Search results for: carbon emissions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3802

Search results for: carbon emissions

1402 Biogas Separation, Alcohol Amine Solutions

Authors: Jingxiao Liang, David Rooneyman

Abstract:

Biogas, which is a valuable renewable energy source, can be produced by anaerobic fermentation of agricultural waste, manure, municipal waste, plant material, sewage, green waste, or food waste. It is composed of methane (CH4) and carbon dioxide (CO2) but also contains significant quantities of undesirable compounds such as hydrogen sulfide (H2S), ammonia (NH3), and siloxanes. Since typical raw biogas contains 25–45% CO2, The requirements for biogas quality depend on its further application. Before biogas is being used more efficiently, CO2 should be removed. One of the existing options for biogas separation technologies is based on chemical absorbents, in particular, mono-, di- and tri-alcohol amine solutions. Such amine solutions have been applied as highly efficient CO2 capturing agents. The benchmark in this experiment is N-methyldiethanolamine (MDEA) with piperazine (PZ) as an activator, from CO2 absorption Isotherm curve, optimization conditions are collected, such as activator percentage, temperature etc. This experiment makes new alcohol amines, which could have the same CO2 absorbing ability as activated MDEA, using glycidol as one of reactant, the result is quite satisfying.

Keywords: biogas, CO2, MDEA, separation

Procedia PDF Downloads 603
1401 Effects of CFRP Confinement on PCC and Glass Fiber Reinforced Concrete

Authors: Muhammad Jahangeer Munir, Liaqat Ali Qureshi, Junaid Ahmed

Abstract:

This paper presents the investigation regarding use of glass fibers in structural concrete members and determining the behavior of normal PCC, GFRC and retrofitted GFRC under different tests performed in the laboratory. Effect of retrofitting on the GFRC & PCC was investigated by using three patterns of CFRP wrapping. Properties like compressive, split tensile and flexural strength of normal GFRC and retrofitted GFRC were investigated and compared with their PCC counterparts. It was found that GFRC has more compressive strength as compared to PCC. At lower confinement pressures PCC behaves better than GFRC. Confinement efficiency was lower in GFRC as compared to PCC in terms of Split tensile strength. In case of GFRC all the patterns of wrapped CFRP strips showed more strength than their PCC counterparts.

Keywords: carbon fiber reinforced polymers, confinement, glass fibers, retrofitting

Procedia PDF Downloads 580
1400 Flowsheet Development, Simulation and Optimization of Carbon-Di-Oxide Removal System at Natural Gas Reserves by Aspen–Hysys Process Simulator

Authors: Mohammad Ruhul Amin, Nusrat Jahan

Abstract:

Natural gas is a cleaner fuel compared to the others. But it needs some treatment before it is in a state to be used. So natural gas purification is an integral part of any process where natural gas is used as raw material or fuel. There are several impurities in natural gas that have to be removed before use. CO2 is one of the major contaminants. In this project we have removed CO2 by amine process by using MEA solution. We have built up the whole amine process for removing CO2 in Aspen Hysys and simulated the process. At the end of simulation we have got very satisfactory results by using MEA solution for the removal of CO2. Simulation result shows that amine absorption process enables to reduce CO2 content from NG by 58%. HYSYS optimizer allowed us to get a perfect optimized plant. After optimization the profit of existing plant is increased by 2.34 %.Simulation and optimization by Aspen-HYSYS simulator makes available us to enormous information which will help us to further research in future.

Keywords: Aspen–Hysys, CO2 removal, flowsheet development, MEA solution, natural gas optimization

Procedia PDF Downloads 472
1399 Impact of the Energy Transition on Security of Supply - A Case Study of Vietnam Power System in 2030

Authors: Phuong Nguyen, Trung Tran

Abstract:

Along with the global ongoing energy transition, Vietnam has indicated a strong commitment in the last COP events on the zero-carbon emission target. However, it is a real challenge for the nation to replace fossil-fired power plants by a significant amount of renewable energy sources (RES) while maintaining security of supply. The unpredictability and variability of RES would cause technical issues for supply-demand balancing, network congestions, system balancing, among others. It is crucial to take these into account while planning the future grid infrastructure. This study will address both generation and transmission adequacy and reveal a comprehensive analysis about the impact of ongoing energy transition on the development of Vietnam power system in 2030. This will provide insight for creating an secure, stable, and affordable pathway for the country in upcoming years.

Keywords: generation adequacy, transmission adequacy, security of supply, energy transition

Procedia PDF Downloads 66
1398 Evaluating the Effect of Splitting Wind Farms on Power Output

Authors: Nazanin Naderi, Milton Smith

Abstract:

Since worldwide demand for renewable energy is increasing rapidly because of the climate problem and the limitation of fossil fuels, technologies of alternative energy sources have been developed and the electric power network now includes renewable energy resources such as wind energy. Because of the huge advantages that wind energy has, like reduction in natural gas use, price pressure, emissions of greenhouse gases and other atmospheric pollutants, electric sector water consumption and many other contributions to the nation’s economy like job creation it has got too much attention these days from different parts of the world especially in the United States which is trying to provide 20% of the nation’s energy from wind by 2030. This study is trying to evaluate the effect of splitting wind farms on power output. We are trying to find if we can get more output by installing wind turbines in different sites rather than installing all wind turbines in one site. Five potential sites in Texas have been selected as a case study and two years wind data has been gathered for these sites. Wind data are analyzed and effect of correlation between sites on power output has been evaluated. Standard deviation and autocorrelation effect has also been considered for this study. The paper has been organized as follows: After the introduction the second section gives a brief overview of wind analysis. The third section addresses the case study and evaluates correlation between sites, auto correlation of sites and standard deviation of power output. In section four we describe the results.

Keywords: auto correlation, correlation between sites, splitting wind farms, power output, standard deviation

Procedia PDF Downloads 573
1397 NOx Prediction by Quasi-Dimensional Combustion Model of Hydrogen Enriched Compressed Natural Gas Engine

Authors: Anas Rao, Hao Duan, Fanhua Ma

Abstract:

The dependency on the fossil fuels can be minimized by using the hydrogen enriched compressed natural gas (HCNG) in the transportation vehicles. However, the NOx emissions of HCNG engines are significantly higher, and this turned to be its major drawback. Therefore, the study of NOx emission of HCNG engines is a very important area of research. In this context, the experiments have been performed at the different hydrogen percentage, ignition timing, air-fuel ratio, manifold-absolute pressure, load and engine speed. Afterwards, the simulation has been accomplished by the quasi-dimensional combustion model of HCNG engine. In order to investigate the NOx emission, the NO mechanism has been coupled to the quasi-dimensional combustion model of HCNG engine. The three NOx mechanism: the thermal NOx, prompt NOx and N2O mechanism have been used to predict NOx emission. For the validation purpose, NO curve has been transformed into NO packets based on the temperature difference of 100 K for the lean-burn and 60 K for stoichiometric condition. While, the width of the packet has been taken as the ratio of crank duration of the packet to the total burnt duration. The combustion chamber of the engine has been divided into three zones, with the zone equal to the product of summation of NO packets and space. In order to check the accuracy of the model, the percentage error of NOx emission has been evaluated, and it lies in the range of ±6% and ±10% for the lean-burn and stoichiometric conditions respectively. Finally, the percentage contribution of each NO formation has been evaluated.

Keywords: quasi-dimensional combustion , thermal NO, prompt NO, NO packet

Procedia PDF Downloads 231
1396 Co₂Fe LDH on Aromatic Acid Functionalized N Doped Graphene: Hybrid Electrocatalyst for Oxygen Evolution Reaction

Authors: Biswaranjan D. Mohapatra, Ipsha Hota, Swarna P. Mantry, Nibedita Behera, Kumar S. K. Varadwaj

Abstract:

Designing highly active and low-cost oxygen evolution (2H₂O → 4H⁺ + 4e⁻ + O₂) electrocatalyst is one of the most active areas of advanced energy research. Some precious metal-based electrocatalysts, such as IrO₂ and RuO₂, have shown excellent performance for oxygen evolution reaction (OER); however, they suffer from high-cost and low abundance which limits their applications. Recently, layered double hydroxides (LDHs), composed of layers of divalent and trivalent transition metal cations coordinated to hydroxide anions, have gathered attention as an alternative OER catalyst. However, LDHs are insulators and coupled with carbon materials for the electrocatalytic applications. Graphene covalently doped with nitrogen has been demonstrated to be an excellent electrocatalyst for energy conversion technologies such as; oxygen reduction reaction (ORR), oxygen evolution reaction (OER) & hydrogen evolution reaction (HER). However, they operate at high overpotentials, significantly above the thermodynamic standard potentials. Recently, we reported remarkably enhanced catalytic activity of benzoate or 1-pyrenebutyrate functionalized N-doped graphene towards the ORR in alkaline medium. The molecular and heteroatom co-doping on graphene is expected to tune the electronic structure of graphene. Therefore, an innovative catalyst architecture, in which LDHs are anchored on aromatic acid functionalized ‘N’ doped graphene may presumably boost the OER activity to a new benchmark. Herein, we report fabrication of Co₂Fe-LDH on aromatic acid (AA) functionalized ‘N’ doped reduced graphene oxide (NG) and studied their OER activities in alkaline medium. In the first step, a novel polyol method is applied for synthesis of AA functionalized NG, which is well dispersed in aqueous medium. In the second step, Co₂Fe LDH were grown on AA functionalized NG by co-precipitation method. The hybrid samples are abbreviated as Co₂Fe LDH/AA-NG, where AA is either Benzoic acid or 1, 3-Benzene dicarboxylic acid (BDA) or 1, 3, 5 Benzene tricarboxylic acid (BTA). The crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). These studies confirmed the growth of layered single phase LDH. The electrocatalytic OER activity of these hybrid materials was investigated by rotating disc electrode (RDE) technique on a glassy carbon electrode. The linear sweep voltammetry (LSV) on these catalyst samples were taken at 1600rpm. We observed significant OER performance enhancement in terms of onset potential and current density on Co₂Fe LDH/BTA-NG hybrid, indicating the synergic effect. This exploration of molecular functionalization effect in doped graphene and LDH system may provide an excellent platform for innovative design of OER catalysts.

Keywords: π-π functionalization, layered double hydroxide, oxygen evolution reaction, reduced graphene oxide

Procedia PDF Downloads 187
1395 A Study on the Etching Characteristics of High aspect ratio Oxide Etching Using C4F6 Plasma in Inductively Coupled Plasma with Low Frequency Bias

Authors: ByungJun Woo

Abstract:

In this study, high-aspect-ratio (HAR) oxide etching characteristics in inductively coupled plasma were investigated using low frequency (2 MHz) bias power with C4F6 gas. An experiment was conducted using CF4/C4F6/He as the mixed gas. A 100 nm (etch area)/500 nm (mask area) line patterns were used, and the etch cross-section and etch selectivity of the amorphous carbon layer thin film were derived using a scanning electron microscope. Ion density was extracted using a double Langmuir probe, and CFx and F neutral species were observed via optical emission spectroscopy. Based on these results, the possibility for HAR oxide etching using C4F6 gas chemistry was suggested in this work. These etching results also indicate that the use of C4F6 gas can significantly contribute to the development of next-generation HAR oxide etching.

Keywords: plasma, etching, C4F6, high aspect ratio, inductively coupled plasma

Procedia PDF Downloads 51
1394 Buckling Analysis of Composite Shells under Compression and Torsional Loads: Numerical and Analytical Study

Authors: Güneş Aydın, Razi Kalantari Osgouei, Murat Emre Öztürk, Ahmad Partovi Meran, Ekrem Tüfekçi

Abstract:

Advanced lightweight laminated composite shells are increasingly being used in all types of modern structures, for enhancing their structural efficiency and performance. Such thin-walled structures are susceptible to buckling when subjected to various loading. This paper focuses on the buckling of cylindrical shells under axial compression and torsional loads. Effects of fiber orientation on the maximum buckling load of carbon fiber reinforced polymer (CFRP) shells are optimized. Optimum fiber angles have been calculated analytically by using MATLAB program. Numerical models have been carried out by using Finite Element Method program ABAQUS. Results from analytical and numerical analyses are also compared.

Keywords: buckling, composite, cylindrical shell, finite element, compression, torsion, MATLAB, optimization

Procedia PDF Downloads 568
1393 Effect of Depressurization Rate in Batch Foaming of Porous Microcellular Polycarbonate on Microstructure Development

Authors: Indrajeet Singh, Abhishek Gandhi, Smita Mohanty, S. K. Nayak

Abstract:

In this article, a focused study has been performed to comprehend the influence of change in depressurization rate on microcellular polycarbonate foamed morphological attributes. The depressurization rate considered in this study were 0.5, 0.05, 0.01 and 0.005 MPa/sec and the physical blowing agent utilized was carbon dioxide owing to its high solubility in polycarbonate at room temperature. The study was performed on two distinct saturation pressures, i.e., 3 MPa and 6 MPa to understand if saturation pressure has any effects on it. It is reported that with increase in depressurization rate, a higher amount of thermodynamic instability was induced which resulted in generation of larger number of smaller sized cells. This article puts forward an understanding of how depressurization rate control could be well exploited during the batch foaming process to develop high quality microcellular foamed products with exceedingly well controlled cell size.

Keywords: depressurization, porous polymer, foaming, microcellular

Procedia PDF Downloads 246
1392 Flight School Perceptions of Electric Planes for Training

Authors: Chelsea-Anne Edwards, Paul Parker

Abstract:

Flight school members are facing a major disruption in the technologies available for them to fly as electric planes enter the aviation industry. The year 2020 marked a new era in aviation with the first type certification of an electric plane. The Pipistrel Velis Electro is a two-seat electric aircraft (e-plane) designed for flight training. Electric flight training has the potential to deeply reduce emissions, noise, and cost of pilot training. Though these are all attractive features, understanding must be developed on the perceptions of the essential actor of the technology, the pilot. This study asks student pilots, flight instructors, flight center managers, and other members of flight schools about their perceptions of e-planes. The questions were divided into three categories: safety and trust of the technology, expected costs in comparison to conventional planes, and interest in the technology, including their desire to fly electric planes. Participants were recruited from flight schools using a protocol approved by the Office of Research Ethics. None of these flight schools have an e-plane in their fleet so these views are based on perceptions rather than direct experience. The results revealed perceptions that were strongly positive with many qualitative comments indicating great excitement about the potential of the new electric aviation technology. Some concerns were raised regarding battery endurance limits. Overall, the flight school community is clearly in favor of introducing electric propulsion technology and reducing the environmental impacts of their industry.

Keywords: electric planes, flight training, green aircraft, student pilots, sustainable aviation

Procedia PDF Downloads 145
1391 Size Selective Synthesis of Sulfur Nanoparticles and Their Anticancer Activity

Authors: Anas Al-Ali, Mohammed Suleiman, Ayman Hussein

Abstract:

Sulfur is an important element has many practical applications in present as nanoparticles. Nanosize sulfur particles also have many important applications like in pharmaceuticals, medicine, syn-thesis of nano-composites for lithium batteries, modification of carbon nano tubes. Different methods were used for nano-sized particle synthesis; among those, chemical precipitation, electrochemical method, micro emulsion technique, composing of oil, surfactant, co-surfactant, aqueous phases with the specific compositions and ultrasonic treatment of sulfur-cystine solution. In this work Sulfur nanoparticles (S NPs) were prepared by a quick precipitation method with and without using a surfactant to stabilize the formed S NPs. The synthesized S NPs were characterized by XRD, SEM and TEM in order to confirm their sizes and structures.Application of nanotechnology is suggested for diag-nosis and treatment of cancer. The anticancer activity of the prepared S NPs has been tested on various types of cancer cell clones including leukemia, kidney and colon cancers.

Keywords: sulfur nanoparticles (S-NPs), TEM, SEM, XRD

Procedia PDF Downloads 636
1390 Size Selective Synthesis of Sulfur Nanoparticles and Their Anti Cancer Activity

Authors: Anas Al-Ali, Mohammed Suleiman, Ayman Hussein

Abstract:

Sulfur is an important element has many practical applications in present as nanoparticles. Nanosize sulfur particles also have many important applications like in pharmaceuticals, medicine, synthesis of nanocomposites for lithium batteries, modification of carbon nanotubes. Different methods were used for nano-sized particle synthesis; among those, chemical precipitation, electrochemical method, micro-emulsion technique, composing of oil, surfactant, co-surfactant, aqueous phases with the specific compositions and ultrasonic treatment of sulfur-cystine solution. In this work, sulfur nanoparticles (S NPs) were prepared by a quick precipitation method with and without using a surfactant to stabilize the formed S NPs. The synthesized S NPs were characterized by XRD, SEM, and TEM in order to confirm their sizes and structures. Application of nanotechnology is suggested for diagnosis and treatment of cancer. The anticancer activity of the prepared S NPs has been tested on various types of cancer cell clones including leukemia, kidney and colon cancers.

Keywords: sulfur nanoparticles (S-NPs), TEM, SEM, anti cancer activity, XRD

Procedia PDF Downloads 501
1389 Implications of Meteorological Parameters in Decision Making for Public Protective Actions during a Nuclear Emergency

Authors: M. Hussaina, K. Mahboobb, S. Z. Ilyasa, S. Shaheena

Abstract:

Plume dispersion modeling is a computational procedure to establish a relationship between emissions, meteorology, atmospheric concentrations, deposition and other factors. The emission characteristics (stack height, stack diameter, release velocity, heat contents, chemical and physical properties of the gases/particle released etc.), terrain (surface roughness, local topography, nearby buildings) and meteorology (wind speed, stability, mixing height, etc.) are required for the modeling of the plume dispersion and estimation of ground and air concentration. During the early phase of Fukushima accident, plume dispersion modeling and decisions were taken for the implementation of protective measures. A difference in estimated results and decisions made by different countries for taking protective actions created a concern in local and international community regarding the exact identification of the safe zone. The current study is focused to highlight the importance of accurate and exact weather data availability, scientific approach for decision making for taking urgent protective actions, compatible and harmonized approach for plume dispersion modeling during a nuclear emergency. As a case study, the influence of meteorological data on plume dispersion modeling and decision-making process has been performed.

Keywords: decision making process, radiation doses, nuclear emergency, meteorological implications

Procedia PDF Downloads 165
1388 Refining Waste Spent Hydroprocessing Catalyst and Their Metal Recovery

Authors: Meena Marafi, Mohan S. Rana

Abstract:

Catalysts play an important role in producing valuable fuel products in petroleum refining; but, due to feedstock’s impurities catalyst gets deactivated with carbon and metal deposition. The disposal of spent catalyst falls under the category of hazardous industrial waste that requires strict agreement with environmental regulations. The spent hydroprocessing catalyst contains Mo, V and Ni at high concentrations that have been found to be economically significant for recovery. Metal recovery process includes deoiling, decoking, grinding, dissolving and treatment with complexing leaching agent such as ethylene diamine tetra acetic acid (EDTA). The process conditions have been optimized as a function of time, temperature and EDTA concentration in presence of ultrasonic agitation. The results indicated that optimum condition established through this approach could recover 97%, 94% and 95% of the extracted Mo, V and Ni, respectively, while 95% EDTA was recovered after acid treatment.

Keywords: atmospheric residue desulfurization (ARDS), deactivation, hydrotreating, spent catalyst

Procedia PDF Downloads 296
1387 Effects of the Type of Soil on the Efficiency of a Bioremediation Dispositive by Using Bacterium Hydrocarbonoclastes

Authors: Amel Bouderhem, Aminata Ould El Hadj Khelil, Amina N. Djrarbaoui, Aroussi Aroussi

Abstract:

The present work aims to find the influence of the nature of the soil on the effectiveness of the biodegradation of hydrocarbons by a mixture of bacterial strains hydrocarbonoclastes. Processes of bioaugmentation and biostimulation trial are applied to samples of soils polluted voluntarily by the crude oil. For the evaluation of the biodegradation of hydrocarbons, the bacterial load, the pH and organic carbon total are followed in the different experimental batches. He bacterial load of the sandy soil varies among the witnesses of 45,2 .108 CFU/ml at the beginning of the experimentation to 214,07.108 CFU/ml at the end of the experiment. Of the soil silty-clay varies between 103,31 .108 CFU/ml and 614,86.108 CFU/ml . It was found a strong increase in the bacterial biomass during the processing of all samples. This increase is more important in the samples of sand bioaugmente or biomass increased from 63.16 .108 CFU/ml to 309.68 .108 CFU/ml than in soil samples silty clay- bioaugmente whose content in bacteria evolved of 73,01 .108 CFU/ml to 631.80 . 108CFU/ml

Keywords: pollution, hydrocarbons, bioremediation, bacteria hydrocarbonoclastes, ground, texture

Procedia PDF Downloads 455
1386 Different Methods of Producing Bioemulsifier by Bacillus licheniformis Strains

Authors: Saba Pajuhan, Afshin Farahbakhsh, S. M. M. Dastgheib

Abstract:

Biosurfactants and bioemulsifiers are a structurally diverse group of surface-active molecules synthesized by microorganisms, they are amphipathic molecules which reduce surface and interfacial tensions and widely used in pharmaceutical, cosmetic, food and petroleum industries. In this paper, several methods of bioemulsifer synthesis and purification by Bacillus licheniformis strains (namely ACO1, PTCC 1595 and ACO4) were investigated. Strains were grown in nutrient broth with different conditions in order to get maximum production of bioemulsifer. The purification of bio emulsifier and the quality evaluation of the product was done by adding sulfuric acid (H₂SO₄) (98%), Ethanol or HCl to the solution followed by centrifuging. To determine the optimal conditions yielding the highest bioemulsifier production, the effect of various carbon and nitrogen sources, temperature, NaCl concentration, pH, O₂ levels, incubation time are indispensable and all of them were highly effective in bioemulsifiers production.

Keywords: biosurfactant, bioemulsifier, purification, surface tension, interfacial tension

Procedia PDF Downloads 252
1385 Production of Biodiesel Using Tannery Fleshing as a Feedstock via Solid-State Fermentation

Authors: C. Santhana Krishnan, A. M. Mimi Sakinah, Lakhveer Singh, Zularisam A. Wahid

Abstract:

This study was initiated to evaluate and optimize the conversion of animal fat from tannery wastes into methyl ester. In the pre-treatment stage, animal fats feedstock was hydrolysed and esterified through solid state fermentation (SSF) using Microbacterium species immobilized onto sand silica matrix. After 72 hours of fermentation, predominant esters in the animal fats were found to be with 83.9% conversion rate. Later, esterified animal fats were transesterified at 3 hour reaction time with 1% NaOH (w/v %), 6% methanol to oil ratio (w/v %) to produce 89% conversion rate. C13 NMR revealed long carbon chain in fatty acid methyl esters at 22.2817-31.9727 ppm. Methyl esters of palmitic, stearic, oleic represented the major components in biodiesel.

Keywords: tannery wastes, fatty animal fleshing, trans-esterification, immobilization, solid state fermentation

Procedia PDF Downloads 242
1384 Allylation of Active Methylene Compounds with Cyclic Baylis-Hillman Alcohols: Why Is It Direct and Not Conjugate?

Authors: Karim Hrratha, Khaled Essalahb, Christophe Morellc, Henry Chermettec, Salima Boughdiria

Abstract:

Among the carbon-carbon bond formation types, allylation of active methylene compounds with cyclic Baylis-Hillman (BH) alcohols is a reliable and widely used method. This reaction is a very attractive tool in organic synthesis of biological and biodiesel compounds. Thus, in view of an insistent and peremptory request for an efficient and straightly method for synthesizing the desired product, a thorough analysis of various aspects of the reaction processes is an important task. The product afforded by the reaction of active methylene with BH alcohols depends largely on the experimental conditions, notably on the catalyst properties. All experiments reported that catalysis is needed for this reaction type because of the poor ability of alcohol hydroxyl group to be as a suitable leaving group. Within the catalysts, several transition- metal based have been used such as palladium in the presence of acid or base and have been considered as reliable methods. Furthemore, acid catalysts such as BF3.OEt2, BiX3 (X= Cl, Br, I, (OTf)3), InCl3, Yb(OTf)3, FeCl3, p-TsOH and H-montmorillonite have been employed to activate the C-C bond formation through the alkylation of active methylene compounds. Interestingly a report of a smoothly process for the ability of 4-imethyaminopyridine(DMAP) to catalyze the allylation reaction of active methylene compounds with cyclic Baylis-Hillman (BH) alcohol appeared recently. However, the reaction mechanism remains ambiguous, since the C- allylation process leads to an unexpected product (noted P1), corresponding to a direct allylation instead of conjugate allylation, which involves the most electrophilic center according to the electron withdrawing group CO effect. The main objective of the present theoretical study is to better understand the role of the DMAP catalytic activity as well as the process leading to the end- product (P1) for the catalytic reaction of a cyclic BH alcohol with active methylene compounds. For that purpose, we have carried out computations of a set of active methylene compounds varying by R1 and R2 toward the same alcohol, and we have attempted to rationalize the mechanisms thanks to the acid–base approach, and conceptual DFT tools such as chemical potential, hardness, Fukui functions, electrophilicity index and dual descriptor, as these approaches have shown a good prediction of reactions products.The present work is then organized as follows: In a first part some computational details will be given, introducing the reactivity indexes used in the present work, then Section 3 is dedicated to the discussion of the prediction of the selectivity and regioselectivity. The paper ends with some concluding remarks. In this work, we have shown, through DFT method at the B3LYP/6-311++G(d,p) level of theory that: The allylation of active methylene compounds with cyclic BH alcohol is governed by orbital control character. Hence the end- product denoted P1 is generated by direct allylation.

Keywords: DFT calculation, gas phase pKa, theoretical mechanism, orbital control, charge control, Fukui function, transition state

Procedia PDF Downloads 285
1383 The Effect of Immobilization Conditions on Hydrogen Production from Palm Oil Mill Effluent

Authors: A. W. Zularisam, Lakhveer Singh, Mimi Sakinah Abdul Munaim

Abstract:

In this study, the optimization of hydrogen production using polyethylene glycol (PEG) immobilized sludge was investigated in batch tests. Palm oil mill effluent (POME) is used as a substrate that can act as a carbon source. Experiment focus on the effect of some important affecting factors on fermentative hydrogen production. Results showed that immobilized sludge demonstrated the maximum hydrogen production rate of 340 mL/L-POME/h under follow optimal condition: amount of biomass 10 mg VSS/ g bead, PEG concentration 10%, and cell age 24 h or 40 h. More importantly, immobilized sludge not only enhanced hydrogen production but can also tolerate the harsh environment and produce hydrogen at the wide ranges of pH. The present results indicate the potential of PEG-immobilized sludge for large-scale operations as well; these factors play an important role in stable and continuous hydrogen production.

Keywords: bioydrogen, immobilization, polyethylene glycol, palm oil mill effluent, dark fermentation

Procedia PDF Downloads 324
1382 Long-Term Conservation Tillage Impact on Soil Properties and Crop Productivity

Authors: Danute Karcauskiene, Dalia Ambrazaitiene, Regina Skuodiene, Monika Vilkiene, Regina Repsiene, Ieva Jokubauskaite

Abstract:

The main ambition for nowadays agriculture is to get the economically effective yield and to secure the soil ecological sustainability. According to the effect on the main soil quality indexes, tillage systems may be separated into two types, conventional and conservation tillage. The goal of this study was to determine the impact of conservation and conventional primary soil tillage methods and soil fertility improvement measures on soil properties and crop productivity. Methods: The soil of the experimental site is Dystric Glossic Retisol (WRB 2014) with texture of sandy loam. The trial was established in 2003 in the experimental field of crop rotation of Vėžaičiai Branch of Lithuanian Research Centre for Agriculture and Forestry. Trial factors and treatments: factor A- primary soil tillage in (autumn): deep ploughing (20-25cm), shallow ploughing (10-12cm), shallow ploughless tillage (8-10cm); factor B – soil fertility improvement measures: plant residues, plant residues + straw, green manure 1st cut + straw, farmyard manure 40tha-1 + straw. The four - course crop rotation consisted of red clover, winter wheat, spring rape and spring barley with undersown. Results: The tillage had no statistically significant effect on topsoil (0-10 cm) pHKCl level, it was 5.5 - 5.7. During all experiment period, the highest soil pHKCl level (5.65) was in the shallow ploughless tillage. The organic fertilizers particularly the biomass of grass and farmyard manure had tendency to increase the soil pHKCl. The content of plant - available phosphorus and potassium significantly increase in the shallow ploughing compared with others tillage systems. The farmyard manure increases those elements in whole arable layer. The dissolved organic carbon concentration was significantly higher in the 0 - 10 cm soil layer in the shallow ploughless tillage compared with deep ploughing. After the incorporation of clover biomass and farmyard manure the concentration of dissolved organic carbon increased in the top soil layer. During all experiment period the largest amount of water stable aggregates was determined in the soil where the shallow ploughless tillage was applied. It was by 12% higher compared with deep ploughing. During all experiment time, the soil moisture was higher in the shallow ploughing and shallow ploughless tillage (9-27%) compared to deep ploughing. The lowest emission of CO2 was determined in the deep ploughing soil. The highest rate of CO2 emission was in shallow ploughless tillage. The addition of organic fertilisers had a tendency to increase the CO2 emission, but there was no statistically significant effect between the different types of organic fertilisers. The crop yield was larger in the deep ploughing soil compared to the shallow and shallow ploughless tillage.

Keywords: reduced tillage, soil structure, soil pH, biological activity, crop productivity

Procedia PDF Downloads 246
1381 Optimization of Process Parameters for Rotary Electro Discharge Machining Using EN31 Tool Steel: Present and Future Scope

Authors: Goutam Dubey, Varun Dutta

Abstract:

In the present study, rotary-electro discharge machining of EN31 tool steel has been carried out using a pure copper electrode. Various response variables such as Material Removal Rate (MRR), Tool Wear Rate (TWR), and Machining Rate (MR) have been studied against the selected process variables. The selected process variables were peak current (I), voltage (V), duty cycle, and electrode rotation (N). EN31 Tool Steel is hardened, high carbon steel which increases its hardness and reduces its machinability. Reduced machinability means it not economical to use conventional methods to machine EN31 Tool Steel. So, non-conventional methods play an important role in machining of such materials.

Keywords: electric discharge machining, EDM, tool steel, tool wear rate, optimization techniques

Procedia PDF Downloads 183
1380 Study on the Strength and Durability Properties of Ternary Blended Concrete

Authors: Athira Babu, M. Nazeer

Abstract:

Concrete is the most common and versatile construction material used in any type of civil engineering structure. The durability and strength characteristics of concrete make it more desirable among any other construction materials. The manufacture and use of concrete produces wide range of environmental and social consequences. The major component in concrete, cement accounts for roughly 5 % of global CO2 emissions. In order to improve the environmental friendliness of concrete, suitable substitutes are added to concrete. The present study deals with GGBS and silica fume as supplementary cementitious materials. The strength and durability studies were conducted in this ternary blended concrete. Several mixes were adopted with varying percentages of Silica Fume i.e., 5%, 10% and 15%. Binary mix with 50% GGBS was also prepared. GGBS content has been kept constant for the rest of mixes. There is an improvement in compressive strength with addition of Silica Fume.Maximum workability, split tensile strength, modulus of elasticity, flexural strength and impact resistance are obtained for GGBS binary blend. For durability studies, maximum sulphate resistance,carbonation resistance andresistance to chloride ion penetration are obtained for ternary blended concrete. Partial replacement of GGBS and Silica Fume reduces the environmental effects, produces economical and eco-friendly concrete. The study showed that for strength characteristics, binary blended concrete showed better performance while for durability study ternary blend performed better.

Keywords: concrete, GGBS, silica fume, ternary blend

Procedia PDF Downloads 463
1379 A Geoprocessing Tool for Early Civil Work Notification to Optimize Fiber Optic Cable Installation Cost

Authors: Hussain Adnan Alsalman, Khalid Alhajri, Humoud Alrashidi, Abdulkareem Almakrami, Badie Alguwaisem, Said Alshahrani, Abdullah Alrowaished

Abstract:

Most of the cost of installing a new fiber optic cable is attributed to civil work-trenching-cost. In many cases, information technology departments receive project proposals in their eReview system, but not all projects are visible to everyone. Additionally, if there was no IT scope in the proposed project, it is not likely to be visible to IT. Sometimes it is too late to add IT scope after project budgets have been finalized. Finally, the eReview system is a repository of PDF files for each project, which commits the reviewer to manual work and limits automation potential. This paper details a solution to address the late notification of the eReview system by integrating IT Sites GIS data-sites locations-with land use permit (LUP) data-civil work activity, which is the first step before securing the required land usage authorizations and means no detailed designs for any relevant project before an approved LUP request. To address the manual nature of eReview system, both the LUP System and IT data are using ArcGIS Desktop, which enables the creation of a geoprocessing tool with either Python or Model Builder to automate finding and evaluating potentially usable LUP requests to reduce trenching between two sites in need of a new FOC. To achieve this, a weekly dump was taken from LUP system production data and loaded manually onto ArcMap Desktop. Then a custom tool was developed in model builder, which consisted of a table of two columns containing all the pairs of sites in need of new fiber connectivity. The tool then iterates all rows of this table, taking the sites’ pair one at a time and finding potential LUPs between them, which satisfies the provided search radius. If a group of LUPs was found, an iterator would go through each LUP to find the required civil work between the two sites and the LUP Polyline feature and the distance through the line, which would be counted as cost avoidance if an IT scope had been added. Finally, the tool will export an Excel file named with sites pair, and it will contain as many rows as the number of LUPs, which met the search radius containing trenching and pulling information and cost. As a result, multiple projects have been identified – historical, missed opportunity, and proposed projects. For the proposed project, the savings were about 75% ($750,000) to install a new fiber with the Euclidean distance between Abqaiq GOSP2 and GOSP3 DCOs. In conclusion, the current tool setup identifies opportunities to bundle civil work on single projects at a time and between two sites. More work is needed to allow the bundling of multiple projects between two sites to achieve even more cost avoidance in both capital cost and carbon footprint.

Keywords: GIS, fiber optic cable installation optimization, eliminate redundant civil work, reduce carbon footprint for fiber optic cable installation

Procedia PDF Downloads 203
1378 Synthesis of Highly Valuable Fuel Fractions from Waste Date Seeds Oil

Authors: Farrukh Jamil, Ala'A H. Al-Muhtaseb, Lamya Al-Haj, Mohab A. Al-Hinai

Abstract:

Environmental problems and the security of energy supply have motivated the attention in the expansion of alternatives for fossil based fuels. Biomass has been recognized as a capable resource because it is plentifully available and in principle carbon dioxide neutral. Present study focuses on utilization date seeds oil for synthesizing high value fuels formulations such as green diesel and jet fuel. The hydrodeoxygenation of date seeds oil occurred to be highly efficient at following operating conditions temperature 300°C pressure 10bar with continuous stirring at 500 rpm. Products characterization revealed the efficiency of hydrodeoxygenation by formation of linear hydrocarbons (paraffin) in larger fraction. Based on the type of components in product oil it was calculated that maximum fraction lies within the range of green diesel 72.78 % then jet fuel 28.25 % by using Pt/C catalyst. It can be concluded that waste date seeds oil has potential to be used for obtaining high value products.

Keywords: date seeds, hydrodeoxygenation, paraffin, deoxygenation

Procedia PDF Downloads 245
1377 Study of Sustainability Indicators in a Milk Production Process

Authors: E. Lacasa, J. L. Santolaya, I. Millán

Abstract:

The progress toward sustainability implies maintaining and preferably improving both, human and ecosystem well-being, according to a triple bottom line that includes the environmental, economic and social dimensions. The life cycle assessment (LCA) is a method applicable to all production sectors that aims to quantify the environmental pressures and the benefits related to goods and services, as well as the trade-offs and the scope for improving areas of the production process. While using LCA to measure the environmental dimension of sustainability is widespread, similar approaches for the economic and the social dimensions still have limited application worldwide and there is a need for consistent and robust methods and indicators. This paper focuses on the milk production process and presents the analysis of the flows exchanged by an industrial installation through accounting all the energy and material inputs and the associated emissions and waste outputs at this stage of its life cycle. The functional unit is one litre of milk produced. Different metrics and indicators are used to assess the three dimensions of sustainability. Metrics considered useful to assess the production activities are the total water and energy consumptions and the milk production volume of each cow. The global warming, the value added and the working hours are indicators used to measure each sustainability dimension. The study is performed with two types of feeding of the cows, which includes a change in percentages of components as well. Nutritional composition of the milk obtained is almost kept. It is observed that environmental and social improvements involve high economic costs.

Keywords: milk production, sustainability, indicators, life cycle assessment

Procedia PDF Downloads 412
1376 Square Wave Anodic Stripping Voltammetry of Copper (II) at the Tetracarbonylmolybdenum(0) MWCNT Paste Electrode

Authors: Illyas Isa, Mohamad Idris Saidin, Mustaffa Ahmad, Norhayati Hashim

Abstract:

A highly selective and sensitive electrode for determination of trace amounts of Cu (II) using square wave anodic stripping voltammetry (SWASV) was proposed. The electrode was made of the paste of multiwall carbon nanotubes (MWCNT) and 2,6–diacetylpyridine-di-(1R)–(-)–fenchone diazine tetracarbonylmolybdenum(0) at 100:5 (w/w). Under optimal conditions the electrode showed a linear relationship with concentration in the range of 1.0 × 10–10 to 1.0 × 10– 6 M Cu (II) and limit of detection 8.0 × 10–11 M Cu (II). The relative standard deviation (n = 5) of response to 1.0 × 10–6 M Cu(II) was 0.036. The interferences of cations such as Ni(II), Mg(II), Cd(II), Co(II), Hg(II), and Zn(II) (in 10 and 100-folds concentration) are negligible except from Pb (II). Electrochemical impedance spectroscopy (EIS) showed that the charge transfer at the electrode-solution interface was favorable. Result of analysis of Cu(II) in several water samples agreed well with those obtained by inductively coupled plasma-optical emission spectrometry (ICP-OES). The proposed electrode was then recommended as an alternative to spectroscopic technique in analyzing Cu (II).

Keywords: chemically modified electrode, Cu(II), Square wave anodic stripping voltammetry, tetracarbonylmolybdenum(0)

Procedia PDF Downloads 245
1375 System-Wide Impact of Energy Efficiency in the Industry Sector: A Comparative Study between Canada and Denmark

Authors: M. Baldini, H. K. Jacobsen, M. Jaccard

Abstract:

In light of the international efforts to comply with the Paris agreement and emission targets for future energy systems, Denmark and Canada are among the front-runner countries dealing with climate change. The experiences in the energy sector have seen both countries coping with trade-offs between investments in renewable energy technologies and energy efficiency, thus tackling the climate issue from the supply and demand side respectively. On the demand side, the industrial sector is going through a remarkable transformation, with implementation of energy efficiency measures, change of input fuel for end-use processes and forecasted electrification as main features under the spotlight. By looking at Canada and Denmark's experiences as pathfinders on the demand and supply approach to climate change, it is possible to obtain valuable experience that may be applied to other countries aiming at the same goal. This paper presents a comparative study on industrial energy efficiency between Canada and Denmark. The study focuses on technologies and system options, policy design and implementation and modelling methodologies when implementing industrial energy savings in optimization models in comparison to simulation models. The study identifies gaps and junctures in the approach towards climate change actions and, learning from each other, lessen the differences to further foster the adoption of energy efficiency measurements in the industrial sector, aiming at reducing energy consumption and, consequently, CO₂ emissions.

Keywords: industrial energy efficiency, comparative study, CO₂ reduction, energy system modelling

Procedia PDF Downloads 150
1374 Energy Intensity of a Historical Downtown: Estimating the Energy Demand of a Budapest District

Authors: Viktória Sugár, Attila Talamon, András Horkai, Michihiro Kita

Abstract:

The dense urban fabric of the 7th district of Budapest -known as the former Jewish Quarter-, contains mainly historical style, multi-story tenement houses with courtyards. The high population density and the unsatisfactory energetic state of the buildings result high energy consumption. As a preliminary survey of a complex rehabilitation plan, the authors aim to determine the energy demand of the area. The energy demand was calculated by analyzing the structure and the energy consumption of each building by using Geographic Information System (GIS) methods. The carbon dioxide emission was also calculated, to assess the potential of reducing the present state value by complex structural and energetic rehabilitation. As a main focus of the survey, an energy intensity map has been created about the area.

Keywords: CO₂, energy intensity map, geographic information system (GIS), Hungary, Jewish quarter, rehabilitation

Procedia PDF Downloads 277
1373 Isolation and Structural Elucidation of 20 Hydroxyecdystone from Vitex doniana Sweet Stem Bark

Authors: Mustapha A. Tijjani, Fanna I. Abdulrahman, Irfan Z. Khan, Umar K. Sandabe, Cong Li

Abstract:

Air dried sample V. doniana after collection and identification was extracted with ethanol and further partition with chloroform, ethyl acetate and n-butanol. Ethanolic extract (11.9g) was fractionated on a silica gel accelerated column chromatography using solvents such as n-hexane, ethyl acetate and methanol. Each eluent fractions (150ml aliquots) were collected and monitored with thin layer chromatography. Fractions with similar Rf values from same solvents system were pooled together. Phytochemical test of all the fractions were performed using standard procedure. Complete elution yielded 48 fractions (150ml/fraction) which were pooled to 24 fractions base on the Rf values. It was further recombined and 12 fractions were obtained on the basis on Rf values and coded Vd1 to Vd12 fractions. Vd8 was further eluted with ethylacetate and methanol and gave fourteen sub fractions Vd8-a, -Vd8-m. Fraction Vd8-a (56mg) gave a white crystal compound coded V1. It was further checked on TLC and observed under ultraviolet lamp and was found to give a single spot. The Rf values were calculated to be 0.433. The melting point was determined using Gallenkamp capillary melting point apparatus and found to be 241-243°C uncorrected. Characterization of the isolated compound coded V1 was done using FT-infra-red spectroscopy, HNMR, 13CNMR(1and 2D) and HRESI-MS. The IR spectrum of compound V1 shows prominent peaks that corresponds to OHstr (3365cm-1) and C=0 (1652cm-1) etc. This spectrum suggests that among the functional moiety in compound V1 are the carbonyl and hydroxyl group. The 1H NMR (400 MHz) spectrum of compound V1 in DMSO-d6 displayed five singlet signals at δ 0.72 (3H, s, H-18), 0.79 (3H, s, H-19), 1.03 (3H, s, H-21), 1.04 (3H, s, H-26), 1.06 (3H, s, H-27) each integrating for three protons indicating the five methyl functional groups present in the compound. It further showed a broad singlet at δ 5.58 integrated for 1 H due to an olefinic H-atom adjacent to the carbonyl carbon atom. Three signals at δ 3.10 (d, J = 9.0 Hz, H-22), 3.59 (m, 1H, 2H-a) and 3.72 (m, 1H, 3H-e), each integrating for one proton is due to oxymethine protons indicating that three oxymethine H-atoms are present in the compound. These all signals are characteristic to the ecdysteroid skeletons. The 13C-NMR spectrum showed the presence of 27 carbon atoms, suggesting that may be steroid skeleton. The DEPT-135 experiment showed the presence of five CH3, eight CH2, and seven CH groups, and seven quaternary C-atoms. The molecular formula was established as C27H44O7 by high resolution electron spray ionization-mass spectroscopy (HRESI-MS) positive ion mode m/z 481.3179. The signals in mass spectrum are 463, 445, and 427 peaks corresponding to losses of one, two, three, or four water molecules characteristic for ecdysterone skeleton reported in the literature. Based on the spectral analysis (HNMR, 13CNMR, DEPT, HMQC, IR, HRESI-MS) the compound V1 is thus concluded to have ecdysteriod skeleton and conclusively conforms with 2β, 3β 14α, 20R, 22R, 25-hexahydroxy-5 β cholest-7-ene-6- one, or 2, 3, 14, 20, 22, 25 hexahydroxy cholest-7-ene-6-one commonly known as 20-hydroxyecdysone.

Keywords: vitex, phytochemical, purification, isolation, chromatography, spectroscopy

Procedia PDF Downloads 335