Search results for: 3D implant position
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2456

Search results for: 3D implant position

56 National Digital Soil Mapping Initiatives in Europe: A Review and Some Examples

Authors: Dominique Arrouays, Songchao Chen, Anne C. Richer-De-Forges

Abstract:

Soils are at the crossing of many issues such as food and water security, sustainable energy, climate change mitigation and adaptation, biodiversity protection, human health and well-being. They deliver many ecosystem services that are essential to life on Earth. Therefore, there is a growing demand for soil information on a national and global scale. Unfortunately, many countries do not have detailed soil maps, and, when existing, these maps are generally based on more or less complex and often non-harmonized soil classifications. An estimate of their uncertainty is also often missing. Thus, there are not easy to understand and often not properly used by end-users. Therefore, there is an urgent need to provide end-users with spatially exhaustive grids of essential soil properties, together with an estimate of their uncertainty. One way to achieve this is digital soil mapping (DSM). The concept of DSM relies on the hypothesis that soils and their properties are not randomly distributed, but that they depend on the main soil-forming factors that are climate, organisms, relief, parent material, time (age), and position in space. All these forming factors can be approximated using several exhaustive spatial products such as climatic grids, remote sensing products or vegetation maps, digital elevation models, geological or lithological maps, spatial coordinates of soil information, etc. Thus, DSM generally relies on models calibrated with existing observed soil data (point observations or maps) and so-called “ancillary co-variates” that come from other available spatial products. Then the model is generalized on grids where soil parameters are unknown in order to predict them, and the prediction performances are validated using various methods. With the growing demand for soil information at a national and global scale and the increase of available spatial co-variates national and continental DSM initiatives are continuously increasing. This short review illustrates the main national and continental advances in Europe, the diversity of the approaches and the databases that are used, the validation techniques and the main scientific and other issues. Examples from several countries illustrate the variety of products that were delivered during the last ten years. The scientific production on this topic is continuously increasing and new models and approaches are developed at an incredible speed. Most of the digital soil mapping (DSM) products rely mainly on machine learning (ML) prediction models and/or the use or pedotransfer functions (PTF) in which calibration data come from soil analyses performed in labs or for existing conventional maps. However, some scientific issues remain to be solved and also political and legal ones related, for instance, to data sharing and to different laws in different countries. Other issues related to communication to end-users and education, especially on the use of uncertainty. Overall, the progress is very important and the willingness of institutes and countries to join their efforts is increasing. Harmonization issues are still remaining, mainly due to differences in classifications or in laboratory standards between countries. However numerous initiatives are ongoing at the EU level and also at the global level. All these progress are scientifically stimulating and also promissing to provide tools to improve and monitor soil quality in countries, EU and at the global level.

Keywords: digital soil mapping, global soil mapping, national and European initiatives, global soil mapping products, mini-review

Procedia PDF Downloads 184
55 Numerical Simulation of the Production of Ceramic Pigments Using Microwave Radiation: An Energy Efficiency Study Towards the Decarbonization of the Pigment Sector

Authors: Pedro A. V. Ramos, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Global warming mitigation is one of the main challenges of this century, having the net balance of greenhouse gas (GHG) emissions to be null or negative in 2050. Industry electrification is one of the main paths to achieving carbon neutrality within the goals of the Paris Agreement. Microwave heating is becoming a popular industrial heating mechanism due to the absence of direct GHG emissions, but also the rapid, volumetric, and efficient heating. In the present study, a mathematical model is used to simulate the production using microwave heating of two ceramic pigments, at high temperatures (above 1200 Celsius degrees). The two pigments studied were the yellow (Pr, Zr)SiO₂ and the brown (Ti, Sb, Cr)O₂. The chemical conversion of reactants into products was included in the model by using the kinetic triplet obtained with the model-fitting method and experimental data present in the Literature. The coupling between the electromagnetic, thermal, and chemical interfaces was also included. The simulations were computed in COMSOL Multiphysics. The geometry includes a moving plunger to allow for the cavity impedance matching and thus maximize the electromagnetic efficiency. To accomplish this goal, a MATLAB controller was developed to automatically search the position of the moving plunger that guarantees the maximum efficiency. The power is automatically and permanently adjusted during the transient simulation to impose stationary regime and total conversion, the two requisites of every converged solution. Both 2D and 3D geometries were used and a parametric study regarding the axial bed velocity and the heat transfer coefficient at the boundaries was performed. Moreover, a Verification and Validation study was carried out by comparing the conversion profiles obtained numerically with the experimental data available in the Literature; the numerical uncertainty was also estimated to attest to the result's reliability. The results show that the model-fitting method employed in this work is a suitable tool to predict the chemical conversion of reactants into the pigment, showing excellent agreement between the numerical results and the experimental data. Moreover, it was demonstrated that higher velocities lead to higher thermal efficiencies and thus lower energy consumption during the process. This work concludes that the electromagnetic heating of materials having high loss tangent and low thermal conductivity, like ceramic materials, maybe a challenge due to the presence of hot spots, which may jeopardize the product quality or even the experimental apparatus. The MATLAB controller increased the electromagnetic efficiency by 25% and global efficiency of 54% was obtained for the titanate brown pigment. This work shows that electromagnetic heating will be a key technology in the decarbonization of the ceramic sector as reductions up to 98% in the specific GHG emissions were obtained when compared to the conventional process. Furthermore, numerical simulations appear as a suitable technique to be used in the design and optimization of microwave applicators, showing high agreement with experimental data.

Keywords: automatic impedance matching, ceramic pigments, efficiency maximization, high-temperature microwave heating, input power control, numerical simulation

Procedia PDF Downloads 139
54 Evaluating the Accuracy of Biologically Relevant Variables Generated by ClimateAP

Authors: Jing Jiang, Wenhuan XU, Lei Zhang, Shiyi Zhang, Tongli Wang

Abstract:

Climate data quality significantly affects the reliability of ecological modeling. In the Asia Pacific (AP) region, low-quality climate data hinders ecological modeling. ClimateAP, a software developed in 2017, generates high-quality climate data for the AP region, benefiting researchers in forestry and agriculture. However, its adoption remains limited. This study aims to confirm the validity of biologically relevant variable data generated by ClimateAP during the normal climate period through comparison with the currently available gridded data. Climate data from 2,366 weather stations were used to evaluate the prediction accuracy of ClimateAP in comparison with the commonly used gridded data from WorldClim1.4. Univariate regressions were applied to 48 monthly biologically relevant variables, and the relationship between the observational data and the predictions made by ClimateAP and WorldClim was evaluated using Adjusted R-Squared and Root Mean Squared Error (RMSE). Locations were categorized into mountainous and flat landforms, considering elevation, slope, ruggedness, and Topographic Position Index. Univariate regressions were then applied to all biologically relevant variables for each landform category. Random Forest (RF) models were implemented for the climatic niche modeling of Cunninghamia lanceolata. A comparative analysis of the prediction accuracies of RF models constructed with distinct climate data sources was conducted to evaluate their relative effectiveness. Biologically relevant variables were obtained from three unpublished Chinese meteorological datasets. ClimateAPv3.0 and WorldClim predictions were obtained from weather station coordinates and WorldClim1.4 rasters, respectively, for the normal climate period of 1961-1990. Occurrence data for Cunninghamia lanceolata came from integrated biodiversity databases with 3,745 unique points. ClimateAP explains a minimum of 94.74%, 97.77%, 96.89%, and 94.40% of monthly maximum, minimum, average temperature, and precipitation variances, respectively. It outperforms WorldClim in 37 biologically relevant variables with lower RMSE values. ClimateAP achieves higher R-squared values for the 12 monthly minimum temperature variables and consistently higher Adjusted R-squared values across all landforms for precipitation. ClimateAP's temperature data yields lower Adjusted R-squared values than gridded data in high-elevation, rugged, and mountainous areas but achieves higher values in mid-slope drainages, plains, open slopes, and upper slopes. Using ClimateAP improves the prediction accuracy of tree occurrence from 77.90% to 82.77%. The biologically relevant climate data produced by ClimateAP is validated based on evaluations using observations from weather stations. The use of ClimateAP leads to an improvement in data quality, especially in non-mountainous regions. The results also suggest that using biologically relevant variables generated by ClimateAP can slightly enhance climatic niche modeling for tree species, offering a better understanding of tree species adaptation and resilience compared to using gridded data.

Keywords: climate data validation, data quality, Asia pacific climate, climatic niche modeling, random forest models, tree species

Procedia PDF Downloads 68
53 Accessing Motional Quotient for All Round Development

Authors: Zongping Wang, Chengjun Cui, Jiacun Wang

Abstract:

The concept of intelligence has been widely used to access an individual's cognitive abilities to learn, form concepts, understand, apply logic, and reason. According to the multiple intelligence theory, there are eight distinguished types of intelligence. One of them is the bodily-kinaesthetic intelligence that links to the capacity of an individual controlling his body and working with objects. Motor intelligence, on the other hand, reflects the capacity to understand, perceive and solve functional problems by motor behavior. Both bodily-kinaesthetic intelligence and motor intelligence refer directly or indirectly to bodily capacity. Inspired by these two intelligence concepts, this paper introduces motional intelligence (MI). MI is two-fold. (1) Body strength, which is the capacity of various organ functions manifested by muscle activity under the control of the central nervous system during physical exercises. It can be measured by the magnitude of muscle contraction force, the frequency of repeating a movement, the time to finish a movement of body position, the duration to maintain muscles in a working status, etc. Body strength reflects the objective of MI. (2) Level of psychiatric willingness to physical events. It is a subjective thing and determined by an individual’s self-consciousness to physical events and resistance to fatigue. As such, we call it subjective MI. Subjective MI can be improved through education and proper social events. The improvement of subjective MI can lead to that of objective MI. A quantitative score of an individual’s MI is motional quotient (MQ). MQ is affected by several factors, including genetics, physical training, diet and lifestyle, family and social environment, and personal awareness of the importance of physical exercise. Genes determine one’s body strength potential. Physical training, in general, makes people stronger, faster and swifter. Diet and lifestyle have a direct impact on health. Family and social environment largely affect one’s passion for physical activities, so does personal awareness of the importance of physical exercise. The key to the success of the MQ study is developing an acceptable and efficient system that can be used to assess MQ objectively and quantitatively. We should apply different accessing systems to different groups of people according to their ages and genders. Field test, laboratory test and questionnaire are among essential components of MQ assessment. A scientific interpretation of MQ score is part of an MQ assessment system as it will help an individual to improve his MQ. IQ (intelligence quotient) and EQ (emotional quotient) and their test have been studied intensively. We argue that IQ and EQ study alone is not sufficient for an individual’s all round development. The significance of MQ study is that it offsets IQ and EQ study. MQ reflects an individual’s mental level as well as bodily level of intelligence in physical activities. It is well-known that the American Springfield College seal includes the Luther Gulick triangle with the words “spirit,” “mind,” and “body” written within it. MQ, together with IQ and EQ, echoes this education philosophy. Since its inception in 2012, the MQ research has spread rapidly in China. By now, six prestigious universities in China have established research centers on MQ and its assessment.

Keywords: motional Intelligence, motional quotient, multiple intelligence, motor intelligence, all round development

Procedia PDF Downloads 166
52 Squaring the Triangle: A Stumpian Solution to the Major Frictions that Exist between Pragmatism, Religion, and Moral Progress; Richard Bernstein, Cornel West, and Hans-Georg Gadamer Re-Examined

Authors: Martin Bloomfield

Abstract:

This paper examines frictions that lie at the heart of any pragmatist conception of religion and moral progress. I take moral progress to require the ability to correctly analyse social problems, provide workable solutions to these problems, and then rationally justify the analyses and solutions used. I take religion here to involve, as a minimal requirement, belief in the existence of God, a god, or gods, such that they are recognisable to most informed observers within the Western tradition. I take pragmatism to belong to, and borrow from, the philosophical traditions of non-absolutism, anti-realism, historicism, and voluntarism. For clarity, the relevant brands of each of these traditions will be examined during the paper. The friction identified in the title may be summed up as follows: those who, like Cornel West (and, when he was alive, Hilary Putnam), are theistic pragmatists with an interest in realising moral progress, have all been aware of a problem inherent in their positions. Assuming it can be argued that religion and moral progress are compatible, a non-absolutist, anti-realist, historicist position nevertheless raises problems that, as Leon Wieseltier pointed out, the pragmatist still believes in a God who isn’t real, and that the truth of any religious statement (including “God exists”) is relative not to any objective reality but to communities of engaged interlocutors; and that, where there are no absolute standards of right and wrong, any analysis of (and solution to) social problems can only be rationally justified relative to one or another community or moral and epistemic framework. Attempts made to universalise these frameworks, notably by Dewey, Gadamer, and Bernstein, through democracy and hermeneutics, fall into either a vicious and infinite regress, or (taking inspiration from Habermas) the problem of moral truths being decided through structures of power. The paper removes this friction by highlighting the work of Christian pragmatist Cornel West through the lens of the philosopher of religion Eleanore Stump. While West recognises that for the pragmatist, the correctness of any propositions about God or moral progress is impossible to rationally justify to any outside the religious, moral or epistemic framework of the speakers themselves without, as he calls it, a ‘locus of truth’ (which is itself free from the difficulties Dewey, Gadamer and Bernstein fall victim to), Stump identifies routes to knowledge which provide such a locus while avoiding the problems of relativism, power dynamics, and regress. She describes “Dominican” and “Franciscan” knowledge (roughly characterised as “propositional” and “non-propositional”), and uses this distinction to identify something Bernstein saw as missing from Gadamer: culture-independent norms, upon which universal agreement can be built. The “Franciscan knowledge” Stump identifies as key is second-personal knowledge of Christ. For West, this allows the knower to access vital culture-independent norms. If correct, instead of the classical view (religion is incompatible with pragmatism), Christianity becomes key to pragmatist knowledge and moral-knowledge claims. Rather than being undermined by pragmatism, Christianity enables pragmatists to make moral and epistemic claims, free from troubling power dynamics and cultural relativism.

Keywords: Cornel West, Cultural Relativism, Gadamer, Philosophy of Religion, Pragmatism

Procedia PDF Downloads 198
51 To Smile or Not to Smile: How Engendered Facial Cues affect Hiring Decisions

Authors: Sabrina S. W. Chan, Emily Schwartzman, Nicholas O. Rule

Abstract:

Past literature showed mixed findings on how smiling affects a person’s chance of getting hired. On one hand, smiling suggests enthusiasm, cooperativeness, and enthusiasm, which can elicit positive impressions. On the other hand, smiling can suggest weaker professionalism or a filler to hide nervousness, which can lower a candidate’s perceived competence. Emotion expressions can also be perceived differently depending on the person’s gender and can activate certain gender stereotypes. Women especially face a double bind with respect to hiring decisions and smiling. Because women are socially expected to smile more, those who do not smile will be considered stereotype incongruent. This becomes a noisy signal to employers and may lower their chance of being hired. However, women’s smiling as a formality may also be an obstacle. They are more likely to put on fake smiles; but if they do, they are also likely to be perceived as inauthentic and over-expressive. This paper sought to investigate how smiling affects hiring decisions, and whether this relationship is moderated by gender. In Study 1, participants were shown a series of smiling and emotionally neutral face images, incorporated into fabricated LinkedIn profiles. Participants were asked to rate how hireable they thought that candidate was. Results showed that participants rated smiling candidates as more hireable than nonsmiling candidates, and that there was no difference in gender. Moreover, individuals who did not study business were more biased in their perceptions than those who did. Since results showed a trending favoritism over female targets, in suspect of desirability bias, a second study was conducted to collect implicit measures behind the decision-making process. In Study 2, a mouse-tracking design was adopted to explore whether participants’ implicit attitudes were different from their explicit responses on hiring. Participants asked to respond whether they would offer an interview to a candidate. Findings from Study 1 was replicated in that smiling candidates received more offers than neutral-faced candidates. Results also showed that female candidates received significantly more offers than male candidates but was associated with higher attractiveness ratings. There were no significant findings in reaction time or change of decisions. However, stronger hesitation was detected for responses made towards neutral targets when participants perceived the given position as masculine, implying a conscious attempt of making situational judgments (e.g., considering candidate’s personality and job fit) to override automatic processing (evaluations based on attractiveness). Future studies would look at how these findings differ for positions which are stereotypically masculine (e.g., surgeons) and stereotypically feminine (e.g., kindergarten teachers). Current findings have strong implications for developing bias-free hiring policies in workplace, especially for organizations who maintain online/hybrid working arrangements in the post-pandemic era. This also bridges the literature gap between face perception and gender discrimination, highlighting how engendered facial cues can affect individual’s career development and organization’s success in diversity and inclusion.

Keywords: engendered facial cues, face perception, gender stereotypes, hiring decisions, smiling, workplace discrimination

Procedia PDF Downloads 135
50 The Role of the New Silk Road (One Belt, One Road Initiative) in Connecting the Free Zones of Iran and Turkey: A Case Study of the Free Zones of Sarakhs and Maku to Anatolia and Europe

Authors: Morteza Ghourchi, Meraj Jafari, Atena Soheilazizi

Abstract:

Today, with the globalization of communications and the connection of countries within the framework of the global economy, free zones play the most important role as the engine of global economic development and globalization of countries. In this regard, corridors have a fundamental role in linking countries and free zones physically with each other. One of these corridors is the New Silk Road corridor (One Belt, One Road initiative), which is being built by China to connect with European countries. In connecting this corridor to European countries, Iran and Turkey are among the countries that play an important role in linking China to European countries through this corridor. The New Silk Road corridor, by connecting Iran’s free zones (Sarakhs and Maku) and Turkey’s free zones (Anatolia and Europe), can provide the best opportunity for expanding economic cooperation and regional development between Iran and Turkey. It can also provide economic links between Iran and Turkey with Central Asian countries and especially the port of Khorgos. On the other hand, it can expand Iran-Turkey economic relations more than ever before with Europe in a vast economic network. The research method was descriptive-analytical, using library resources, documents of Iranian free zones, and the Internet. In an interview with Fars News Agency, Mohammad Reza Kalaei, CEO of Sarakhs Free Zone, said that the main goal of Sarakhs Special Economic Zone is to connect Iran with the Middle East and create a transit corridor towards East Asian countries, including Turkey. Also, according to an interview with Hussein Gharousi, CEO of Maku Free Zone, the importance of this region is due to the fact that Maku Free Zone, due to its geographical location and its position on the China-Europe trade route, the East-West corridor, which is the closest point to the European Union through railway and transit routes, and also due to its proximity to Eurasian countries, is an ideal opportunity for industrial and technological companies. Creating a transit corridor towards East Asian countries, including Turkey, is one of the goals of this project Free zones between Iran and Turkey can sign an agreement within the framework of the New Silk Road to expand joint investments and economic cooperation towards regional convergence. The purpose of this research is to develop economic links between Iranian and Turkish free zones along the New Silk Road, which will lead to the expansion and development of regional cooperation between the two countries within the framework of neighboring policies. The findings of this research include the development of economic diplomacy between the Secretariat of the Supreme Council of Free Zones of Iran and the General Directorate of Free Zones of Turkey, the agreement to expand cooperation between the free zones of Sarakhs, Maku, Anatolia, and Europe, holding biennial conferences between Iranian free zones along the New Silk Road with Turkish free zones, creating a joint investment fund between Iran and Turkey in the field of developing free zones along the Silk Road, helping to attract tourism between Iranian and Turkish free zones located along the New Silk Road, improving transit infrastructure and transportation to better connect Iranian free zones to Turkish free zones, communicating with China, and creating joint collaborations between China’s dry ports and its free zones with Iranian and Turkish free zones.

Keywords: network economy, new silk road (one belt, one road initiative), free zones (Sarakhs, Maku, Anatolia, Europe), regional development, neighborhood policies

Procedia PDF Downloads 68
49 Finite Element Modelling and Optimization of Post-Machining Distortion for Large Aerospace Monolithic Components

Authors: Bin Shi, Mouhab Meshreki, Grégoire Bazin, Helmi Attia

Abstract:

Large monolithic components are widely used in the aerospace industry in order to reduce airplane weight. Milling is an important operation in manufacturing of the monolithic parts. More than 90% of the material could be removed in the milling operation to obtain the final shape. This results in low rigidity and post-machining distortion. The post-machining distortion is the deviation of the final shape from the original design after releasing the clamps. It is a major challenge in machining of the monolithic parts, which costs billions of economic losses every year. Three sources are directly related to the part distortion, including initial residual stresses (RS) generated from previous manufacturing processes, machining-induced RS and thermal load generated during machining. A finite element model was developed to simulate a milling process and predicate the post-machining distortion. In this study, a rolled-aluminum plate AA7175 with a thickness of 60 mm was used for the raw block. The initial residual stress distribution in the block was measured using a layer-removal method. A stress-mapping technique was developed to implement the initial stress distribution into the part. It is demonstrated that this technique significantly accelerates the simulation time. Machining-induced residual stresses on the machined surface were measured using MTS3000 hole-drilling strain-gauge system. The measured RS was applied on the machined surface of a plate to predict the distortion. The predicted distortion was compared with experimental results. It is found that the effect of the machining-induced residual stress on the distortion of a thick plate is very limited. The distortion can be ignored if the wall thickness is larger than a certain value. The RS generated from the thermal load during machining is another important factor causing part distortion. Very limited number of research on this topic was reported in literature. A coupled thermo-mechanical FE model was developed to evaluate the thermal effect on the plastic deformation of a plate. A moving heat source with a feed rate was used to simulate the dynamic cutting heat in a milling process. When the heat source passed the part surface, a small layer was removed to simulate the cutting operation. The results show that for different feed rates and plate thicknesses, the plastic deformation/distortion occurs only if the temperature exceeds a critical level. It was found that the initial residual stress has a major contribution to the part distortion. The machining-induced stress has limited influence on the distortion for thin-wall structure when the wall thickness is larger than a certain value. The thermal load can also generate part distortion when the cutting temperature is above a critical level. The developed numerical model was employed to predict the distortion of a frame part with complex structures. The predictions were compared with the experimental measurements, showing both are in good agreement. Through optimization of the position of the part inside the raw plate using the developed numerical models, the part distortion can be significantly reduced by 50%.

Keywords: modelling, monolithic parts, optimization, post-machining distortion, residual stresses

Procedia PDF Downloads 56
48 Detection of Patient Roll-Over Using High-Sensitivity Pressure Sensors

Authors: Keita Nishio, Takashi Kaburagi, Yosuke Kurihara

Abstract:

Recent advances in medical technology have served to enhance average life expectancy. However, the total time for which the patients are prescribed complete bedrest has also increased. With patients being required to maintain a constant lying posture- also called bedsore- development of a system to detect patient roll-over becomes imperative. For this purpose, extant studies have proposed the use of cameras, and favorable results have been reported. Continuous on-camera monitoring, however, tends to violate patient privacy. We have proposed unconstrained bio-signal measurement system that could detect body-motion during sleep and does not violate patient’s privacy. Therefore, in this study, we propose a roll-over detection method by the date obtained from the bi-signal measurement system. Signals recorded by the sensor were assumed to comprise respiration, pulse, body motion, and noise components. Compared the body-motion and respiration, pulse component, the body-motion, during roll-over, generate large vibration. Thus, analysis of the body-motion component facilitates detection of the roll-over tendency. The large vibration associated with the roll-over motion has a great effect on the Root Mean Square (RMS) value of time series of the body motion component calculated during short 10 s segments. After calculation, the RMS value during each segment was compared to a threshold value set in advance. If RMS value in any segment exceeded the threshold, corresponding data were considered to indicate occurrence of a roll-over. In order to validate the proposed method, we conducted experiment. A bi-directional microphone was adopted as a high-sensitivity pressure sensor and was placed between the mattress and bedframe. Recorded signals passed through an analog Band-pass Filter (BPF) operating over the 0.16-16 Hz bandwidth. BPF allowed the respiration, pulse, and body-motion to pass whilst removing the noise component. Output from BPF was A/D converted with the sampling frequency 100Hz, and the measurement time was 480 seconds. The number of subjects and data corresponded to 5 and 10, respectively. Subjects laid on a mattress in the supine position. During data measurement, subjects—upon the investigator's instruction—were asked to roll over into four different positions—supine to left lateral, left lateral to prone, prone to right lateral, and right lateral to supine. Recorded data was divided into 48 segments with 10 s intervals, and the corresponding RMS value for each segment was calculated. The system was evaluated by the accuracy between the investigator’s instruction and the detected segment. As the result, an accuracy of 100% was achieved. While reviewing the time series of recorded data, segments indicating roll-over tendencies were observed to demonstrate a large amplitude. However, clear differences between decubitus and the roll-over motion could not be confirmed. Extant researches possessed a disadvantage in terms of patient privacy. The proposed study, however, demonstrates more precise detection of patient roll-over tendencies without violating their privacy. As a future prospect, decubitus estimation before and after roll-over could be attempted. Since in this paper, we could not confirm the clear differences between decubitus and the roll-over motion, future studies could be based on utilization of the respiration and pulse components.

Keywords: bedsore, high-sensitivity pressure sensor, roll-over, unconstrained bio-signal measurement

Procedia PDF Downloads 121
47 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Annulus Pulley

Authors: Bijit Kalita, K. V. N. Surendra

Abstract:

The pulley works under both compressive loading due to contacting belt in tension and central torque due to cause rotation. In a power transmission system, the belt pulley assemblies offer a contact problem in the form of two mating cylindrical parts. In this work, we modeled a pulley as a heavy two-dimensional circular disk. Stress analysis due to contact loading in the pulley mechanism is performed. Finite element analysis (FEA) is conducted for a pulley to investigate the stresses experienced on its inner and outer periphery. In most of the heavy-duty applications, most frequently used mechanisms to transmit power in applications such as automotive engines, industrial machines, etc. is Belt Drive. Usually, very heavy circular disks are used as pulleys. A pulley could be entitled as a drum and may have a groove between two flanges around the circumference. A rope, belt, cable or chain can be the driving element of a pulley system that runs over the pulley inside the groove. A pulley is experienced by normal and shear tractions on its contact region in the process of motion transmission. The region may be belt-pulley contact surface or pulley-shaft contact surface. In 1895, Hertz solved the elastic contact problem for point contact and line contact of an ideal smooth object. Afterward, this hypothesis is generally utilized for computing the actual contact zone. Detailed stress analysis in such contact region of such pulleys is quite necessary to prevent early failure. In this paper, the results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. Based on the literature on contact stress problem induced in the wide field of applications, generated stress distribution on the shaft-pulley and belt-pulley interfaces due to the application of high-tension and torque was evaluated in this study using FEA concepts. Finally, the results obtained from ANSYS (APDL) were compared with the Hertzian contact theory. The study is mainly focused on the fatigue life estimation of a rotating part as a component of an engine assembly using the most famous Paris equation. Digital Image Correlation (DIC) analyses have been performed using the open-source software. From the displacement computed using the images acquired at a minimum and maximum force, displacement field amplitude is computed. From these fields, the crack path is defined and stress intensity factors and crack tip position are extracted. A non-linear least-squares projection is used for the purpose of the estimation of fatigue crack growth. Further study will be extended for the various application of rotating machinery such as rotating flywheel disk, jet engine, compressor disk, roller disk cutter etc., where Stress Intensity Factor (SIF) calculation plays a significant role on the accuracy and reliability of a safe design. Additionally, this study will be progressed to predict crack propagation in the pulley using maximum tangential stress (MTS) criteria for mixed mode fracture.

Keywords: crack-tip deformations, contact stress, stress concentration, stress intensity factor

Procedia PDF Downloads 125
46 Optical-Based Lane-Assist System for Rowing Boats

Authors: Stephen Tullis, M. David DiDonato, Hong Sung Park

Abstract:

Rowing boats (shells) are often steered by a small rudder operated by one of the backward-facing rowers; the attention required of that athlete then slightly decreases the power that that athlete can provide. Reducing the steering distraction would then increase the overall boat speed. Races are straight 2000 m courses with each boat in a 13.5 m wide lane marked by small (~15 cm) widely-spaced (~10 m) buoys, and the boat trajectory is affected by both cross-currents and winds. An optical buoy recognition and tracking system has been developed that provides the boat’s location and orientation with respect to the lane edges. This information is provided to the steering athlete as either: a simple overlay on a video display, or fed to a simplified autopilot system giving steering directions to the athlete or directly controlling the rudder. The system is then effectively a “lane-assist” device but with small, widely-spaced lane markers viewed from a very shallow angle due to constraints on camera height. The image is captured with a lightweight 1080p webcam, and most of the image analysis is done in OpenCV. The colour RGB-image is converted to a grayscale using the difference of the red and blue channels, which provides good contrast between the red/yellow buoys and the water, sky, land background and white reflections and noise. Buoy detection is done with thresholding within a tight mask applied to the image. Robust linear regression using Tukey’s biweight estimator of the previously detected buoy locations is used to develop the mask; this avoids the false detection of noise such as waves (reflections) and, in particular, buoys in other lanes. The robust regression also provides the current lane edges in the camera frame that are used to calculate the displacement of the boat from the lane centre (lane location), and its yaw angle. The interception of the detected lane edges provides a lane vanishing point, and yaw angle can be calculated simply based on the displacement of this vanishing point from the camera axis and the image plane distance. Lane location is simply based on the lateral displacement of the vanishing point from any horizontal cut through the lane edges. The boat lane position and yaw are currently fed what is essentially a stripped down marine auto-pilot system. Currently, only the lane location is used in a PID controller of a rudder actuator with integrator anti-windup to deal with saturation of the rudder angle. Low Kp and Kd values decrease unnecessarily fast return to lane centrelines and response to noise, and limiters can be used to avoid lane departure and disqualification. Yaw is not used as a control input, as cross-winds and currents can cause a straight course with considerable yaw or crab angle. Mapping of the controller with rudder angle “overall effectiveness” has not been finalized - very large rudder angles stall and have decreased turning moments, but at less extreme angles the increased rudder drag slows the boat and upsets boat balance. The full system has many features similar to automotive lane-assist systems, but with the added constraints of the lane markers, camera positioning, control response and noise increasing the challenge.

Keywords: auto-pilot, lane-assist, marine, optical, rowing

Procedia PDF Downloads 132
45 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks

Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi

Abstract:

Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.

Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex

Procedia PDF Downloads 178
44 Forming Form, Motivation and Their Biolinguistic Hypothesis: The Case of Consonant Iconicity in Tashelhiyt Amazigh and English

Authors: Noury Bakrim

Abstract:

When dealing with motivation/arbitrariness, forming form (Forma Formans) and morphodynamics are to be grasped as relevant implications of enunciation/enactment, schematization within the specificity of language as sound/meaning articulation. Thus, the fact that a language is a form does not contradict stasis/dynamic enunciation (reflexivity vs double articulation). Moreover, some languages exemplify the role of the forming form, uttering, and schematization (roots in Semitic languages, the Chinese case). Beyond the evolutionary biosemiotic process (form/substance bifurcation, the split between realization/representation), non-isomorphism/asymmetry between linguistic form/norm and linguistic realization (phonetics for instance) opens up a new horizon problematizing the role of Brain – sensorimotor contribution in the continuous forming form. Therefore, we hypothesize biotization as both process/trace co-constructing motivation/forming form. Henceforth, referring to our findings concerning distribution and motivation patterns within Berber written texts (pulse based obstruents and nasal-lateral levels in poetry) and oral storytelling (consonant intensity clustering in quantitative and semantic/prosodic motivation), we understand consonant clustering, motivation and schematization as a complex phenomenon partaking in patterns of oral/written iconic prosody and reflexive metalinguistic representation opening the stable form. We focus our inquiry on both Amazigh and English clusters (/spl/, /spr/) and iconic consonant iteration in [gnunnuy] (to roll/tumble), [smummuy] (to moan sadly or crankily). For instance, the syllabic structures of /splaeʃ/ and /splaet/ imply an anamorphic representation of the state of the world: splash, impact on aquatic surfaces/splat impact on the ground. The pair has stridency and distribution as distinctive features which specify its phonetic realization (and a part of its meaning) /ʃ/ is [+ strident] and /t/ is [+ distributed] on the vocal tract. Schematization is then a process relating both physiology/code as an arthron vocal/bodily, vocal/practical shaping of the motor-articulatory system, leading to syntactic/semantic thematization (agent/patient roles in /spl/, /sm/ and other clusters or the tense uvular /qq/ at the initial position in Berber). Furthermore, the productivity of serial syllable sequencing in Berber points out different expressivity forms. We postulate two Components of motivated formalization: i) the process of memory paradigmatization relating to sequence modeling under sensorimotor/verbal specific categories (production/perception), ii) the process of phonotactic selection - prosodic unconscious/subconscious distribution by virtue of iconicity. Basing on multiple tests including a questionnaire, phonotactic/visual recognition and oral/written reproduction, we aim at patterning/conceptualizing consonant schematization and motivation among EFL and Amazigh (Berber) learners and speakers integrating biolinguistic hypotheses.

Keywords: consonant motivation and prosody, language and order of life, anamorphic representation, represented representation, biotization, sensori-motor and brain representation, form, formalization and schematization

Procedia PDF Downloads 146
43 Predicting and Obtaining New Solvates of Curcumin, Demethoxycurcumin and Bisdemethoxycurcumin Based on the Ccdc Statistical Tools and Hansen Solubility Parameters

Authors: J. Ticona Chambi, E. A. De Almeida, C. A. Andrade Raymundo Gaiotto, A. M. Do Espírito Santo, L. Infantes, S. L. Cuffini

Abstract:

The solubility of active pharmaceutical ingredients (APIs) is challenging for the pharmaceutical industry. The new multicomponent crystalline forms as cocrystal and solvates present an opportunity to improve the solubility of APIs. Commonly, the procedure to obtain multicomponent crystalline forms of a drug starts by screening the drug molecule with the different coformers/solvents. However, it is necessary to develop methods to obtain multicomponent forms in an efficient way and with the least possible environmental impact. The Hansen Solubility Parameters (HSPs) is considered a tool to obtain theoretical knowledge of the solubility of the target compound in the chosen solvent. H-Bond Propensity (HBP), Molecular Complementarity (MC), Coordination Values (CV) are tools used for statistical prediction of cocrystals developed by the Cambridge Crystallographic Data Center (CCDC). The HSPs and the CCDC tools are based on inter- and intra-molecular interactions. The curcumin (Cur), target molecule, is commonly used as an anti‐inflammatory. The demethoxycurcumin (Demcur) and bisdemethoxycurcumin (Bisdcur) are natural analogues of Cur from turmeric. Those target molecules have differences in their solubilities. In this way, the work aimed to analyze and compare different tools for multicomponent forms prediction (solvates) of Cur, Demcur and Biscur. The HSP values were calculated for Cur, Demcur, and Biscur using the chemical group contribution methods and the statistical optimization from experimental data. The HSPmol software was used. From the HSPs of the target molecules and fifty solvents (listed in the HSP books), the relative energy difference (RED) was determined. The probability of the target molecules would be interacting with the solvent molecule was determined using the CCDC tools. A dataset of fifty molecules of different organic solvents was ranked for each prediction method and by a consensus ranking of different combinations: HSP, CV, HBP and MC values. Based on the prediction, 15 solvents were selected as Dimethyl Sulfoxide (DMSO), Tetrahydrofuran (THF), Acetonitrile (ACN), 1,4-Dioxane (DOX) and others. In a starting analysis, the slow evaporation technique from 50°C at room temperature and 4°C was used to obtain solvates. The single crystals were collected by using a Bruker D8 Venture diffractometer, detector Photon100. The data processing and crystal structure determination were performed using APEX3 and Olex2-1.5 software. According to the results, the HSPs (theoretical and optimized) and the Hansen solubility sphere for Cur, Demcur and Biscur were obtained. With respect to prediction analyses, a way to evaluate the predicting method was through the ranking and the consensus ranking position of solvates already reported in the literature. It was observed that the combination of HSP-CV obtained the best results when compared to the other methods. Furthermore, as a result of solvent selected, six new solvates, Cur-DOX, Cur-DMSO, Bicur-DOX, Bircur-THF, Demcur-DOX, Demcur-ACN and a new Biscur hydrate, were obtained. Crystal structures were determined for Cur-DOX, Biscur-DOX, Demcur-DOX and Bicur-Water. Moreover, the unit-cell parameter information for Cur-DMSO, Biscur-THF and Demcur-ACN were obtained. The preliminary results showed that the prediction method is showing a promising strategy to evaluate the possibility of forming multicomponent. It is currently working on obtaining multicomponent single crystals.

Keywords: curcumin, HSPs, prediction, solvates, solubility

Procedia PDF Downloads 63
42 Absorptive Capabilities in the Development of Biopharmaceutical Industry: The Case of Bioprocess Development and Research Unit, National Polytechnic Institute

Authors: Ana L. Sánchez Regla, Igor A. Rivera González, María del Pilar Monserrat Pérez Hernández

Abstract:

The ability of an organization to identify and get useful information from external sources, assimilate it, transform and apply to generate products or services with added value is called absorptive capacity. Absorptive capabilities contribute to have market opportunities to firms and get a leader position with respect to others competitors. The Bioprocess Development and Research Unit (UDIBI) is a Research and Development (R&D) laboratory that belongs to the National Polytechnic Institute (IPN), which is a higher education institute in Mexico. The UDIBI was created with the purpose of carrying out R and D activities for the Transferon®, a biopharmaceutical product developed and patented by IPN. The evolution of competence and scientific and technological platform made UDIBI expand its scope by providing technological services (preclínical studies and bio-compatibility evaluation) to the national pharmaceutical industry and biopharmaceutical industry. The relevance of this study is that those industries are classified as high scientific and technological intensity, and yet, after a review of the state of the art, there is only one study of absorption capabilities in biopharmaceutical industry with a similar scope to this research; in the case of Mexico, there is none. In addition to this, UDIBI belongs to a public university and its operation does not depend on the federal budget, but on the income generated by its external technological services. This fact represents a highly remarkable case in Mexico's public higher education context. This current doctoral research (2015-2019) is contextualized within a case study, its main objective is to identify and analyze the absorptive capabilities that characterise the UDIBI that allows it had become in a one of two third authorized laboratory by the sanitary authority in Mexico for developed bio-comparability studies to bio-pharmaceutical products. The development of this work in the field is divided into two phases. In a first phase, 15 interviews were conducted with the UDIBI personnel, covering management levels, heads of services, project leaders and laboratory personnel. These interviews were structured under a questionnaire, which was designed to integrate open questions and to a lesser extent, others, whose answers would be answered on a Likert-type rating scale. From the information obtained in this phase, a scientific article was made (in review and a proposal of presentation was submitted in different academic forums. A second stage will be made from the conduct of an ethnographic study within this organization under study that will last about 3 months. On the other hand, it is intended to carry out interviews with external actors around the UDIBI (suppliers, advisors, IPN officials, including contact with an academic specialized in absorption capacities to express their comments on this thesis. The inicial findings had shown two lines: i) exist institutional, technological and organizational management elements that encourage and/or limit the creation of absorption capacities in this scientific and technological laboratory and, ii) UDIBI has had created a set of multiple transfer technology of knowledge mechanisms which have had permitted to build a huge base of prior knowledge.

Keywords: absorptive capabilities, biopharmaceutical industry, high research and development intensity industries, knowledge management, transfer of knowledge

Procedia PDF Downloads 226
41 Illness-Related PTSD Among Type 1 Diabetes Patients

Authors: Omer Zvi Shaked, Amir Tirosh

Abstract:

Type 1 Diabetes (T1DM) is an incurable chronic illness with no known preventive measures. Excess to insulin therapy can lead to hypoglycemia with neuro-glycogenic symptoms such as shakiness, nausea, sweating, irritability, fatigue, excessive thirst or hunger, weakness, seizure, and coma. Severe Hypoglycemia (SH) is also considered a most aversive event since it may put patients at risk for injury and death, which matches the criteria of a traumatic event. SH has a ranging prevalence of 20%, which makes it a primary medical Issue. One of the results of SH is an intense emotional fear reaction resembling the form of post-traumatic stress symptoms (PTS), causing many patients to avoid insulin therapy and social activities in order to avoid the possibility of hypoglycemia. As a result, they are at risk for irreversible health deterioration and medical complications. Fear of Hypoglycemia (FOH) is, therefore, a major disturbance for T1DM patients. FOH differs from prevalent post-traumatic stress reactions to other forms of traumatic events since the threat to life continuously exists in the patient's body. That is, it is highly probable that orthodox interventions may not be sufficient for helping patients after SH to regain healthy social function and proper medical treatment. Accordingly, the current presentation will demonstrate the results of a study conducted among T1DM patients after SH. The study was designed in two stages. First, a preliminary qualitative phenomenological study among ten patients after SH was conducted. Analysis revealed that after SH, patients confuse between stress symptoms and Hypoglycemia symptoms, divide life before and after the event, report a constant sense of fear, a loss of freedom, a significant decrease in social functioning, a catastrophic thinking pattern, a dichotomous split between the self and the body, and internalization of illness identity, a loss of internal locus of control, a damaged self-representation, and severe loneliness for never being understood by others. The second stage was a two steps study of intervention among five patients after SH. The first part of the intervention included three months of therapeutic 3rd wave CBT therapy. The contents of the therapeutic process were: acceptance of fear and tolerance to stress; cognitive de-fusion combined with emotional self-regulation; the adoption of an active position relying on personal values; and self-compassion. Then, the intervention included a one-week practical real-time 24/7 support by trained medical personnel, alongside a gradual exposure to increased insulin therapy in a protected environment. The results of the intervention are a decrease in stress symptoms, increased social functioning, increased well-being, and decreased avoidance of medical treatment. The presentation will discuss the unique emotional state of T1DM patients after SH. Then, the presentation will discuss the effectiveness of the intervention for patients with chronic conditions after a traumatic event. The presentation will make evident the unique situation of illness-related PTSD. The presentation will also demonstrate the requirement for multi-professional collaboration between social work and medical care for populations with chronic medical conditions. Limitations of the study and recommendations for further research will be discussed.

Keywords: type 1 diabetes, chronic illness, post-traumatic stress, illness-related PTSD

Procedia PDF Downloads 177
40 Income Generation and Employment Opportunity of the Entrepreneurs and Farmers Through Production, Processing, and Marketing of Medicinal Plants in Bangladesh

Authors: Md. Nuru Miah, A. F. M. Akhter Uddin

Abstract:

Medicinal plants are grown naturally in a tropical environment in Bangladesh and used as drug and therapeutic agents in the health care system. According to Bangladesh Agricultural Research Institute (BARI), there are 722 species of medicinal plants in the country. Of them, 255 plants are utilized by the manufacturers of Ayurvedic and Unani medicines. Medicinal plants like Aloevera, Ashwagonda, shotomul,Tulsi, Vuikumra, Misridana are extensively cultivated in some selected areas as well; where Aloevera scored the highest position in production. In the early 1980, Ayurvedic and Unani companies procured 80 percent of medicinal plants from natural forests, and the rest 20 percent was imported. Now the scenario has changed; 80 percent is imported, and the rest 20 percent is collected from local products(Source: Astudy on sectorbased need assessment of Business promotion council-Herbal products and medicinal plants, page-4). Uttara Development Program Society, a leading Non- Government development organization in Bangladesh, has been implementing a value chain development project under promoting Agricultural commercialization and Enterprises of Pally Karma Sahayak Foundation (PKSF) funded by the International Fund for Agricultural Development (IFAD) in Natore Sadar Upazila from April 2017 to sustainably develop the technological interventions for products and market development. The ultimate goal of the project is to increase income, generate employment and develop this sector as a sustainable business enterprise. Altogether 10,000 farmers (Nursery owners, growers, input supplier, processors, whole sellers, and retailers) are engaged in different activities of the project. The entrepreneurs engaged in medicinal plant cultivation did not know and follow environmental and good agricultural practices. They used to adopt traditional methodology in production and processing. Locally the farmers didn’t have any positive initiative to expand their business as well as developvalue added products. A lot of diversified products could be possible to develop and marketed with the introduction of post-harvest processing technology and market linkage with the local and global buyer. Training is imparted to the nursery owners and herbal growers on production technologies, sowing method, use of organic fertilizers/compost/pesticides, harvesting procedures, and storage facilities. Different types of herbal tea like Rosella, Moringa, Tulshi, and Basak are being produced and packed locally with a good scope of its marketing in different cities of the country. The project has been able to achieve a significant impact in the development of production technologies, but still, there is room for further improvement in processing, packaging, and marketing level. The core intervention of the current project to develop some entrepreneurs for branding, packaging, promotion, and marketing while considering environment friendly practices. The present strategies will strengthen the knowledge and skills of the entrepreneurs for the production and marketing of their products, maintaining worldwide accepted compliance system for easy access to the global market.

Keywords: aloe vera, herbs and shrubs, market, interventions

Procedia PDF Downloads 97
39 An Investigation on the Suitability of Dual Ion Beam Sputtered GMZO Thin Films: For All Sputtered Buffer-Less Solar Cells

Authors: Vivek Garg, Brajendra S. Sengar, Gaurav Siddharth, Nisheka Anadkat, Amitesh Kumar, Shailendra Kumar, Shaibal Mukherjee

Abstract:

CuInGaSe (CIGSe) is the dominant thin film solar cell technology. The band alignment of Buffer/CIGSe interface is one of the most crucial parameters for solar cell performance. In this article, the valence band offset (VBOff) and conduction band offset (CBOff) values of Cu(In0.70Ga0.30)Se/ 1 at.% Ga: Mg0.25Zn0.75O (GMZO) heterojunction, grown by dual ion beam sputtering system (DIBS), are calculated to understand the carrier transport mechanism at the heterojunction for the realization of all sputtered buffer-less solar cells. To determine the valence band offset (VBOff), ∆E_V at GMZO/CIGSe heterojunction interface, the standard method based on core-level photoemission is utilized. The value of ∆E_V can be evaluated by considering common core-level peaks. In our study, the values of (Valence band onset)VBOn, obtained by linear extrapolation method for GMZO and CIGSe films are calculated to be 2.86 and 0.76 eV. In the UPS spectra peak positions of Se 3d is observed in UPS spectra at 54.82 and 54.7 eV for CIGSe film and GMZO/CIGSe interface respectively, while the peak position of Mg 2p is observed at 50.09 and 50.12 eV for GMZO and GMZO/CIGSe interface respectively. The optical band gap of CIGSe and GMZO are obtained from absorption spectra procured from spectroscopic ellipsometry are 1.26 and 3.84 eV respectively. The calculated average values of ∆E_v and ∆E_C are estimated to be 2.37 and 0.21 eV, respectively, at room temperature. The calculated positive conduction band offset termed as a spike at the absorber junction is the required criterion for the high-efficiency solar cells for the efficient charge extraction from the junction. So we can conclude that the above study confirms GMZO thin films grown by the dual ion beam sputtering system are the suitable candidate for the CIGSe thin films based ultra-thin buffer-less solar cells. We investigated the band-offset properties at the GMZO/CIGSe heterojunction to verify the suitability of the GMZO for the realization of the buffer-less solar cells. The calculated average values of ∆E_V and ∆E_C are estimated to be 2.37 and 0.21 eV, respectively, at room temperature. The calculated positive conduction band offset termed as a spike at the absorber junction is the required criterion for the high-efficiency solar cells for the efficient charge extraction from the junction. So we can conclude that the above study confirms GMZO thin films grown by the dual ion beam sputtering system are the suitable candidate for the CIGSe thin films based ultra-thin buffer-less solar cells. Acknowledgment: We are thankful to DIBS, EDX, and XRD facility equipped at Sophisticated Instrument Centre (SIC) at IIT Indore. The authors B.S.S and A.K acknowledge CSIR and V.G acknowledge UGC, India for their fellowships. B.S.S is thankful to DST and IUSSTF for BASE Internship Award. Prof. Shaibal Mukherjee is thankful to DST and IUSSTF for BASE Fellowship and MEITY YFRF award. This work is partially supported by DAE BRNS, DST CERI, and DST-RFBR Project under India-Russia Programme of Cooperation in Science and Technology. We are thankful to Mukul Gupta for SIMS facility equipped at UGC-DAE Indore.

Keywords: CIGSe, DIBS, GMZO, solar cells, UPS

Procedia PDF Downloads 279
38 Partial Discharge Characteristics of Free- Moving Particles in HVDC-GIS

Authors: Philipp Wenger, Michael Beltle, Stefan Tenbohlen, Uwe Riechert

Abstract:

The integration of renewable energy introduces new challenges to the transmission grid, as the power generation is located far from load centers. The associated necessary long-range power transmission increases the demand for high voltage direct current (HVDC) transmission lines and DC distribution grids. HVDC gas-insulated switchgears (GIS) are considered being a key technology, due to the combination of the DC technology and the long operation experiences of AC-GIS. To ensure long-term reliability of such systems, insulation defects must be detected in an early stage. Operational experience with AC systems has proven evidence, that most failures, which can be attributed to breakdowns of the insulation system, can be detected and identified via partial discharge (PD) measurements beforehand. In AC systems the identification of defects relies on the phase resolved partial discharge pattern (PRPD). Since there is no phase information within DC systems this method cannot be transferred to DC PD diagnostic. Furthermore, the behaviour of e.g. free-moving particles differs significantly at DC: Under the influence of a constant direct electric field, charge carriers can accumulate on particles’ surfaces. As a result, a particle can lift-off, oscillate between the inner conductor and the enclosure or rapidly bounces at just one electrode, which is known as firefly motion. Depending on the motion and the relative position of the particle to the electrodes, broadband electromagnetic PD pulses are emitted, which can be recorded by ultra-high frequency (UHF) measuring methods. PDs are often accompanied by light emissions at the particle’s tip which enables optical detection. This contribution investigates PD characteristics of free moving metallic particles in a commercially available 300 kV SF6-insulated HVDC-GIS. The influences of various defect parameters on the particle motion and the PD characteristic are evaluated experimentally. Several particle geometries, such as cylinder, lamella, spiral and sphere with different length, diameter and weight are determined. The applied DC voltage is increased stepwise from inception voltage up to UDC = ± 400 kV. Different physical detection methods are used simultaneously in a time-synchronized setup. Firstly, the electromagnetic waves emitted by the particle are recorded by an UHF measuring system. Secondly, a photomultiplier tube (PMT) detects light emission with a wavelength in the range of λ = 185…870 nm. Thirdly, a high-speed camera (HSC) tracks the particle’s motion trajectory with high accuracy. Furthermore, an electrically insulated electrode is attached to the grounded enclosure and connected to a current shunt in order to detect low frequency ion currents: The shunt measuring system’s sensitivity is in the range of 10 nA at a measuring bandwidth of bw = DC…1 MHz. Currents of charge carriers, which are generated at the particle’s tip migrate through the gas gap to the electrode and can be recorded by the current shunt. All recorded PD signals are analyzed in order to identify characteristic properties of different particles. This includes e.g. repetition rates and amplitudes of successive pulses, characteristic frequency ranges and detected signal energy of single PD pulses. Concluding, an advanced understanding of underlying physical phenomena particle motion in direct electric field can be derived.

Keywords: current shunt, free moving particles, high-speed imaging, HVDC-GIS, UHF

Procedia PDF Downloads 163
37 Higher-Level Return to Female Karate Competition Following Multiple Patella Dislocations

Authors: A. Maso, C. Bellissimo, G. Facchinetti, N. Milani, D. Panzin, D. Pogliana, L. Garlaschelli, L. Rivaroli, S. Rivaroli, M. Zurek, J. Konin

Abstract:

15 year-old female karate athlete experienced two unilateral patella dislocations: one contact and one non-contact. This challenged her from competing as planned at the regional and national competitions as a result of her inability to perform at a high level. Despite these injuries and other complicated factors, she was able to modify her training timeline and successfully perform, winning third at the National Cup. Initial pain numeric rating scale 8/10 during karate training isometric figures, taking the stairs, long walking, a positive rasp test, palpation pain on the lateral patella joint 9/10, pain performing open kinetic chain 0°-45° and close kinetic chain 30°-90°, tensor fascia lata, vastus lateralis, psoas muscles retraction/stiffness. Foot hyper pronation, internally rotated femur, and knee flexion 15° were the postural findings. Exercise prescription for three days/week for three weeks to include exercise-based rehabilitation and soft tissue mobilization with massage and foam rolling. After three weeks, the pain was improved during activity daily living 5/10, and soft tissue stiffness decreased. An additional four weeks of exercise-based rehabilitation was continued. At this time, axial x-rays and TA-GT TAC were taken, and an orthopaedic medical check was recommended to continue conservative treatment. At week seven, she performed 2/4 karate position technique without pain and 2/4 with pain. An isokinetic test was performed at week 12, demonstrating a 10% strength deficit and 6% resistance deficit both to the left hamstrings. Moreover, an 8% strength and resistance surplus to the left quadriceps was found. No pain was present during activity, daily living and sports activity, allowing a return to play training to begin. A plan for the return to play framework collaborated with her trainer, her father, a physiotherapist, a sports scientist, an osteopath, and a nutritionist. Within 4 and 5 months, both non-athlete and athlete movement quality analysis tests were performed. The plan agreed to establish a return to play goal of 7 months and the highest level return to competition goal of 9 months from the start of rehabilitation. This included three days/week of training and repeated testing of movement quality before return to competition with detectable improvements from 77% to 93%. Beginning goals of the rehabilitation plan included the importance of a team approach. The patient’s father and trainer were important to collaborate with to assure a safe and timely return to competition. The possibility of achieving the goals was strongly related to orthopaedic decision-making and progress during the first weeks of rehabilitation. Without complications or setbacks, the patient can successfully return to her highest level of competition. The patient returned to participation after five months of rehabilitation and training, and then she returned to competition at the national level in nine months. The successful return was the result of a team approach and a compliant patient with clear goals.

Keywords: karate, knee, performance, rehabilitation

Procedia PDF Downloads 107
36 Wind Turbine Scaling for the Investigation of Vortex Shedding and Wake Interactions

Authors: Sarah Fitzpatrick, Hossein Zare-Behtash, Konstantinos Kontis

Abstract:

Traditionally, the focus of horizontal axis wind turbine (HAWT) blade aerodynamic optimisation studies has been the outer working region of the blade. However, recent works seek to better understand, and thus improve upon, the performance of the inboard blade region to enhance power production, maximise load reduction and better control the wake behaviour. This paper presents the design considerations and characterisation of a wind turbine wind tunnel model devised to further the understanding and fundamental definition of horizontal axis wind turbine root vortex shedding and interactions. Additionally, the application of passive and active flow control mechanisms – vortex generators and plasma actuators – to allow for the manipulation and mitigation of unsteady aerodynamic behaviour at the blade inboard section is investigated. A static, modular blade wind turbine model has been developed for use in the University of Glasgow’s de Havilland closed return, low-speed wind tunnel. The model components - which comprise of a half span blade, hub, nacelle and tower - are scaled using the equivalent full span radius, R, for appropriate Mach and Strouhal numbers, and to achieve a Reynolds number in the range of 1.7x105 to 5.1x105 for operational speeds up to 55m/s. The half blade is constructed to be modular and fully dielectric, allowing for the integration of flow control mechanisms with a focus on plasma actuators. Investigations of root vortex shedding and the subsequent wake characteristics using qualitative – smoke visualisation, tufts and china clay flow – and quantitative methods – including particle image velocimetry (PIV), hot wire anemometry (HWA), and laser Doppler anemometry (LDA) – were conducted over a range of blade pitch angles 0 to 15 degrees, and Reynolds numbers. This allowed for the identification of shed vortical structures from the maximum chord position, the transitional region where the blade aerofoil blends into a cylindrical joint, and the blade nacelle connection. Analysis of the trailing vorticity interactions between the wake core and freestream shows the vortex meander and diffusion is notably affected by the Reynold’s number. It is hypothesized that the shed vorticity from the blade root region directly influences and exacerbates the nacelle wake expansion in the downstream direction. As the design of inboard blade region form is, by necessity, driven by function rather than aerodynamic optimisation, a study is undertaken for the application of flow control mechanisms to manipulate the observed vortex phenomenon. The designed model allows for the effective investigation of shed vorticity and wake interactions with a focus on the accurate geometry of a root region which is representative of small to medium power commercial HAWTs. The studies undertaken allow for an enhanced understanding of the interplay of shed vortices and their subsequent effect in the near and far wake. This highlights areas of interest within the inboard blade area for the potential use of passive and active flow control devices which contrive to produce a more desirable wake quality in this region.

Keywords: vortex shedding, wake interactions, wind tunnel model, wind turbine

Procedia PDF Downloads 235
35 Micro-Oculi Facades as a Sustainable Urban Facade

Authors: Ok-Kyun Im, Kyoung Hee Kim

Abstract:

We live in an era that faces global challenges of climate changes and resource depletion. With the rapid urbanization and growing energy consumption in the built environment, building facades become ever more important in architectural practice and environmental stewardship. Furthermore, building facade undergoes complex dynamics of social, cultural, environmental and technological changes. Kinetic facades have drawn attention of architects, designers, and engineers in the field of adaptable, responsive and interactive architecture since 1980’s. Materials and building technologies have gradually evolved to address the technical implications of kinetic facades. The kinetic façade is becoming an independent system of the building, transforming the design methodology to sustainable building solutions. Accordingly, there is a need for a new design methodology to guide the design of a kinetic façade and evaluate its sustainable performance. The research objectives are two-fold: First, to establish a new design methodology for kinetic facades and second, to develop a micro-oculi façade system and assess its performance using the established design method. The design approach to the micro-oculi facade is comprised of 1) façade geometry optimization and 2) dynamic building energy simulation. The façade geometry optimization utilizes multi-objective optimization process, aiming to balance the quantitative and qualitative performances to address the sustainability of the built environment. The dynamic building energy simulation was carried out using EnergyPlus and Radiance simulation engines with scripted interfaces. The micro-oculi office was compared with an office tower with a glass façade in accordance with ASHRAE 90.1 2013 to understand its energy efficiency. The micro-oculi facade is constructed with an array of circular frames attached to a pair of micro-shades called a micro-oculus. The micro-oculi are encapsulated between two glass panes to protect kinetic mechanisms with longevity. The micro-oculus incorporates rotating gears that transmit the power to adjacent micro-oculi to minimize the number of mechanical parts. The micro-oculus rotates around its center axis with a step size of 15deg depending on the sun’s position while maximizing daylighting potentials and view-outs. A 2 ft by 2ft prototyping was undertaken to identify operational challenges and material implications of the micro-oculi facade. In this research, a systematic design methodology was proposed, that integrates multi-objectives of kinetic façade design criteria and whole building energy performance simulation within a holistic design process. This design methodology is expected to encourage multidisciplinary collaborations between designers and engineers to collaborate issues of the energy efficiency, daylighting performance and user experience during design phases. The preliminary energy simulation indicated that compared to a glass façade, the micro-oculi façade showed energy savings due to its improved thermal properties, daylighting attributes, and dynamic solar performance across the day and seasons. It is expected that the micro oculi façade provides a cost-effective, environmentally-friendly, sustainable, and aesthetically pleasing alternative to glass facades. Recommendations for future studies include lab testing to validate the simulated data of energy and optical properties of the micro-oculi façade. A 1:1 performance mock-up of the micro-oculi façade can suggest in-depth understanding of long-term operability and new development opportunities applicable for urban façade applications.

Keywords: energy efficiency, kinetic facades, sustainable architecture, urban facades

Procedia PDF Downloads 257
34 Dose Measurement in Veterinary Radiology Using Thermoluminescent Dosimeter

Authors: E. Saeedian, M. Shakerian, A. Zarif Sanayei, Z. Rakeb, F. N. Alizadeh, S. Sarshough, S. Sina

Abstract:

Radiological protection for plants and animals is an area of regulatory importance. Acute doses of 0.1 Gy/d (10 rad/d) or below are highly unlikely to produce permanent, measurable negative effects on populations or communities of plants or animals. The advancement of radio diagnostics for domestic animals, particularly dogs and cats, has gained popularity in veterinary medicine. As pets are considered to be members of the family worldwide, they are entitled to the same care and protection. It is important to have a system of radiological protection for nonhuman organisms that complies with the focus on human health as outlined in ICRP publication 19. The present study attempts to assess surface-skin entrance doses in small pets undergoing abdominal radio diagnostic procedures utilizing a direct measurements technique with a thermoluminescent dosimeter. These measurements allow the determination of the entrance skin dose (ESD) by calculating the amount of radiation absorbed by the skin during exposure. A group of Thirty TLD-100 dosimeters produced by Harshaw Company, each with repeatability greater than 95% and calibration using ¹³⁷Cs gamma source, were utilized to measure doses to ten small pets, including cats and dogs in the radiological department in a veterinary clinic in Shiraz, Iran. Radiological procedures were performed using a portable imaging unit (Philips Super M100, Philips Medical System, Germany) to acquire images of the abdomen; ten exams of abdomen images of different pets were monitored, measuring the thicknesses of the two projections (lateral and ventrodorsal) and the distance of the X-ray source from the surface of each pet during the exams. A group of two dosimeters was used for each pet which has been stacked on their skin on the abdomen region. The outcome of this study involved medical procedures with the same kVp, mAs, and nearly identical positions for different diagnostic X-ray procedures executed over a period of two months. The result showed the mean ESD value was 260.34±50.06 µGy due to the approximate size of pets. Based on the results, the ESD value is associated with animal size, and larger animals have higher values. If a procedure doesn't require repetition, the dose can be optimized. For smaller animals, the main challenge in veterinary radiology is the dose increase caused by repetitions, which is most noticeable in the ventrodorsal position due to the difficulty in immobilizing the animal. Animals are an area of regulatory importance. Acute doses of 0.1 Gy/d (10 rad/d) or below are highly unlikely to produce permanent, measurable negative effects on populations or communities of plants or animals. The advancement of radio diagnostics for domestic animals, particularly dogs and cats, has gained popularity in veterinary medicine. As pets are considered to be members of the family worldwide, they are entitled to the same care and protection. It is important to have a system of radiological protection for nonhuman organisms that complies with the focus on human health as outlined in ICRP publication 19. The present study attempts to assess surface-skin entrance doses in small pets undergoing abdominal radio diagnostic procedures utilizing direct measurements.

Keywords: direct dose measuring, dosimetry, radiation protection, veterinary medicine

Procedia PDF Downloads 72
33 Need for Policy and Legal Framework for Caste Based Atrocities as Violation of International Human Rights in View of Indian Diaspora

Authors: Vijayalaxmi Khopade

Abstract:

The Prima facie caste system is intrinsic to Indian society. It is an ancient system of intense social stratification based upon birth and enjoying religious sanction. The uppermost strata and privileges are ascribed and enjoyed by brahmins (priestly class), while the lowest strata are occupied by Dalits who are not ascribed with any privileges. The caste system is inherently hierarchical, patriarchal, and systematic and thrives solely on exploitation justified through means of the Brahminical system of hegemony based singularly on birth. The caste system has extended its tentacles to other religions like Christianity, Buddhism, Jainism, and Islam in South Asia. Term Dalit is colloquially used to categorize persons belonging to lower strata in the caste hierarchy. However, this category is heterogenous and highly stratified, following practices like untouchability and exclusion amongst themselves. The modern Indian legal system acknowledges the existence of Caste and its perils. Therefore, by virtue of the Indian Constitution, provisions for affirmative action for the protection and development of Dalits are made. Courts in India have liberally interpreted laws to benefit Dalits. However, the modern system of governance is not immune from Caste based biases. These biases are reflected in the implementation of governance, including the dispensation of justice. The economic reforms of the 1990s gave a huge boost to the Indian diaspora. Persons of Indian origin are now seen making great strides in almost every sector and enjoying positions of power globally. As one peels off the layer of ethnic Indian origin, a deep seated layer of Caste and Caste based patriarchy is clearly visible. Indian diaspora enjoying positions of power essentially belongs to upper castes and carry Caste based biases with them. These castes have long enjoyed the benefits of education; therefore, they were the first ones to benefit from LPG (Liberalization, Privatization, Globalization) model adopted in the 1990s. Dalits, however, had little formal education until recently. The western legal system, to the best of our knowledge, does not recognize Caste and, therefore, cannot afford protection for Dalits, wherein discrimination and exploitation take place solely on the basis of Caste. Therefore, Dalits are left with no legal remedy outside domestic jurisdiction. Countries like the UK have made an attempt to include Caste in their Equality Bill 2010. This has met with tough resistance from Upper caste Hindus who shy away from recognizing their caste privileges and, therefore, the existence of Caste. In this paper, an attempt for comparative analysis is made between various legal protections accorded to Dalits in India vis-à-vis international human rights as protected by the United Nations under its declaration of Universal Human rights. An attempt has been made to mark a distinction between race and Caste and to establish a position of women in Caste based hierarchy. The paper also makes an argument for the inclusion of atrocities committed against Dalits as a violation of international human rights, their protection by the United Nations, and the trial of their violations by International Courts. The paper puts into perspective the need for an external agency like the United Nations and International courts to interfere in rights guaranteed by the Indian Constitution, even with the existence of a modern legal system in a sovereign democratic country.

Keywords: atrocity, caste, diaspora, legal framework

Procedia PDF Downloads 216
32 Design and Construction of a Home-Based, Patient-Led, Therapeutic, Post-Stroke Recovery System Using Iterative Learning Control

Authors: Marco Frieslaar, Bing Chu, Eric Rogers

Abstract:

Stroke is a devastating illness that is the second biggest cause of death in the world (after heart disease). Where it does not kill, it leaves survivors with debilitating sensory and physical impairments that not only seriously harm their quality of life, but also cause a high incidence of severe depression. It is widely accepted that early intervention is essential for recovery, but current rehabilitation techniques largely favor hospital-based therapies which have restricted access, expensive and specialist equipment and tend to side-step the emotional challenges. In addition, there is insufficient funding available to provide the long-term assistance that is required. As a consequence, recovery rates are poor. The relatively unexplored solution is to develop therapies that can be harnessed in the home and are formulated from technologies that already exist in everyday life. This would empower individuals to take control of their own improvement and provide choice in terms of when and where they feel best able to undertake their own healing. This research seeks to identify how effective post-stroke, rehabilitation therapy can be applied to upper limb mobility, within the physical context of a home rather than a hospital. This is being achieved through the design and construction of an automation scheme, based on iterative learning control and the Riener muscle model, that has the ability to adapt to the user and react to their level of fatigue and provide tangible physical recovery. It utilizes a SMART Phone and laptop to construct an iterative learning control (ILC) system, that monitors upper arm movement in three dimensions, as a series of exercises are undertaken. The equipment generates functional electrical stimulation to assist in muscle activation and thus improve directional accuracy. In addition, it monitors speed, accuracy, areas of motion weakness and similar parameters to create a performance index that can be compared over time and extrapolated to establish an independent and objective assessment scheme, plus an approximate estimation of predicted final outcome. To further extend its assessment capabilities, nerve conduction velocity readings are taken by the software, between the shoulder and hand muscles. This is utilized to measure the speed of response of neuron signal transfer along the arm and over time, an online indication of regeneration levels can be obtained. This will prove whether or not sufficient training intensity is being achieved even before perceivable movement dexterity is observed. The device also provides the option to connect to other users, via the internet, so that the patient can avoid feelings of isolation and can undertake movement exercises together with others in a similar position. This should create benefits not only for the encouragement of rehabilitation participation, but also an emotional support network potential. It is intended that this approach will extend the availability of stroke recovery options, enable ease of access at a low cost, reduce susceptibility to depression and through these endeavors, enhance the overall recovery success rate.

Keywords: home-based therapy, iterative learning control, Riener muscle model, SMART phone, stroke rehabilitation

Procedia PDF Downloads 265
31 Two Houses in the Arabian Desert: Assessing the Built Work of RCR Architects in the UAE

Authors: Igor Peraza Curiel, Suzanne Strum

Abstract:

Today, when many foreign architects are receiving commissions in the United Arab Emirates, it is essential to analyze how their designs are influenced by the region's culture, environment, and building traditions. This study examines the approach to siting, geometry, construction methods, and material choices in two private homes for a family in Dubai, a project being constructed on adjacent sites by the acclaimed Spanish team of RCR Architects. Their third project in Dubai, the houses mark a turning point in their design approach to the desert. The Pritzker Prize-winning architects of RCR gained renown for building works deeply responsive to the history, landscape, and customs of their hometown in a volcanic area of the Catalonia region of Spain. Key formative projects and their entry to practice in UAE will be analyzed according to the concepts of place identity, the poetics of construction, and material imagination. The poetics of construction, a theoretical position with a long practical tradition, was revived by the British critic Kenneth Frampton. The idea of architecture as a constructional craft is related to the concepts of material imagination and place identity--phenomenological concerns with the creative engagement with local matter and topography that are at the very essence of RCR's way of designing, detailing, and making. Our study situates RCR within the challenges of building in the region, where western forms and means have largely replaced the ingenious responsiveness of indigenous architecture to the climate and material scarcity. The dwellings, iterations of the same steel and concrete vaulting system, highlight the conceptual framework of RCR's design approach to offer a study in contemporary critical regionalism. The Kama House evokes Bedouin tents, while the Alwah House takes the form of desert dunes in response to the temporality of the winds. Metal mesh screens designed to capture the shifting sands will complete the forms. The original research draws on interviews with the architects and unique documentation provided by them and collected by the authors during on-site visits. By examining the two houses in-depth, this paper foregrounds a series of timely questions: 1) What is the impact of the local climatic, cultural, and material conditions on their project in the UAE? 2) How does this work further their experiences in the region? 3) How has RCR adapted their construction techniques as their work expands beyond familiar settings? The investigation seeks to understand how the design methodology developed for more than 20 years and enmeshed in the regional milieu of their hometown can transform as the architects encounter unique characteristics and values in the Middle East. By focusing on the contemporary interpretation of Arabic geometry and elements, the houses reveal the role of geometry, tectonics, and material specificity in the realization from conceptual sketches to built form. In emphasizing the importance of regional responsiveness, the dynamics of international construction practice, and detailing this study highlights essential issues for professionals and students looking to practice in an increasingly global market.

Keywords: material imagination, regional responsiveness, place identity, poetics of construction

Procedia PDF Downloads 147
30 Workflow Based Inspection of Geometrical Adaptability from 3D CAD Models Considering Production Requirements

Authors: Tobias Huwer, Thomas Bobek, Gunter Spöcker

Abstract:

Driving forces for enhancements in production are trends like digitalization and individualized production. Currently, such developments are restricted to assembly parts. Thus, complex freeform surfaces are not addressed in this context. The need for efficient use of resources and near-net-shape production will require individualized production of complex shaped workpieces. Due to variations between nominal model and actual geometry, this can lead to changes in operations in Computer-aided process planning (CAPP) to make CAPP manageable for an adaptive serial production. In this context, 3D CAD data can be a key to realizing that objective. Along with developments in the geometrical adaptation, a preceding inspection method based on CAD data is required to support the process planner by finding objective criteria to make decisions about the adaptive manufacturability of workpieces. Nowadays, this kind of decisions is depending on the experience-based knowledge of humans (e.g. process planners) and results in subjective decisions – leading to a variability of workpiece quality and potential failure in production. In this paper, we present an automatic part inspection method, based on design and measurement data, which evaluates actual geometries of single workpiece preforms. The aim is to automatically determine the suitability of the current shape for further machining, and to provide a basis for an objective decision about subsequent adaptive manufacturability. The proposed method is realized by a workflow-based approach, keeping in mind the requirements of industrial applications. Workflows are a well-known design method of standardized processes. Especially in applications like aerospace industry standardization and certification of processes are an important aspect. Function blocks, providing a standardized, event-driven abstraction to algorithms and data exchange, will be used for modeling and execution of inspection workflows. Each analysis step of the inspection, such as positioning of measurement data or checking of geometrical criteria, will be carried out by function blocks. One advantage of this approach is its flexibility to design workflows and to adapt algorithms specific to the application domain. In general, within the specified tolerance range it will be checked if a geometrical adaption is possible. The development of particular function blocks is predicated on workpiece specific information e.g. design data. Furthermore, for different product lifecycle phases, appropriate logics and decision criteria have to be considered. For example, tolerances for geometric deviations are different in type and size for new-part production compared to repair processes. In addition to function blocks, appropriate referencing systems are important. They need to support exact determination of position and orientation of the actual geometries to provide a basis for precise analysis. The presented approach provides an inspection methodology for adaptive and part-individual process chains. The analysis of each workpiece results in an inspection protocol and an objective decision about further manufacturability. A representative application domain is the product lifecycle of turbine blades containing a new-part production and a maintenance process. In both cases, a geometrical adaptation is required to calculate individual production data. In contrast to existing approaches, the proposed initial inspection method provides information to decide between different potential adaptive machining processes.

Keywords: adaptive, CAx, function blocks, turbomachinery

Procedia PDF Downloads 298
29 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).

Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing

Procedia PDF Downloads 134
28 The Emerging Post-Islamism and the Politics of Pakistan’s Jamaat-i-Islami in the Contemporary Muslim World

Authors: Shahzada Gulfam

Abstract:

Islamism was considered as a new phenomenon in Muslim World to revolt against static Religious Traditionalists and the Imperialists. Islamist political parties viewed the establishment of an Islamic state within the limits of Sharia’h as their destination. The Islamists movements like Ikhwan-ul Muslimun, Jamaat-i-Islami etc. did appear with revolutionary agenda but were contained by military forces and the secular modernists of Muslim World. The Muslim rulers, historically could not respect the democratic and moral norms and equally emerged as dictators in democracies, military rule as well as in monarchies. The Arab Spring did not follow the Islamists agenda but gathered the common masses against the corrupt rulers to have a just democratic political system. The Islamic State and Sharia’h were not their immediate targets but the achievement of moral norms in Muslim societies and eradication of dictatorial rule were the basic aims. This phenomenon is named as post-Islamism. The political struggle of PAT (Pakistan Awami Tehreek) and the PTI (Pakistan Tehreek-i-Insaf) has been following the footsteps of Arab Spring and can be noted as the extension of Arab Spring in Muslim World. The results of this struggle would define the fate of Post-Islamism in Pakistan. Has Jamaat-i-Islami got the potential to reform its agenda accordingly? This paper intends to study the Jamaat’s struggle and tries to predict Jamaat’s role in post-Islamism scenario. There is a clear distinction between the people of religion and the people following the popular materialistic westernized value system. This division is also evident in political parties. Pakistan has been ruled mostly by the secular parties and rulers. The inability to establish Islamic system by replacing the imperial system has created militancy and revolt which requires the establishment of a sound model Islamic based system in the country. The political parties of Pakistan could not device a modernize agenda, equally acceptable in modernized world and addressing the prevailing issues and also having the indigenous religious and cultural roots. The inability of Jamaat-i-Islami Pakistan to transform its agenda accordingly to serve the post-Islamism has made it irrelevant in Pakistan’s politics. Once Jamaat leaves behind its hard position as an Islamist party and accepts the post-Islamism as beginning to create its idealized state and society, it can pursue its agenda gradually. The phenomenon of post-Islamism does not make Islamists irrelevant but invites them to listen to the priorities of masses rather than insisting on the agenda of their respective ideologues to be followed for all times. The ruling Muslim democrats and military dictators of Pakistan have been following unfair means to sustain their political power which gave rise to space for the new political parties to emerge and organize agitation successfully in Pakistani Politics. Jamaat-i-Islami could not fill that space to be an agent of Post-Islamism and could not break their chains which had been tying them to the prevailing failed democracy of Pakistan. Post-Islamists are the addressers of the rulers corruption and are struggling for reforms in system. Jamaat due to its ideological compulsions could not transform its agenda accordingly. The new scenario indicates that the Post-Islamism which emerged in Arab World can be taken as first step to establish democracy and justice in state and society and then the establishment of Islamic law and the establishment of an Islamic state should have been the next targets. This gradual agenda would have delivered public support to the Jamaat which deserved that but PTI & PAT have cashed this opportunity in Pakistani politics by strengthening their respective vote banks.

Keywords: arab spring, islamic state, islamic political parties, muslim world, post-islamism

Procedia PDF Downloads 371
27 Influence of Atmospheric Pollutants on Child Respiratory Disease in Cartagena De Indias, Colombia

Authors: Jose A. Alvarez Aldegunde, Adrian Fernandez Sanchez, Matthew D. Menden, Bernardo Vila Rodriguez

Abstract:

Up to five statistical pre-processings have been carried out considering the pollutant records of the stations present in Cartagena de Indias, Colombia, also taking into account the childhood asthma incidence surveys conducted in hospitals in the city by the Health Ministry of Colombia for this study. These pre-processings have consisted of different techniques such as the determination of the quality of data collection, determination of the quality of the registration network, identification and debugging of errors in data collection, completion of missing data and purified data, as well as the improvement of the time scale of records. The characterization of the quality of the data has been conducted by means of density analysis of the pollutant registration stations using ArcGis Software and through mass balance techniques, making it possible to determine inconsistencies in the records relating the registration data between stations following the linear regression. The results obtained in this process have highlighted the positive quality in the pollutant registration process. Consequently, debugging of errors has allowed us to identify certain data as statistically non-significant in the incidence and series of contamination. This data, together with certain missing records in the series recorded by the measuring stations, have been completed by statistical imputation equations. Following the application of these prior processes, the basic series of incidence data for respiratory disease and pollutant records have allowed the characterization of the influence of pollutants on respiratory diseases such as, for example, childhood asthma. This characterization has been carried out using statistical correlation methods, including visual correlation, simple linear regression correlation and spectral analysis with PAST Software which identifies maximum periodicity cycles and minimums under the formula of the Lomb periodgram. In relation to part of the results obtained, up to eleven maximums and minimums considered contemporary between the incidence records and the particles have been identified taking into account the visual comparison. The spectral analyses that have been performed on the incidence and the PM2.5 have returned a series of similar maximum periods in both registers, which are at a maximum during a period of one year and another every 25 days (0.9 and 0.07 years). The bivariate analysis has managed to characterize the variable "Daily Vehicular Flow" in the ninth position of importance of a total of 55 variables. However, the statistical correlation has not obtained a favorable result, having obtained a low value of the R2 coefficient. The series of analyses conducted has demonstrated the importance of the influence of pollutants such as PM2.5 in the development of childhood asthma in Cartagena. The quantification of the influence of the variables has been able to determine that there is a 56% probability of dependence between PM2.5 and childhood respiratory asthma in Cartagena. Considering this justification, the study could be completed through the application of the BenMap Software, throwing a series of spatial results of interpolated values of the pollutant contamination records that exceeded the established legal limits (represented by homogeneous units up to the neighborhood level) and results of the impact on the exacerbation of pediatric asthma. As a final result, an economic estimate (in Colombian Pesos) of the monthly and individual savings derived from the percentage reduction of the influence of pollutants in relation to visits to the Hospital Emergency Room due to asthma exacerbation in pediatric patients has been granted.

Keywords: Asthma Incidence, BenMap, PM2.5, Statistical Analysis

Procedia PDF Downloads 116