Search results for: artificial intelligence in semiconductor manufacturing
2518 Risk Analysis in Off-Site Construction Manufacturing in Small to Medium-Sized Projects
Authors: Atousa Khodadadyan, Ali Rostami
Abstract:
The objective of off-site construction manufacturing is to utilise the workforce and machinery in a controlled environment without external interference for higher productivity and quality. The usage of prefabricated components can save up to 14% of the total energy consumption in comparison with the equivalent number of cast-in-place ones. Despite the benefits of prefabrication construction, its current project practices encompass technical and managerial issues. Building design, precast components’ production, logistics, and prefabrication installation processes are still mostly discontinued and fragmented. Furthermore, collaboration among prefabrication manufacturers, transportation parties, and on-site assemblers rely on real-time information such as the status of precast components, delivery progress, and the location of components. From the technical point of view, in this industry, geometric variability is still prevalent, which can be caused during the transportation or production of components. These issues indicate that there are still many aspects of prefabricated construction that can be developed using disruptive technologies. Practical real-time risk analysis can be used to address these issues as well as the management of safety, quality, and construction environment issues. On the other hand, the lack of research about risk assessment and the absence of standards and tools hinder risk management modeling in prefabricated construction. It is essential to note that no risk management standard has been established explicitly for prefabricated construction projects, and most software packages do not provide tailor-made functions for this type of projects.Keywords: project risk management, risk analysis, risk modelling, prefabricated construction projects
Procedia PDF Downloads 1732517 The Effects of Computer Game-Based Pedagogy on Graduate Students Statistics Performance
Authors: Clement Yeboah, Eva Laryea
Abstract:
A pretest-posttest within subjects experimental design was employed to examine the effects of a computerized basic statistics learning game on achievement and statistics-related anxiety of students enrolled in introductory graduate statistics course. Participants (N = 34) were graduate students in a variety of programs at state-funded research university in the Southeast United States. We analyzed pre-test posttest differences using paired samples t-tests for achievement and for statistics anxiety. The results of the t-test for knowledge in statistics were found to be statistically significant, indicating significant mean gains for statistical knowledge as a function of the game-based intervention. Likewise, the results of the t-test for statistics-related anxiety were also statistically significant, indicating a decrease in anxiety from pretest to posttest. The implications of the present study are significant for both teachers and students. For teachers, using computer games developed by the researchers can help to create a more dynamic and engaging classroom environment, as well as improve student learning outcomes. For students, playing these educational games can help to develop important skills such as problem solving, critical thinking, and collaboration. Students can develop an interest in the subject matter and spend quality time to learn the course as they play the game without knowing that they are even learning the presupposed hard course. The future directions of the present study are promising as technology continues to advance and become more widely available. Some potential future developments include the integration of virtual and augmented reality into educational games, the use of machine learning and artificial intelligence to create personalized learning experiences, and the development of new and innovative game-based assessment tools. It is also important to consider the ethical implications of computer game-based pedagogy, such as the potential for games to perpetuate harmful stereotypes and biases. As the field continues to evolve, it will be crucial to address these issues and work towards creating inclusive and equitable learning experiences for all students. This study has the potential to revolutionize the way basic statistics graduate students learn and offers exciting opportunities for future development and research. It is an important area of inquiry for educators, researchers, and policymakers and will continue to be a dynamic and rapidly evolving field for years to come.Keywords: pretest-posttest within subjects, computer game-based learning, statistics achievement, statistics anxiety
Procedia PDF Downloads 772516 Development of Multilayer Capillary Copper Wick Structure using Microsecond CO₂ Pulsed Laser
Authors: Talha Khan, Surendhar Kumaran, Rajeev Nair
Abstract:
The development of economical, efficient, and reliable next-generation thermal and water management systems to provide efficient cooling and water management technologies is being pursued application in compact and lightweight spacecraft. The elimination of liquid-vapor phase change-based thermal and water management systems is being done due to issues with the reliability and robustness of this technology. To achieve the motive of implementing the principle of using an innovative evaporator and condenser design utilizing bimodal wicks manufactured using a microsecond pulsed CO₂ laser has been proposed in this study. Cylin drical, multilayered capillary copper wicks with a substrate diameter of 39 mm are additively manufactured using a pulsed laser. The copper particles used for layer-by-layer addition on the substrate measure in a diameter range of 225 to 450 micrometers. The primary objective is to develop a novel, high-quality, fast turnaround, laser-based additive manufacturing process that will eliminate the current technical challenges involved with the traditional manufacturing processes for nano/micro-sized powders, like particle agglomeration. Raster-scanned, pulsed-laser sintering process has been developed to manufacture 3D wicks with controlled porosity and permeability.Keywords: liquid-vapor phase change, bimodal wicks, multilayered, capillary, raster-scanned, porosity, permeability
Procedia PDF Downloads 1912515 The Relationship Between Hourly Compensation and Unemployment Rate Using the Panel Data Regression Analysis
Authors: S. K. Ashiquer Rahman
Abstract:
the paper concentrations on the importance of hourly compensation, emphasizing the significance of the unemployment rate. There are the two most important factors of a nation these are its unemployment rate and hourly compensation. These are not merely statistics but they have profound effects on individual, families, and the economy. They are inversely related to one another. When we consider the unemployment rate that will probably decline as hourly compensations in manufacturing rise. But when we reduced the unemployment rates and increased job prospects could result from higher compensation. That’s why, the increased hourly compensation in the manufacturing sector that could have a favorable effect on job changing issues. Moreover, the relationship between hourly compensation and unemployment is complex and influenced by broader economic factors. In this paper, we use panel data regression models to evaluate the expected link between hourly compensation and unemployment rate in order to determine the effect of hourly compensation on unemployment rate. We estimate the fixed effects model, evaluate the error components, and determine which model (the FEM or ECM) is better by pooling all 60 observations. We then analysis and review the data by comparing 3 several countries (United States, Canada and the United Kingdom) using panel data regression models. Finally, we provide result, analysis and a summary of the extensive research on how the hourly compensation effects on the unemployment rate. Additionally, this paper offers relevant and useful informational to help the government and academic community use an econometrics and social approach to lessen on the effect of the hourly compensation on Unemployment rate to eliminate the problem.Keywords: hourly compensation, Unemployment rate, panel data regression models, dummy variables, random effects model, fixed effects model, the linear regression model
Procedia PDF Downloads 812514 Evolution of Web Development Progress in Modern Information Technology
Authors: Abdul Basit Kiani
Abstract:
Web development, the art of creating and maintaining websites, has witnessed remarkable advancements. The aim is to provide an overview of some of the cutting-edge developments in the field. Firstly, the rise of responsive web design has revolutionized user experiences across devices. With the increasing prevalence of smartphones and tablets, web developers have adapted to ensure seamless browsing experiences, regardless of screen size. This progress has greatly enhanced accessibility and usability, catering to the diverse needs of users worldwide. Additionally, the evolution of web frameworks and libraries has significantly streamlined the development process. Tools such as React, Angular, and Vue.js have empowered developers to build dynamic and interactive web applications with ease. These frameworks not only enhance efficiency but also bolster scalability, allowing for the creation of complex and feature-rich web solutions. Furthermore, the emergence of progressive web applications (PWAs) has bridged the gap between native mobile apps and web development. PWAs leverage modern web technologies to deliver app-like experiences, including offline functionality, push notifications, and seamless installation. This innovation has transformed the way users interact with websites, blurring the boundaries between traditional web and mobile applications. Moreover, the integration of artificial intelligence (AI) and machine learning (ML) has opened new horizons in web development. Chatbots, intelligent recommendation systems, and personalization algorithms have become integral components of modern websites. These AI-powered features enhance user engagement, provide personalized experiences, and streamline customer support processes, revolutionizing the way businesses interact with their audiences. Lastly, the emphasis on web security and privacy has been a pivotal area of progress. With the increasing incidents of cyber threats, web developers have implemented robust security measures to safeguard user data and ensure secure transactions. Innovations such as HTTPS protocol, two-factor authentication, and advanced encryption techniques have bolstered the overall security of web applications, fostering trust and confidence among users. Hence, recent progress in web development has propelled the industry forward, enabling developers to craft innovative and immersive digital experiences. From responsive design to AI integration and enhanced security, the landscape of web development continues to evolve, promising a future filled with endless possibilities.Keywords: progressive web applications (PWAs), web security, machine learning (ML), web frameworks, advancement responsive web design
Procedia PDF Downloads 542513 Multidisciplinary Approach to Mio-Plio-Quaternary Aquifer Study in the Zarzis Region (Southeastern Tunisia)
Authors: Ghada Ben Brahim, Aicha El Rabia, Mohamed Hedi Inoubli
Abstract:
Climate change has exacerbated disparities in the distribution of water resources in Tunisia, resulting in significant degradation in quantity and quality over the past five decades. The Mio-Plio-Quaternary aquifer, the primary water source in the Zarzis region, is subject to climatic, geographical, and geological challenges, as well as human stress. The region is experiencing uneven distribution and growing threats from groundwater salinity and saltwater intrusion. Addressing this challenge is critical for the arid region’s socioeconomic development, and effective water resource management is required to combat climate change and reduce water deficits. This study uses a multidisciplinary approach to determine the groundwater potential of this aquifer, involving geophysics and hydrogeology data analysis. We used advanced techniques such as 3D Euler deconvolution and power spectrum analysis to generate detailed anomaly maps and estimate the depths of density sources, identifying significant Bouguer anomalies trending E-W, NW-SE, and NE-SW. Various techniques, such as wavelength filtering, upward continuation, and horizontal and vertical derivatives, were used to improve the gravity data, resulting in consistent results for anomaly shapes and amplitudes. The Euler deconvolution method revealed two prominent surface faults, trending NE-SW and NW-SE, that have a significant impact on the distribution of sedimentary facies and water quality within the Mio-Plio-Quaternary aquifer. Additionally, depth maxima greater than 1400 m to the North indicate the presence of a Cretaceous paleo-fault. Geoelectrical models and resistivity pseudo-sections were used to interpret the distribution of electrical facies in the Mio-Plio-Quaternary aquifer, highlighting lateral variation and depositional environment type. AI optimises the analysis and interpretation of exploration data, which is important to long-term management and water security. Machine learning algorithms and deep learning models analyse large datasets to provide precise interpretations of subsurface conditions, such as aquifer salinisation. However, AI has limitations, such as the requirement for large datasets, the risk of overfitting, and integration issues with traditional geological methods.Keywords: mio-plio-quaternary aquifer, Southeastern Tunisia, geophysical methods, hydrogeological analysis, artificial intelligence
Procedia PDF Downloads 162512 Improving Pneumatic Artificial Muscle Performance Using Surrogate Model: Roles of Operating Pressure and Tube Diameter
Authors: Van-Thanh Ho, Jaiyoung Ryu
Abstract:
In soft robotics, the optimization of fluid dynamics through pneumatic methods plays a pivotal role in enhancing operational efficiency and reducing energy loss. This is particularly crucial when replacing conventional techniques such as cable-driven electromechanical systems. The pneumatic model employed in this study represents a sophisticated framework designed to efficiently channel pressure from a high-pressure reservoir to various muscle locations on the robot's body. This intricate network involves a branching system of tubes. The study introduces a comprehensive pneumatic model, encompassing the components of a reservoir, tubes, and Pneumatically Actuated Muscles (PAM). The development of this model is rooted in the principles of shock tube theory. Notably, the study leverages experimental data to enhance the understanding of the interplay between the PAM structure and the surrounding fluid. This improved interactive approach involves the use of morphing motion, guided by a contraction function. The study's findings demonstrate a high degree of accuracy in predicting pressure distribution within the PAM. The model's predictive capabilities ensure that the error in comparison to experimental data remains below a threshold of 10%. Additionally, the research employs a machine learning model, specifically a surrogate model based on the Kriging method, to assess and quantify uncertainty factors related to the initial reservoir pressure and tube diameter. This comprehensive approach enhances our understanding of pneumatic soft robotics and its potential for improved operational efficiency.Keywords: pneumatic artificial muscles, pressure drop, morhing motion, branched network, surrogate model
Procedia PDF Downloads 982511 Interplay of Power Management at Core and Server Level
Authors: Jörg Lenhardt, Wolfram Schiffmann, Jörg Keller
Abstract:
While the feature sizes of recent Complementary Metal Oxid Semiconductor (CMOS) devices decrease the influence of static power prevails their energy consumption. Thus, power savings that benefit from Dynamic Frequency and Voltage Scaling (DVFS) are diminishing and temporal shutdown of cores or other microchip components become more worthwhile. A consequence of powering off unused parts of a chip is that the relative difference between idle and fully loaded power consumption is increased. That means, future chips and whole server systems gain more power saving potential through power-aware load balancing, whereas in former times this power saving approach had only limited effect, and thus, was not widely adopted. While powering off complete servers was used to save energy, it will be superfluous in many cases when cores can be powered down. An important advantage that comes with that is a largely reduced time to respond to increased computational demand. We include the above developments in a server power model and quantify the advantage. Our conclusion is that strategies from datacenters when to power off server systems might be used in the future on core level, while load balancing mechanisms previously used at core level might be used in the future at server level.Keywords: power efficiency, static power consumption, dynamic power consumption, CMOS
Procedia PDF Downloads 2212510 Using Chatbots to Create Situational Content for Coursework
Authors: B. Bricklin Zeff
Abstract:
This research explores the development and application of a specialized chatbot tailored for a nursing English course, with a primary objective of augmenting student engagement through situational content and responsiveness to key expressions and vocabulary. Introducing the chatbot, elucidating its purpose, and outlining its functionality are crucial initial steps in the research study, as they provide a comprehensive foundation for understanding the design and objectives of the specialized chatbot developed for the nursing English course. These elements establish the context for subsequent evaluations and analyses, enabling a nuanced exploration of the chatbot's impact on student engagement and language learning within the nursing education domain. The subsequent exploration of the intricate language model development process underscores the fusion of scientific methodologies and artistic considerations in this application of artificial intelligence (AI). Tailored for educators and curriculum developers in nursing, practical principles extending beyond AI and education are considered. Some insights into leveraging technology for enhanced language learning in specialized fields are addressed, with potential applications of similar chatbots in other professional English courses. The overarching vision is to illuminate how AI can transform language learning, rendering it more interactive and contextually relevant. The presented chatbot is a tangible example, equipping educators with a practical tool to enhance their teaching practices. Methodologies employed in this research encompass surveys and discussions to gather feedback on the chatbot's usability, effectiveness, and potential improvements. The chatbot system was integrated into a nursing English course, facilitating the collection of valuable feedback from participants. Significant findings from the study underscore the chatbot's effectiveness in encouraging more verbal practice of target expressions and vocabulary necessary for performance in role-play assessment strategies. This outcome emphasizes the practical implications of integrating AI into language education in specialized fields. This research holds significance for educators and curriculum developers in the nursing field, offering insights into integrating technology for enhanced English language learning. The study's major findings contribute valuable perspectives on the practical impact of the chatbot on student interaction and verbal practice. Ultimately, the research sheds light on the transformative potential of AI in making language learning more interactive and contextually relevant, particularly within specialized domains like nursing.Keywords: chatbot, nursing, pragmatics, role-play, AI
Procedia PDF Downloads 652509 Preparation and Characterization of the TiO₂ Photocatalytic Membrane for the Degradation of Reactive Orange 16 Dye
Authors: Shruti Sakarkar, Jega Jegatheesan, Srinivasan Madapusi
Abstract:
Photocatalytic membranes have shown great potential for the removal of an organic and inorganic pollutant from wastewater as it combines the degradation and antibacterial properties from photocatalysis and physical separation by the membrane in a single unit. Incorporation of the semiconductor in membrane structure results in enhancing the performance and the properties of the membrane. In this study porous ultrafiltration polyvinylidene fluoride (PVDF) membranes with entrapped TiO₂ nanoparticle were prepared by phase inversion method and further used for the degradation of reactive orange 16 (RO16). Prepared photocatalytic membranes were characterized by the scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), contact angle, and atomic force microscope (AFM). The addition of TiO₂ nanopartparticles improves the strength and thermal stability of the membrane. In particular hydrophilicity and permeability increases with the increase of TiO₂ nanoparticles into the membrane. The photocatalytic membrane achieves 80-85% degrdation of RO16. The impact of different parameters such as pH, concentration of photocatalyst, dye concentration and effect of H₂O₂ were analysed. The best conditions for dye degradation were an initial dye concentration of 50 mg/L, with a membrane containing TiO₂ loading of 2wt%. It was observed that in the presence of H₂O₂, degradation increases with increasing H₂O₂ concentration and reached up to 95-98%. The high quality permeates obtained from the photocatalytic membrane can be reused.Keywords: photocatalytic membrane, TiO₂, PVDF, nanoparticles
Procedia PDF Downloads 1672508 Characteristics of GaAs/InGaP and AlGaAs/GaAs/InAlGaP Npn Heterostructural Optoelectronic Switches
Authors: Der-Feng Guo
Abstract:
Optoelectronic switches have attracted a considerable attention in the semiconductor research field due to their potential applications in optical computing systems and optoelectronic integrated circuits (OEICs). With high gains and high-speed operations, npn heterostructures can be used to produce promising optoelectronic switches. It is known that the bulk barrier and heterostructure-induced potential spike act important roles in the characteristics of the npn heterostructures. To investigate the effects of bulk barrier and potential spike heights on the optoelectronic switching of the npn heterostructures, GaAs/InGaP and AlGaAs/GaAs/InAlGaP npn heterostructural optoelectronic switches (HSOSs) have been fabricated in this work. It is seen that the illumination decreases the switching voltage Vs and increases the switching current Is, and thus the OFF state is under dark and ON state under illumination in the optical switching of the GaAs/InGaP HSOS characteristics. But in the AlGaAs/GaAs/InAlGaP HSOS characteristics, the Vs and Is present contrary trends, and the OFF state is under illumination and ON state under dark. The studied HSOSs show quite different switching variations with incident light, which are mainly attributed to the bulk barrier and potential spike heights affected by photogenerated carriers.Keywords: bulk barrier, heterostructure, optoelectronic switch, potential spike
Procedia PDF Downloads 2382507 Investigation of an Approach in Drug Delivery: Orally Fast Disintegrating Tablets
Authors: Tansel Comoglu
Abstract:
Orally fast disintegrating tablets (FDTs or ODTs) have become popular during the last decade, and manufacturing of ODTs is getting a rapidly growing area in the pharmaceutical industry. The concept of ODTs has emerged from the desire to provide patients with more conventional means of taking their medication. Drugs, that have satisfactory absorption from the oral mucosa or aimed for immediate therapeutic activity can be formulated in ODTs. After placing the ODT into the mouth, these tablets dissolve or disintegrate in the mouth usullay less than a minute, in the absence of additional water. Even though the ODT technology has taken an important path, as proved by a large group of commercial products on the drug market, there are so many problems to be solved in ODT formulations such as; formulation of hydrophobic drugs is stil a challenge, especially when the amount of drug is high. As these tablets dissolve or disintegrate in the mouth without the need of additional water, taste masking of active ingredients becomes essential in these systems because the drug is entirely released in the mouth. In ODT technology, coping with the taste of drugs is still a challenge. Resins or sweeteners or other techniques are also used in the formulation to aid taste-masking of the API. Another important factor to consider is whether they can be manufactured using conventional equipment and processes, as this will have a positive influence on manufacturing costs. Some products, however, may require a more costly, special unitdose packaging if the dosage form is fragile. In this overview, benefits, various formulation technologies, clinical studies and some future research trends of ODTs will be discussed.Keywords: orally fast disintegrating tablets, benefits, formulation technologies, future research trends
Procedia PDF Downloads 3602506 Internal Financing Constraints and Corporate Investment: Evidence from Indian Manufacturing Firms
Authors: Gaurav Gupta, Jitendra Mahakud
Abstract:
This study focuses on the significance of internal financing constraints on the determination of corporate fixed investments in the case of Indian manufacturing companies. Financing constraints companies which have less internal fund or retained earnings face more transaction and borrowing costs due to imperfections in the capital market. The period of study is 1999-2000 to 2013-2014 and we consider 618 manufacturing companies for which the continuous data is available throughout the study period. The data is collected from PROWESS data base maintained by Centre for Monitoring Indian Economy Pvt. Ltd. Panel data methods like fixed effect and random effect methods are used for the analysis. The Likelihood Ratio test, Lagrange Multiplier test, and Hausman test results conclude the suitability of the fixed effect model for the estimation. The cash flow and liquidity of the company have been used as the proxies for the internal financial constraints. In accordance with various theories of corporate investments, we consider other firm specific variable like firm age, firm size, profitability, sales and leverage as the control variables in the model. From the econometric analysis, we find internal cash flow and liquidity have the significant and positive impact on the corporate investments. The variables like cost of capital, sales growth and growth opportunities are found to be significantly determining the corporate investments in India, which is consistent with the neoclassical, accelerator and Tobin’s q theory of corporate investment. To check the robustness of results, we divided the sample on the basis of cash flow and liquidity. Firms having cash flow greater than zero are put under one group, and firms with cash flow less than zero are put under another group. Also, the firms are divided on the basis of liquidity following the same approach. We find that the results are robust to both types of companies having positive and negative cash flow and liquidity. The results for other variables are also in the same line as we find for the whole sample. These findings confirm that internal financing constraints play a significant role for determination of corporate investment in India. The findings of this study have the implications for the corporate managers to focus on the projects having higher expected cash inflows to avoid the financing constraints. Apart from that, they should also maintain adequate liquidity to minimize the external financing costs.Keywords: cash flow, corporate investment, financing constraints, panel data method
Procedia PDF Downloads 2412505 The Effects of Computer Game-Based Pedagogy on Graduate Students Statistics Performance
Authors: Eva Laryea, Clement Yeboah Authors
Abstract:
A pretest-posttest within subjects, experimental design was employed to examine the effects of a computerized basic statistics learning game on achievement and statistics-related anxiety of students enrolled in introductory graduate statistics course. Participants (N = 34) were graduate students in a variety of programs at state-funded research university in the Southeast United States. We analyzed pre-test posttest differences using paired samples t-tests for achievement and for statistics anxiety. The results of the t-test for knowledge in statistics were found to be statistically significant indicating significant mean gains for statistical knowledge as a function of the game-based intervention. Likewise, the results of the t-test for statistics-related anxiety were also statistically significant indicating a decrease in anxiety from pretest to posttest. The implications of the present study are significant for both teachers and students. For teachers, using computer games developed by the researchers can help to create a more dynamic and engaging classroom environment, as well as improve student learning outcomes. For students, playing these educational games can help to develop important skills such as problem solving, critical thinking, and collaboration. Students can develop interest in the subject matter and spend quality time to learn the course as they play the game without knowing that they are even learning the presupposed hard course. The future directions of the present study are promising, as technology continues to advance and become more widely available. Some potential future developments include the integration of virtual and augmented reality into educational games, the use of machine learning and artificial intelligence to create personalized learning experiences, and the development of new and innovative game-based assessment tools. It is also important to consider the ethical implications of computer game-based pedagogy, such as the potential for games to perpetuate harmful stereotypes and biases. As the field continues to evolve, it will be crucial to address these issues and work towards creating inclusive and equitable learning experiences for all students. This study has the potential to revolutionize the way basic statistics graduate students learn and offers exciting opportunities for future development and research. It is an important area of inquiry for educators, researchers, and policymakers, and will continue to be a dynamic and rapidly evolving field for years to come.Keywords: pretest-posttest within subjects, experimental design, achievement, statistics-related anxiety
Procedia PDF Downloads 582504 Computational Determination of the Magneto Electronic Properties of Ce₁₋ₓCuₓO₂ (x=12.5%): Emerging Material for Spintronic Devices
Authors: Aicha Bouhlala, Sabah Chettibi
Abstract:
Doping CeO₂ with transition metals is an effective way of tuning its properties. In the present work, we have performed self-consistent ab-initio calculation using the full-potential linearized augmented plane-wave method (FP-LAPW), based on the density functional theory (DFT) as implemented in the Wien2k simulation code to study the structural, electronic, and magnetic properties of the compound Ce₁₋ₓCuₓO₂ (x=12.5%) fluorite type oxide and to explore the effects of dopant Cu in ceria. The exchange correlation potential has been treated using the Perdew-Burke-Eenzerhof revised of solid (PBEsol). In structural properties, the equilibrium lattice constant is observed for the compound, which exists within the value of 5.382 A°. In electronic properties, the spin-polarized electronic bandstructure elucidates the semiconductor nature of the material in both spin channels, with the compound was observed to have a narrow bandgap on the spin-down configuration (0.162 EV) and bandgap on the spin-up (2.067 EV). Hence, the doped atom Cu plays a vital role in increasing the magnetic moments of the supercell, and the value of the total magnetic moment is found to be 2.99438 μB. Therefore, the compound Cu-doped CeO₂ shows a strong ferromagnetic behavior. The predicted results propose the compound could be a good candidate for spintronics applications.Keywords: Cu-doped CeO₂, DFT, Wien2k, properties
Procedia PDF Downloads 2552503 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
Authors: Vipul M. Patel, Hemantkumar B. Mehta
Abstract:
Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant
Procedia PDF Downloads 2922502 Porcelain Paste Processing by Robocasting 3D: Parameters Tuning
Authors: A. S. V. Carvalho, J. Luis, L. S. O. Pires, J. M. Oliveira
Abstract:
Additive manufacturing technologies (AM) experienced a remarkable growth in the latest years due to the development and diffusion of a wide range of three-dimensional (3D) printing techniques. Nowadays we can find techniques available for non-industrial users, like fused filament fabrication, but techniques like 3D printing, polyjet, selective laser sintering and stereolithography are mainly spread in the industry. Robocasting (R3D) shows a great potential due to its ability to shape materials with a wide range of viscosity. Industrial porcelain compositions showing different rheological behaviour can be prepared and used as candidate materials to be processed by R3D. The use of this AM technique in industry is very residual. In this work, a specific porcelain composition with suitable rheological properties will be processed by R3D, and a systematic study of the printing parameters tuning will be shown. The porcelain composition was formulated based on an industrial spray dried porcelain powder. The powder particle size and morphology was analysed. The powders were mixed with water and an organic binder on a ball mill at 200 rpm/min for 24 hours. The batch viscosity was adjusted by the addition of an acid solution and mixed again. The paste density, viscosity, zeta potential, particle size distribution and pH were determined. In a R3D system, different speed and pressure settings were studied to access their impact on the fabrication of porcelain models. These models were dried at 80 °C, during 24 hours and sintered in air at 1350 °C for 2 hours. The stability of the models, its walls and surface quality were studied and their physical properties were accessed. The microstructure and layer adhesion were observed by SEM. The studied processing parameters have a high impact on the models quality. Moreover, they have a high impact on the stacking of the filaments. The adequate tuning of the parameters has a huge influence on the final properties of the porcelain models. This work contributes to a better assimilation of AM technologies in ceramic industry. Acknowledgments: The RoboCer3D project – project of additive rapid manufacturing through 3D printing ceramic material (POCI-01-0247-FEDER-003350) financed by Compete 2020, PT 2020, European Regional Development Fund – FEDER through the International and Competitive Operational Program (POCI) under the PT2020 partnership agreement.Keywords: additive manufacturing, porcelain, robocasting, R3D
Procedia PDF Downloads 1632501 Process Monitoring Based on Parameterless Self-Organizing Map
Authors: Young Jae Choung, Seoung Bum Kim
Abstract:
Statistical Process Control (SPC) is a popular technique for process monitoring. A widely used tool in SPC is a control chart, which is used to detect the abnormal status of a process and maintain the controlled status of the process. Traditional control charts, such as Hotelling’s T2 control chart, are effective techniques to detect abnormal observations and monitor processes. However, many complicated manufacturing systems exhibit nonlinearity because of the different demands of the market. In this case, the unregulated use of a traditional linear modeling approach may not be effective. In reality, many industrial processes contain the nonlinear and time-varying properties because of the fluctuation of process raw materials, slowing shift of the set points, aging of the main process components, seasoning effects, and catalyst deactivation. The use of traditional SPC techniques with time-varying data will degrade the performance of the monitoring scheme. To address these issues, in the present study, we propose a parameterless self-organizing map (PLSOM)-based control chart. The PLSOM-based control chart not only can manage a situation where the distribution or parameter of the target observations changes, but also address the nonlinearity of modern manufacturing systems. The control limits of the proposed PLSOM chart are established by estimating the empirical level of significance on the percentile using a bootstrap method. Experimental results with simulated data and actual process data from a thin-film transistor-liquid crystal display process demonstrated the effectiveness and usefulness of the proposed chart.Keywords: control chart, parameter-less self-organizing map, self-organizing map, time-varying property
Procedia PDF Downloads 2752500 A Practical Approach Towards Disinfection Challenges in Sterile Manufacturing Area
Authors: Doris Lacej, Eni Bushi
Abstract:
Cleaning and disinfection procedures are essential for maintaining the cleanliness status of the pharmaceutical manufacturing environment particularly of the cleanrooms and sterile unit area. The Good Manufacturing Practice (GMP) Annex 1 recommendation highly requires the implementation of the standard and validated cleaning and disinfection protocols. However, environmental monitoring has shown that even a validated cleaning method with certified agents may result in the presence of atypical microorganisms’ colony that exceeds GMP limits for a specific cleanroom area. In response to this issue, this case study aims to arrive at the root cause of the microbial contamination observed in the sterile production environment in Profarma pharmaceutical industry in Albania through applying a problem-solving practical approach that ensures the appropriate sterility grade. The guidelines and literature emphasize the importance of several factors in the prevention of possible microbial contamination occurring in cleanrooms, grade A and C. These factors are integrated into a practical framework, to identify the root cause of the presence of Aspergillus Niger colony in the sterile production environment in Profarma pharmaceutical industry in Albania. In addition, the application of a semi-automatic disinfecting system such as H2O2 FOG into sterile grade A and grade C cleanrooms has been an effective solution in eliminating the atypical colony of Aspergillus Niger. Selecting the appropriate detergents and disinfectants at the right concentration, frequency, and combination; the presence of updated and standardized guidelines for cleaning and disinfection as well as continuous training of operators on these practices in accordance with the updated GMP guidelines are some of the identified factors that influence the success of achieving sterility grade. However, to ensure environmental sustainability it is important to be prepared for identifying the source of contamination and making the appropriate decision. The proposed case-based practical approach may help pharmaceutical companies to achieve sterile production and cleanliness environmental sustainability in challenging situations. Apart from the integration of valid agents and standardized cleaning and disinfection protocols according to GMP Annex 1, pharmaceutical companies must be careful and investigate the source and all the steps that can influence the results of an abnormal situation. Subsequently apart from identifying the root cause it is important to solve the problem with a successful alternative approach.Keywords: cleanrooms, disinfectants, environmental monitoring, GMP Annex 1
Procedia PDF Downloads 2162499 The Application and Relevance of Costing Techniques in Service-Oriented Business Organizations a Review of the Activity-Based Costing (ABC) Technique
Authors: Udeh Nneka Evelyn
Abstract:
The shortcoming of traditional costing system in terms of validity, accuracy, consistency, and Relevance increased the need for modern management accounting system. Activity –Based Costing (ABC) can be used as a modern tool for planning, Control and decision making for management. Past studies on ABC system have focused on manufacturing firms thereby making the studies on service firms scanty to some extent. This paper reviewed the application and relevance of activity-based costing technique in service oriented business organizations by employing a qualitative research method which relied heavily on literature review of past and current relevant articles focusing on ABC. Findings suggest that ABC is not only appropriate for use in a manufacturing environment; it is also most appropriate for service organizations such as financial institutions, the healthcare industry and government organization. In fact, some banking and financial institutions have been applying the concept for years under other names. One of them is unit costing, which is used to calculate the cost of banking services by determining the cost and consumption of each unit of output of functions required to deliver the service. ABC in very basic terms may provide very good payback for businesses. Some of the benefits that relate directly to the financial services industry are: identification the most profitable customers: more accurate product and service pricing: increase product profitability: Well organized process costs.Keywords: business, costing, organizations, planning, techniques
Procedia PDF Downloads 2402498 Enhancing Large Language Models' Data Analysis Capability with Planning-and-Execution and Code Generation Agents: A Use Case for Southeast Asia Real Estate Market Analytics
Authors: Kien Vu, Jien Min Soh, Mohamed Jahangir Abubacker, Piyawut Pattamanon, Soojin Lee, Suvro Banerjee
Abstract:
Recent advances in Generative Artificial Intelligence (GenAI), in particular Large Language Models (LLMs) have shown promise to disrupt multiple industries at scale. However, LLMs also present unique challenges, notably, these so-called "hallucination" which is the generation of outputs that are not grounded in the input data that hinders its adoption into production. Common practice to mitigate hallucination problem is utilizing Retrieval Agmented Generation (RAG) system to ground LLMs'response to ground truth. RAG converts the grounding documents into embeddings, retrieve the relevant parts with vector similarity between user's query and documents, then generates a response that is not only based on its pre-trained knowledge but also on the specific information from the retrieved documents. However, the RAG system is not suitable for tabular data and subsequent data analysis tasks due to multiple reasons such as information loss, data format, and retrieval mechanism. In this study, we have explored a novel methodology that combines planning-and-execution and code generation agents to enhance LLMs' data analysis capabilities. The approach enables LLMs to autonomously dissect a complex analytical task into simpler sub-tasks and requirements, then convert them into executable segments of code. In the final step, it generates the complete response from output of the executed code. When deployed beta version on DataSense, the property insight tool of PropertyGuru, the approach yielded promising results, as it was able to provide market insights and data visualization needs with high accuracy and extensive coverage by abstracting the complexities for real-estate agents and developers from non-programming background. In essence, the methodology not only refines the analytical process but also serves as a strategic tool for real estate professionals, aiding in market understanding and enhancement without the need for programming skills. The implication extends beyond immediate analytics, paving the way for a new era in the real estate industry characterized by efficiency and advanced data utilization.Keywords: large language model, reasoning, planning and execution, code generation, natural language processing, prompt engineering, data analysis, real estate, data sense, PropertyGuru
Procedia PDF Downloads 872497 Aircraft Components, Manufacturing and Design: Opportunities, Bottlenecks, and Challenges
Authors: Ionel Botef
Abstract:
Aerospace products operate in very aggressive environments characterized by high temperature, high pressure, large stresses on individual components, the presence of oxidizing and corroding atmosphere, as well as internally created or externally ingested particulate materials that induce erosion and impact damage. Consequently, during operation, the materials of individual components degrade. In addition, the impact of maintenance costs for both civil and military aircraft was estimated at least two to three times greater than initial purchase values, and this trend is expected to increase. As a result, for viable product realisation and maintenance, a spectrum of issues regarding novel processing technologies, innovation of new materials, performance, costs, and environmental impact must constantly be addressed. One of these technologies, namely the cold-gas dynamic-spray process has enabled a broad range of coatings and applications, including many that have not been previously possible or commercially practical, hence its potential for new aerospace applications. Therefore, the purpose of this paper is to summarise the state of the art of this technology alongside its theoretical and experimental studies, and explore how the cold-gas dynamic-spray process could be integrated within a framework that finally could lead to more efficient aircraft maintenance. Based on the paper's qualitative findings supported by authorities, evidence, and logic essentially it is argued that the cold-gas dynamic-spray manufacturing process should not be viewed in isolation, but should be viewed as a component of a broad framework that finally leads to more efficient aerospace operations.Keywords: aerospace, aging aircraft, cold spray, materials
Procedia PDF Downloads 1212496 A Survey on Intelligent Traffic Management with Cooperative Driving in Urban Roads
Authors: B. Karabuluter, O. Karaduman
Abstract:
Traffic management and traffic planning are important issues, especially in big cities. Due to the increase of personal vehicles and the physical constraints of urban roads, the problem of transportation especially in crowded cities over time is revealed. This situation reduces the living standards, and it can put human life at risk because the vehicles such as ambulance, fire department are prevented from reaching their targets. Even if the city planners take these problems into account, emergency planning and traffic management are needed to avoid cases such as traffic congestion, intersections, traffic jams caused by traffic accidents or roadworks. In this study, in smart traffic management issues, proposed solutions using intelligent vehicles acting in cooperation with urban roads are examined. Traffic management is becoming more difficult due to factors such as fatigue, carelessness, sleeplessness, social behavior patterns, and lack of education. However, autonomous vehicles, which remove the problems caused by human weaknesses by providing driving control, are increasing the success of practicing the algorithms developed in city traffic management. Such intelligent vehicles have become an important solution in urban life by using 'swarm intelligence' algorithms and cooperative driving methods to provide traffic flow, prevent traffic accidents, and increase living standards. In this study, studies conducted in this area have been dealt with in terms of traffic jam, intersections, regulation of traffic flow, signaling, prevention of traffic accidents, cooperation and communication techniques of vehicles, fleet management, transportation of emergency vehicles. From these concepts, some taxonomies were made out of the way. This work helps to develop new solutions and algorithms for cities where intelligent vehicles that can perform cooperative driving can take place, and at the same time emphasize the trend in this area.Keywords: intelligent traffic management, cooperative driving, smart driving, urban road, swarm intelligence, connected vehicles
Procedia PDF Downloads 3322495 Feature Analysis of Predictive Maintenance Models
Authors: Zhaoan Wang
Abstract:
Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.Keywords: automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation
Procedia PDF Downloads 1332494 Ghost Frequency Noise Reduction through Displacement Deviation Analysis
Authors: Paua Ketan, Bhagate Rajkumar, Adiga Ganesh, M. Kiran
Abstract:
Low gear noise is an important sound quality feature in modern passenger cars. Annoying gear noise from the gearbox is influenced by the gear design, gearbox shaft layout, manufacturing deviations in the components, assembly errors and the mounting arrangement of the complete gearbox. Geometrical deviations in the form of profile and lead errors are often present on the flanks of the inspected gears. Ghost frequencies of a gear are very challenging to identify in standard gear measurement and analysis process due to small wavelengths involved. In this paper, gear whine noise occurring at non-integral multiples of gear mesh frequency of passenger car gearbox is investigated and the root cause is identified using the displacement deviation analysis (DDA) method. DDA method is applied to identify ghost frequency excitations on the flanks of gears arising out of generation grinding. Frequency identified through DDA correlated with the frequency of vibration and noise on the end-of-line machine as well as vehicle level measurements. With the application of DDA method along with standard lead profile measurement, gears with ghost frequency geometry deviations were identified on the production line to eliminate defective parts and thereby eliminate ghost frequency noise from a vehicle. Further, displacement deviation analysis can be used in conjunction with the manufacturing process simulation to arrive at suitable countermeasures for arresting the ghost frequency.Keywords: displacement deviation analysis, gear whine, ghost frequency, sound quality
Procedia PDF Downloads 1462493 Servitization in Machine and Plant Engineering: Leveraging Generative AI for Effective Product Portfolio Management Amidst Disruptive Innovations
Authors: Till Gramberg
Abstract:
In the dynamic world of machine and plant engineering, stagnation in the growth of new product sales compels companies to reconsider their business models. The increasing shift toward service orientation, known as "servitization," along with challenges posed by digitalization and sustainability, necessitates an adaptation of product portfolio management (PPM). Against this backdrop, this study investigates the current challenges and requirements of PPM in this industrial context and develops a framework for the application of generative artificial intelligence (AI) to enhance agility and efficiency in PPM processes. The research approach of this study is based on a mixed-method design. Initially, qualitative interviews with industry experts were conducted to gain a deep understanding of the specific challenges and requirements in PPM. These interviews were analyzed using the Gioia method, painting a detailed picture of the existing issues and needs within the sector. This was complemented by a quantitative online survey. The combination of qualitative and quantitative research enabled a comprehensive understanding of the current challenges in the practical application of machine and plant engineering PPM. Based on these insights, a specific framework for the application of generative AI in PPM was developed. This framework aims to assist companies in implementing faster and more agile processes, systematically integrating dynamic requirements from trends such as digitalization and sustainability into their PPM process. Utilizing generative AI technologies, companies can more quickly identify and respond to trends and market changes, allowing for a more efficient and targeted adaptation of the product portfolio. The study emphasizes the importance of an agile and reactive approach to PPM in a rapidly changing environment. It demonstrates how generative AI can serve as a powerful tool to manage the complexity of a diversified and continually evolving product portfolio. The developed framework offers practical guidelines and strategies for companies to improve their PPM processes by leveraging the latest technological advancements while maintaining ecological and social responsibility. This paper significantly contributes to deepening the understanding of the application of generative AI in PPM and provides a framework for companies to manage their product portfolios more effectively and adapt to changing market conditions. The findings underscore the relevance of continuous adaptation and innovation in PPM strategies and demonstrate the potential of generative AI for proactive and future-oriented business management.Keywords: servitization, product portfolio management, generative AI, disruptive innovation, machine and plant engineering
Procedia PDF Downloads 822492 Evaluating and Prioritizing the Effective Management Factors of Human Resources Empowerment and Efficiency in Manufacturing Companies: A Case Study on Fars’ Livestock and Poultry Manufacturing Companies
Authors: Mohsen Yaghmor, Sima Radmanesh
Abstract:
Rapid environmental changes have been threatening the life of many organizations. Enabling and productivity of human resource should be considered as the most important issue in order to increase performance and ensure survival of the organizations. In this research, the effectiveness of management factory in productivity and inability of human resource have been identified and reviewed at glance. Afterwards, answers were sought to questions "What are the factors effecting productivity and enabling of human resource?" and "What are the priority order based on effective management of human resource in Fars Poultry Complex?". A specified questionnaire has been designed regarding the priorities and effectiveness of the identified factors. Six factors were specified consisting of: individual characteristics, teaching, motivation, partnership management, authority or power submission and job development that have most effect on organization. Then a questionnaire was specified for priority and effect measurement of specified factors that were reached after collecting information and using statistical tests of Keronchbakh alpha coefficient r = 0.792, so that we can say the questionnaire has sufficient reliability. After information analysis of specified six factors by Friedman test their effects were categorized. Measurement on organization respectively consists of individual characteristics, job development or enrichment, authority submission, partnership management, teaching and motivation. Lastly, approaches has been introduced to increase productivity of manpower.Keywords: productivity, empowerment, enrichment, authority submission, partnership management, teaching, motivation
Procedia PDF Downloads 2652491 Optimization of Fused Deposition Modeling 3D Printing Process via Preprocess Calibration Routine Using Low-Cost Thermal Sensing
Authors: Raz Flieshman, Adam Michael Altenbuchner, Jörg Krüger
Abstract:
This paper presents an approach to optimizing the Fused Deposition Modeling (FDM) 3D printing process through a preprocess calibration routine of printing parameters. The core of this method involves the use of a low-cost thermal sensor capable of measuring tempera-tures within the range of -20 to 500 degrees Celsius for detailed process observation. The calibration process is conducted by printing a predetermined path while varying the process parameters through machine instructions (g-code). This enables the extraction of critical thermal, dimensional, and surface properties along the printed path. The calibration routine utilizes computer vision models to extract features and metrics from the thermal images, in-cluding temperature distribution, layer adhesion quality, surface roughness, and dimension-al accuracy and consistency. These extracted properties are then analyzed to optimize the process parameters to achieve the desired qualities of the printed material. A significant benefit of this calibration method is its potential to create printing parameter profiles for new polymer and composite materials, thereby enhancing the versatility and application range of FDM 3D printing. The proposed method demonstrates significant potential in enhancing the precision and reliability of FDM 3D printing, making it a valuable contribution to the field of additive manufacturing.Keywords: FDM 3D printing, preprocess calibration, thermal sensor, process optimization, additive manufacturing, computer vision, material profiles
Procedia PDF Downloads 412490 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers
Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya
Abstract:
In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.Keywords: IVF, embryo, machine learning, time-lapse imaging data
Procedia PDF Downloads 922489 The Roman Fora in North Africa Towards a Supportive Protocol to the Decision for the Morphological Restitution
Authors: Dhouha Laribi Galalou, Najla Allani Bouhoula, Atef Hammouda
Abstract:
This research delves into the fundamental question of the morphological restitution of built archaeology in order to place it in its paradigmatic context and to seek answers to it. Indeed, the understanding of the object of the study, its analysis, and the methodology of solving the morphological problem posed, are manageable aspects only by means of a thoughtful strategy that draws on well-defined epistemological scaffolding. In this stream, the crisis of natural reasoning in archaeology has generated multiple changes in this field, ranging from the use of new tools to the integration of an archaeological information system where urbanization involves the interplay of several disciplines. The built archaeological topic is also an architectural and morphological object. It is also a set of articulated elementary data, the understanding of which is about to be approached from a logicist point of view. Morphological restitution is no exception to the rule, and the inter-exchange between the different disciplines uses the capacity of each to frame the reflection on the incomplete elements of a given architecture or on its different phases and multiple states of existence. The logicist sequence is furnished by the set of scattered or destroyed elements found, but also by what can be called a rule base which contains the set of rules for the architectural construction of the object. The knowledge base built from the archaeological literature also provides a reference that enters into the game of searching for forms and articulations. The choice of the Roman Forum in North Africa is justified by the great urban and architectural characteristics of this entity. The research on the forum involves both a fairly large knowledge base but also provides the researcher with material to study - from a morphological and architectural point of view - starting from the scale of the city down to the architectural detail. The experimentation of the knowledge deduced on the paradigmatic level, as well as the deduction of an analysis model, is then carried out on the basis of a well-defined context which contextualises the experimentation from the elaboration of the morphological information container attached to the rule base and the knowledge base. The use of logicist analysis and artificial intelligence has allowed us to first question the aspects already known in order to measure the credibility of our system, which remains above all a decision support tool for the morphological restitution of Roman Fora in North Africa. This paper presents a first experimentation of the model elaborated during this research, a model framed by a paradigmatic discussion and thus trying to position the research in relation to the existing paradigmatic and experimental knowledge on the issue.Keywords: classical reasoning, logicist reasoning, archaeology, architecture, roman forum, morphology, calculation
Procedia PDF Downloads 147