 K, higher than FM transition temperature but similar to that of spin-orbital coupling related 1/4 order diffraction peaks.

Keywords: structure domain, magnetic anisotropy, magnetic domain, domain wall, 3D-RSM, strain

Procedia PDF Downloads 139
592 Heterogeneous Photocatalytic Degradation of Ibuprofen in Ultrapure Water, Municipal and Pharmaceutical Industry Wastewaters Using a TiO2/UV-LED System

Authors: Nabil Jallouli, Luisa M. Pastrana-Martínez, Ana R. Ribeiro, Nuno F. F. Moreira, Joaquim L. Faria, Olfa Hentati, Adrián M. T. Silva, Mohamed Ksibi

Abstract:

Degradation and mineralization of ibuprofen (IBU) were investigated using Ultraviolet (UV) Light Emitting Diodes (LEDs) in TiO2 photocatalysis. Samples of ultrapure water (UP) and a secondary treated effluent of a municipal wastewater treatment plant (WWTP), both spiked with IBU, as well as a highly concentrated IBU (230 mgL-1) pharmaceutical industry wastewater (PIWW), were tested in the TiO2/UV-LED system. Three operating parameters, namely, pH, catalyst load and number of LEDs were optimized. The process efficiency was evaluated in terms of IBU removal using high performance liquid chromatography (HPLC) and ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Additionally, the mineralization was investigated by determining the dissolved organic carbon (DOC) content. The chemical structures of transformation products were proposed based on the data obtained using liquid chromatography with a high resolution mass spectrometer ion trap/time-of-flight (LC-MS-IT-TOF). A possible pathway of IBU degradation was accordingly proposed. Bioassays were performed using the marine bacterium Vibrio fischeri to evaluate the potential acute toxicity of original and treated wastewaters. TiO2 heterogeneous photocatalysis was efficient to remove IBU from UP and from PIWW, and less efficient in treating the wastewater from the municipal WWTP. The acute toxicity decreased by ca. 40% after treatment, regardless of the studied matrix.

Keywords: acute toxicity, Ibuprofen, UV-LEDs, wastewaters

Procedia PDF Downloads 237
591 Evaluation of Gene Expression after in Vitro Differentiation of Human Bone Marrow-Derived Stem Cells to Insulin-Producing Cells

Authors: Mahmoud M. Zakaria, Omnia F. Elmoursi, Mahmoud M. Gabr, Camelia A. AbdelMalak, Mohamed A. Ghoneim

Abstract:

Many protocols were publicized for differentiation of human mesenchymal stem cells (MSCS) into insulin-producing cells (IPCs) in order to excrete insulin hormone ingoing to treat diabetes disease. Our aim is to evaluate relative gene expression for each independent protocol. Human bone marrow cells were derived from three volunteers that suffer diabetes disease. After expansion of mesenchymal stem cells, differentiation of these cells was done by three different protocols (the one-step protocol was used conophylline protein, the two steps protocol was depending on trichostatin-A, and the three-step protocol was started by beta-mercaptoethanol). Evaluation of gene expression was carried out by real-time PCR: Pancreatic endocrine genes, transcription factors, glucose transporter, precursor markers, pancreatic enzymes, proteolytic cleavage, extracellular matrix and cell surface protein. Quantitation of insulin secretion was detected by immunofluorescence technique in 24-well plate. Most of the genes studied were up-regulated in the in vitro differentiated cells, and also insulin production was observed in the three independent protocols. There were some slight increases in expression of endocrine mRNA of two-step protocol and its insulin production. So, the two-step protocol was showed a more efficient in expressing of pancreatic endocrine genes and its insulin production than the other two protocols.

Keywords: mesenchymal stem cells, insulin producing cells, conophylline protein, trichostatin-A, beta-mercaptoethanol, gene expression, immunofluorescence technique

Procedia PDF Downloads 197
590 Prioritizing the Most Important Information from Contractors’ BIM Handover for Firefighters’ Responsibilities

Authors: Akram Mahdaviparsa, Tamera McCuen, Vahideh Karimimansoob

Abstract:

Fire service is responsible for protecting life, assets, and natural resources from fire and other hazardous incidents. Search and rescue in unfamiliar buildings is a vital part of firefighters’ responsibilities. Providing firefighters with precise building information in an easy-to-understand format is a potential solution for mitigating the negative consequences of fire hazards. The negative effect of insufficient knowledge about a building’s indoor environment impedes firefighters’ capabilities and leads to lost property. A data rich building information modeling (BIM) is a potentially useful source in three-dimensional (3D) visualization and data/information storage for fire emergency response. Therefore, this research’s purpose is prioritizing the required information for firefighters from the most important information to the least important. A survey was carried out with firefighters working in the Norman Fire Department to obtain the importance of each building information item. The results show that “the location of exit doors, windows, corridors, elevators, and stairs”, “material of building elements”, and “building data” are the three most important information specified by firefighters. The results also implied that the 2D model of architectural, structural and way finding is more understandable in comparison with the 3D model, while the 3D model of MEP system could convey more information than the 2D model. Furthermore, color in visualization can help firefighters to understand the building information easier and quicker. Sufficient internal consistency of all responses was proven through developing the Pearson Correlation Matrix and obtaining Cronbach’s alpha of 0.916. Therefore, the results of this study are reliable and could be applied to the population.

Keywords: BIM, building fire response, ranking, visualization

Procedia PDF Downloads 119
589 Electrochemical Coordination Polymers of Copper(II) Synthesis by Using Rigid and Felexible Ligands

Authors: P. Mirahmadpour, M. H. Banitaba, D. Nematollahi

Abstract:

The chemistry of coordination polymers in recent years has grown exponentially not only because of their interesting architectures but also due to their various technical applications in many fields including ion exchange, chemical catalysis, small molecule separations, and drug release. The use of bridging ligands for the controlled self-assembly of one, two or three dimensional metallo-supramolecular species is the subject of serious study in last decade. Numerous different synthetic methods have been offered for the preparation of coordination polymers such as (a) diffusion from the gas phase, (b) slow diffusion of the reactants into a polymeric matrix, (c) evaporation of the solvent at ambient or reduced temperatures, (d) temperature controlled cooling, (e) precipitation or recrystallisation from a mixture of solvents and (f) hydrothermal synthesis. The electrosynthetic process suggested several advantages over conventional approaches. A general advantage of electrochemical synthesis is that it allows synthesis under milder conditions than typical solvothermal or microwave synthesis. In this work we have introduced a simple electrochemical method for growing metal coordination polymers based on copper with a flexible 2,2’-thiodiacetic acid (TDA) and rigid 1,2,4,5-benzenetetracarboxylate (BTC) ligands. The structure of coordination polymers were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), elemental analysis, thermal gravimetric (TG) and differential thermal analyses (DTA). The single-crystal X-ray diffraction analysis revealed that different conformations of the ligands and different coordination modes of the carboxylate group as well as different coordination geometries of the copper atoms. Electrochemical synthesis of coordination polymers has different advantages such as faster synthesis at lower temperature in compare with conventional chemical methods and crystallization of desired materials in a single synthetic step.

Keywords: 1, 2, 4, 5-benzenetetracarboxylate, coordination polymer, copper, 2, 2’-thiodiacetic acid

Procedia PDF Downloads 189
588 Importance-Performance Analysis of Volunteer Tourism in Ethiopia: Host and Guest Case Study

Authors: Zita Fomukong Andam

Abstract:

With a general objective of evaluating the importance and Performance attributes of Volunteer Tourism in Ethiopia and also specifically intending to rank out the importance to evaluate the competitive performance of Ethiopia to host volunteer tourists, laying them in a four quadrant grid and conduct the IPA Iso-Priority Line comparison of Volunteer Tourism in Ethiopia. From hosts and guests point of view, a deeper research discourse was conducted with a randomly selected 384 guests and 165 hosts in Ethiopia. Findings of the discourse through an exploratory research design on both the hosts and the guests confirm that attributes of volunteer tourism generally and marginally fall in the South East quadrant of the matrix where their importance is relatively higher than their performance counterpart, also referred as ‘Concentrate Here’ quadrant. The fact that there are more items in this particular place in both the host and guest study, where they are highly important, but their relative performance is low, strikes a message that the country has more to do. Another focus point of this study is mapping the scores of attributes regarding the guest and host importance and performance against the Iso-Priority Line. Results of Iso-Priority Line Analysis of the IPA of Volunteer Tourism in Ethiopia from the Host’s Perspective showed that there are no attributes where their importance is exactly the same as their performance. With this being found, the fact that this research design inhabits many characters of exploratory nature, it is not confirmed research output. This paper reserves from prescribing anything to the applied world before further confirmatory research is conducted on the issue and rather calls the scientific community to augment this study through comprehensive, exhaustive, extensive and extended works of inquiry in order to get a refined set of recommended items to the applied world.

Keywords: volunteer tourism, competitive performance importance-performance analysis, Ethiopian tourism

Procedia PDF Downloads 206
587 Stock Market Integration of Emerging Markets around the Global Financial Crisis: Trends and Explanatory Factors

Authors: Najlae Bendou, Jean-Jacques Lilti, Khalid Elbadraoui

Abstract:

In this paper, we examine stock market integration of emerging markets around the global financial turmoil of 2007-2008. Following Pukthuanthong and Roll (2009), we measure the integration of 46 emerging countries using the adjusted R-square from the regression of each country's daily index returns on global factors extracted from the covariance matrix computed using dollar-denominated daily index returns of 17 developed countries. Our sample surrounds the global financial crisis and ranges between 2000 and 2018. We analyze results using four cohorts of emerging countries: East Asia & Pacific and South Asia, Europe & Central Asia, Latin America & Caribbean, Middle East & Africa. We find that the level of integration of emerging countries increases at the commencement of the crisis and during the booming phase of the business cycles. It reaches a maximum point in the middle of the crisis and then tends to revert to its pre-crisis level. This pattern tends to be common among the four geographic zones investigated in this study. Finally, we investigate the determinants of stock market integration of emerging countries in our sample using panel regressions. Our results suggest that the degree of stock market integration of these countries should be put into perspective by some macro-economic factors, such as the size of the equity market, school enrollment rate, international liquidity level, stocks traded volume, tax revenue level, imports and exports volumes.

Keywords: correlations, determinants of integration, diversification, emerging markets, financial crisis, integration, markets co-movement, panel regressions, r-square, stock markets

Procedia PDF Downloads 164
586 Challenges of Sustainable Development of Small and Medium-Sized Enterprises in Georgia

Authors: Kharaishvili Eteri

Abstract:

The article highlights the importance of small and medium-sized enterprises in achieving the goals of sustainable development of the economy and increasing the well-being of the population. The opinion is put forward that it is necessary to adapt the activities of small and medium-sized firms in Georgia to sustainable business models. Therefore, it is important to identify the challenges that will ensure compliance with the goals and requirements of sustainable development of small and mediumsized enterprises. Objectives. The goal of the study is to reveal the challenges of sustainable development in small and medium-sized enterprises in Georgia and to develop recommendations for strategic development opportunities. Methodologies The challenges of sustainable development of small and medium-sized enterprises are investigated with the following methodology: bibliographic research of scientific works and reports of organizations is carried out; Based on the grouping of sustainable development goals, the performance indicators of these goals are studied; Differences with respect to the corresponding indicators of European countries are determined by the comparison method; The matrix scheme establishes the conditions and tools for sustainable development; Challenges of sustainable development are identified by factor analysis. Contributions Trends in the sustainable development of small and medium-sized enterprises are studied from the point of view of economic, social and environmental factors; To ensure sustainability, the conditions and tools for sustainable development are established (certified supply chains and global markets, allocation of financial resources necessary for sustainable development, proper public procurement, highly qualified workforce, etc.); Several main challenges have been identified in the sustainable development of small and medium-sized enterprises, including: limited internal resources; Institutional factors, especially vague and imperfect regulations, bureaucracy; low level of investments; Low level of qualification of human capital and others.

Keywords: small and medium-sized enterprises, sustainable development, conditions of sustainable development, strategic directions of sustainable development.

Procedia PDF Downloads 81