Search results for: near-surface water
6264 A Viable Approach for Biological Detoxification of Non Edible Oil Seed Cakes and Their Utilization in Food Production Using Aspergillus Niger
Authors: Kshitij Bhardwaj, R.K. Trivedi, Shipra Dixit
Abstract:
We used biological detoxification method that converts toxic residue waste of Jatropha curcas oil seeds (non edible oil seed) into industrial bio-products and animal feed material. Present study describes the complete degradation of phorbol esters by Aspergillus Niger strain during solid state fermentation (SSF) of deoiled Jatropha curcas seed cake. Phorbol esters were completely degraded in 15 days under the optimized SSF conditions viz deoiled cake 5.0 gm moistened with 5.0 ml distilled water; inoculum 2 ml of overnight grown Aspergillus niger; incubated at 30◦ C, pH 7.0. This method simultaneously induces the production of Protease enzyme by Aspergillus Niger which has high potential to be used in feedstuffs .The maximum Protease activities obtained were 709.16 mg/ml in Jatropha curcas oil seed cake. The protein isolate had small amounts of phorbol esters, phytic acid, and saponin without any lectin. Its minimum and maximum solubility were at pH 4.0&12.0. Water and oil binding capacities were 3.22 g water/g protein and 1.86 ml oil/g protein respectively.Emulsion activity showed high values in a range of basic pH. We concluded that Jatropha Curcas seed cake has a potential to be used as a novel source of functional protein for food or feed applications.Keywords: solid state fermentation, Jatropha curcas, oil seed cake, phorbol ester
Procedia PDF Downloads 4836263 Synthesis and Characterization of Water Soluble Ferulic Acid-Grafted Chitosan
Authors: Sarekha Woranuch, Rangrong Yoksan
Abstract:
Chitosan is a derivative of chitin, which is a second most naturally abundant polysaccharide found in crab shells, shrimp shells, and squid pens. The applications of chitosan in pharmaceutical, cosmetics, food and packaging industries have been reported owing to its general recognition as safe, excellent biodegradability and biocompatibility, as well as ability to form films, membranes, gels, beads, fibers and particles. Nevertheless, chitosan is an amino polysaccharide consisting of strong inter- and intramolecular hydrogen bonds which limit its solubility in neutral pH water resulting in restricted utilization. Chemical modification is an alternative way to impede hydrogen bond formation. The objective of the present research is to improve water solubility and antioxidant activity of chitosan by grafting with ferulic acid. Ferulic acid was grafted onto chitosan at the C-2 position via a carbodiimide-mediated coupling reaction. Different mole ratios of chitosan to ferulic acid (i.e. 1.0:0.0, 1.0:0.5, 1.0:1.0, 1.0:1.5, 1.0:2.0, and 1.0:2.5) and various reaction temperatures (i.e. 40, 60, and 80 °C) were used. The reaction was performed at different times (i.e. 1.5, 3.0, 4.5, and 6.0 h). The obtained ferulic acid-grafted chitosan was characterized by FTIR and 1H NMR technique. The influences of ferulic acid on crystallinity, solubility and radical scavenging activity of chitosan were also investigated. Ferulic acid grafted chitosan was successfully synthesized as confirmed from (i) the appearance of FTIR absorption band at 1517 cm-1 belonging to C=C aromatic ring of ferulic acid and the increased C–H stretching band intensity and (ii) the appearance of proton signals at δ = 6.31-7.67 ppm ascribing to methine protons of ferulic acid. The condition in which the reaction temperature of 60°C, reaction time of 3 h and the mole ratio of chitosan to ferulic acid of 1:1 gave the highest ferulic acid substitution degree, i.e. 0.37. The resulting ferulic acid grafted chitosan was soluble in water (1.3 mg/mL) due to its reduced crystallinity as compared with chitosan and also exhibited 90% greater radical scavenging activity than chitosan. The result suggested the utilization of ferulic acid grafted chitosan as an antioxidant material.Keywords: antioxidant property, chitosan, ferulic acid, grafting
Procedia PDF Downloads 4596262 Experimental Study of a Solar Still with Four Glass Cover
Authors: Zakaria Haddad, Azzedine Nahoui, Mohamed Salmi, Ali Djagham
Abstract:
Solar distillation is an effective and practical method for the production of drinking water in arid and semi-arid areas; however, this production is very limited. The aim of this work is to increase the latter by means of single slope solar still with four glass cover without augmenting volume and surface of a conventional solar still, using local materials and simple design. The equipment was tested under the climatic condition of Msila city (35°70′ N, 4°54′ E), Algeria. Performance of the use of four glass cover was studied, and exhaustive data were collected, analyzed, and presented. To show the effectiveness of the system, its performance was compared with that of the conventional solar still. The experimental study shows that the production of the proposed system achieves 5.3 l/m²/day and 5.8 l/m²/day respectively for the months of April and May, with an increase of 10% and 17% compared to the conventional solar still.Keywords: drinking water, four glass cover, production, solar distillation
Procedia PDF Downloads 1376261 Effect of Climate Change Rate in Indonesia against the Shrinking Dimensions of Granules and Plasticity Index of Soils
Authors: Muhammad Rasyid Angkotasan
Abstract:
The soil is a dense granules and arrangement of the pores that are related to each other, so that the water can flow from one point which has higher energy to a point that has lower energy. The flow of water through the pores of the porous ground is urgently needed in water seepage estimates in ground water pumping problems, investigate for underground construction, as well as analyzing the stability of the construction of Weirs. Climate change resulted in long-term changes in the distribution of weather patterns are statistically throughout the period start time of decades to millions of years. In other words, changes in the average weather circumstances or a change in the distribution of weather events, on average, for example, the number of extreme weather events that increasingly a lot or a little. Climate change is limited to a particular regional or can occur in all regions of the Earth. Geographical location between two continents and two oceans and is located around the equator is klimatologis factor is the cause of flooding and drought in Indonesia. This caused Indonesia' geographical position is on a hemisphere with a tropical monsoon climate is very sensitive to climatic anomaly El Nino Southern Oscillation (ENSO). ENSO causes drought occurrence in sea surface temperature conditions in the Pacific Equator warms up to the middle part of the East (El Nino). Based on the analysis of the climate of the last 30 years show that there is a tendency, the formation of a new pattern of climate causes the onset of climate change. The impact of climate change on the occurrence of the agricultural sector is the bergesernya beginning of the dry season which led to the above-mentioned pattern planting due to drought. The impact of climate change (drought) which is very extreme in Indonesia affect the shrinkage dimensions grain land and reduced the value of a percentage of the soil Plasticity Index caused by climate change.Keywords: climate change, soil shrinkage, plasticity index, shrinking dimensions
Procedia PDF Downloads 2396260 Experimental Investigation for the Overtopping Wave Force of the Vertical Breakwater
Authors: Jin Song Gui, Han Li, Rui Jin Zhang, Heng Jiang Cai
Abstract:
There is a large deviation between the measured wave power at the vertical breast wall and the calculated one according to current specification in the case of overtopping. In order to investigate the reasons for the deviation, the wave forces of vertical breast wall under overtopping conditions have been measured through physical model experiment and compared with the calculated results. The effect of water depth, period and the wave height on the wave forces of the vertical breast wall have been also investigated. The distribution of wave pressure under different wave actions was tested based on the force sensor which is installed in the vertical breakwater. By comparing and analyzing the measured values and norms calculated values, the applicability of the existing norms recommended method were discussed and a reference for the design of vertical breakwater was provided. Experiment results show that with the decrease of the water depth, the gap is growing between the actual wave forces and the specification values, and there are no obvious regulations between these two values with the variation of period while wave force greatly reduces with the overtopping reducing. The amount of water depth and wave overtopping has a significant impact on the wave force of overtopping section while the period has no obvious influence on the wave force. Finally, some favorable recommendations for the overtopping wave force design of the vertical breakwater according to the model experiment results are provided.Keywords: overtopping wave, physical model experiment, vertical breakwater, wave forces
Procedia PDF Downloads 3036259 Hydraulics of 3D Aerators with Lateral Enlargements
Authors: Nirmala Lama
Abstract:
The construction of high dams has led to significant challenges in managing flow rates discharging over spillways, resulting in cavitation damages on hydraulic surfaces. To address this, aerator devices were designed and installed to promote fore aeration, thereby controlling and mitigating damages caused by cavitation. Consequently, these aerator types, three-dimensional aerators (3DAEs), have demonstrated superior efficiency in introducing forced air into the flow.This research focuses on the installation and evaluation of three-dimensional aerator devices at the high discharge spillway surface. In the laboratory, the air concentration downstream of the hydraulic structures was extensively measured, and the data were analyzed in details.Multiple flow scenarios and structural arrangements of the aerators were adopted for the study. The outcomes of these experiments are listed as In terms of air concentration value, the comparison between 3 DAE (three-dimensional aerator) with offset only and offset with ramp reveals significant differences. The concentration value on the side wall was justified. The side cavity length was found to increase with higher approach Froude numbers and lateral enlargement widths. Furthermore, 3DAE exhibited shorter side cavity lengths compared to three-dimensional aerator devices without ramps (3DAD), a beneficial features for controlling water fins. An empirical formula to express the side cavity length was derived from the measured data. Also, the comparison were made on the basis of water fin formation between the different arrangements of 3D aerators. In conclusion, this research provides valuable insights into the performance of three-dimensional aerators in mitigating cavitation damages and controlling water fins in high dam spillways. The findings offer practical implications for designers and engineers seeking to enhance the efficiency and safety of hydraulic structures subjected to high flow rates.Keywords: three-dimension aerator, cavity, water fin, air entrainment
Procedia PDF Downloads 686258 Environmental Cost and Benefits Analysis of Different Electricity Option: A Case Study of Kuwait
Authors: Mohammad Abotalib, Hamid Alhamadi
Abstract:
In Kuwait, electricity is generated from two primary sources that are heavy fuel combustion and natural gas combustion. As Kuwait relies mainly on petroleum-based products for electricity generation, identifying and understanding the environmental trade-off of such operations should be carefully investigated. The life cycle assessment (LCA) tool is applied to identify the potential environmental impact of electricity generation under three scenarios by considering the material flow in various stages involved, such as raw-material extraction, transportation, operations, and waste disposal. The three scenarios investigated represent current and futuristic electricity grid mixes. The analysis targets six environmental impact categories: (1) global warming potential (GWP), (2) acidification potential (AP), (3) water depletion (WD), (4) acidification potential (AP), (4) eutrophication potential (EP), (5) human health particulate matter (HHPM), and (6) smog air (SA) per one kWh of electricity generated. Results indicate that one kWh of electricity generated would have a GWP (881-1030) g CO₂-eq, mainly from the fuel combustion process, water depletion (0.07-0.1) m³ of water, about 68% from cooling processes, AP (15.3-17.9) g SO₂-eq, EP (0.12-0.14) g N eq., HHPA (1.13- 1.33)g PM₂.₅ eq., and SA (64.8-75.8) g O₃ eq. The variation in results depend on the scenario investigated. It can be observed from the analysis that introducing solar photovoltaic and wind to the electricity grid mix improves the performance of scenarios 2 and 3 where 15% of the electricity comes from renewables correspond to a further decrease in LCA results.Keywords: energy, functional uni, global warming potential, life cycle assessment, energy, functional unit
Procedia PDF Downloads 1356257 An in Situ Dna Content Detection Enabled by Organic Long-persistent Luminescence Materials with Tunable Afterglow-time in Water and Air
Authors: Desissa Yadeta Muleta
Abstract:
Purely organic long-persistent luminescence materials (OLPLMs) have been developed as emerging organic materials due to their simple production process, low preparation cost and better biocompatibilities. Notably, OLPLMs with afterglow-time-tunable long-persistent luminescence (LPL) characteristics enable higher-level protection applications and have great prospects in biological applications. The realization of these advanced performances depends on our ability to gradually tune LPL duration under ambient conditions, however, the strategies to achieve this are few due to the lack of unambiguous mechanisms. Here, we propose a two-step strategy to gradually tune LPL duration of OLPLMs over a wide range of seconds in water and air, by using derivatives as the guest and introducing a third-party material into the host-immobilized host–guest doping system. Based on this strategy, we develop an analysis method for deoxyribonucleic acid (DNA) content detection without DNA separation in aqueous samples, which circumvents the influence of the chromophore, fluorophore and other interferents in vivo, enabling a certain degree of in situ detection that is difficult to achieve using today’s methods. This work will expedite the development of afterglow-time-tunable OLPLMs and expand new horizons for their applications in data protection, bio-detection, and bio-sensingKeywords: deoxyribonucliec acid, long persistent luminescent materials, water, air
Procedia PDF Downloads 766256 Processing of Flexible Dielectric Nanocomposites Using Nanocellulose and Recycled Alum Sludge for Wearable Technology Applications
Authors: D. Sun, L. Saw, A. Onyianta, D. O’Rourke, Z. Lu, C. See, C. Wilson, C. Popescu, M. Dorris
Abstract:
With the rapid development of wearable technology (e.g., smartwatch, activity trackers and health monitor devices), flexible dielectric materials with environmental-friendly, low-cost and high-energy efficiency characteristics are in increasing demand. In this work, a flexible dielectric nanocomposite was processed by incorporating two components: cellulose nanofibrils and alum sludge in a polymer matrix. The two components were used in the reinforcement phase as well as for enhancing the dielectric properties; they were processed using waste materials that would otherwise be disposed to landfills. Alum sludge is a by-product of the water treatment process in which aluminum sulfate is prevalently used as the primary coagulant. According to the data from a project partner-Scottish Water: there are approximately 10k tons of alum sludge generated as a waste from the water treatment work to be landfilled every year in Scotland. The industry has been facing escalating financial and environmental pressure to develop more sustainable strategies to deal with alum sludge wastes. In the available literature, some work on reusing alum sludge has been reported (e.g., aluminum recovery or agriculture and land reclamation). However, little work can be found in applying it to processing energy materials (e.g., dielectrics) for enhanced energy density and efficiency. The alum sludge was collected directly from a water treatment plant of Scottish Water and heat-treated and refined before being used in preparing composites. Cellulose nanofibrils were derived from water hyacinth, an invasive aquatic weed that causes significant ecological issues in tropical regions. The harvested water hyacinth was dried and processed using a cost-effective method, including a chemical extraction followed by a homogenization process in order to extract cellulose nanofibrils. Biodegradable elastomer polydimethylsiloxane (PDMS) was used as the polymer matrix and the nanocomposites were processed by casting raw materials in Petri dishes. The processed composites were characterized using various methods, including scanning electron microscopy (SEM), rheological analysis, thermogravimetric and X-ray diffraction analysis. The SEM result showed that cellulose nanofibrils of approximately 20nm in diameter and 100nm in length were obtained and the alum sludge particles were of approximately 200um in diameters. The TGA/DSC analysis result showed that a weight loss of up to 48% can be seen in the raw material of alum sludge and its crystallization process has been started at approximately 800°C. This observation coincides with the XRD result. Other experiments also showed that the composites exhibit comprehensive mechanical and dielectric performances. This work depicts that it is a sustainable practice of reusing such waste materials in preparing flexible, lightweight and miniature dielectric materials for wearable technology applications.Keywords: cellulose, biodegradable, sustainable, alum sludge, nanocomposite, wearable technology, dielectric
Procedia PDF Downloads 856255 Ground Water Monitoring Using High-Resolution Fiber Optics Cable Sensors (FOCS)
Authors: Sayed Isahaq Hossain, K. T. Chang, Moustapha Ndour
Abstract:
Inference of the phreatic line through earth dams is of paramount importance because it could be directly associated with piping phenomena which may lead to the dam failure. Normally in the field, the instrumentations such as ‘diver’ and ‘standpipe’ are to be used to identify the seepage conditions which only provide point data with a fair amount of interpolation or assumption. Here in this paper, we employed high-resolution fiber optic cable sensors (FOCS) based on Raman Scattering in order to obtain a very accurate phreatic line and seepage profile. Unlike the above-mention devices which pinpoint the water level location, this kind of Distributed Fiber Optics Sensing gives us more reliable information due to its inherent characteristics of continuous measurement.Keywords: standpipe, diver, FOCS, monitoring, Raman scattering
Procedia PDF Downloads 3576254 Removal of Cr (VI) from Water through Adsorption Process Using GO/PVA as Nanosorbent
Authors: Syed Hadi Hasan, Devendra Kumar Singh, Viyaj Kumar
Abstract:
Cr (VI) is a known toxic heavy metal and has been considered as a priority pollutant in water. The effluent of various industries including electroplating, anodizing baths, leather tanning, steel industries and chromium based catalyst are the major source of Cr (VI) contamination in the aquatic environment. Cr (VI) show high mobility in the environment and can easily penetrate cell membrane of the living tissues to exert noxious effects. The Cr (VI) contamination in drinking water causes various hazardous health effects to the human health such as cancer, skin and stomach irritation or ulceration, dermatitis, damage to liver, kidney circulation and nerve tissue damage. Herein, an attempt has been done to develop an efficient adsorbent for the removal of Cr (VI) from water. For this purpose nanosorbent composed of polyvinyl alcohol functionalized graphene oxide (GO/PVA) was prepared. Thus, obtained GO/PVA was characterized through FTIR, XRD, SEM, and Raman Spectroscopy. As prepared nanosorbent of GO/PVA was utilized for the removal Cr (VI) in batch mode experiment. The process variables such as contact time, initial Cr (VI) concentration, pH, and temperature were optimized. The maximum 99.8 % removal of Cr (VI) was achieved at initial Cr (VI) concentration 60 mg/L, pH 2, temperature 35 °C and equilibrium was achieved within 50 min. The two widely used isotherm models viz. Langmuir and Freundlich were analyzed using linear correlation coefficient (R2) and it was found that Langmuir model gives best fit with high value of R2 for the data of present adsorption system which indicate the monolayer adsorption of Cr (VI) on the GO/PVA. Kinetic studies were also conducted using pseudo-first order and pseudo-second order models and it was observed that chemosorptive pseudo-second order model described the kinetics of current adsorption system in better way with high value of correlation coefficient. Thermodynamic studies were also conducted and results showed that the adsorption was spontaneous and endothermic in nature.Keywords: adsorption, GO/PVA, isotherm, kinetics, nanosorbent, thermodynamics
Procedia PDF Downloads 3896253 Impact of Coal Mining on River Sediment Quality in the Sydney Basin, Australia
Authors: A. Ali, V. Strezov, P. Davies, I. Wright, T. Kan
Abstract:
The environmental impacts arising from mining activities affect the air, water, and soil quality. Impacts may result in unexpected and adverse environmental outcomes. This study reports on the impact of coal production on sediment in Sydney region of Australia. The sediment samples upstream and downstream from the discharge points from three mines were taken, and 80 parameters were tested. The results were assessed against sediment quality based on presence of metals. The study revealed the increment of metal content in the sediment downstream of the reference locations. In many cases, the sediment was above the Australia and New Zealand Environment Conservation Council and international sediment quality guidelines value (SQGV). The major outliers to the guidelines were nickel (Ni) and zinc (Zn).Keywords: coal mine, environmental impact, produced water, sediment quality guidelines value (SQGV)
Procedia PDF Downloads 3046252 Assessment of Groundwater Quality around a Cement Factory in Ewekoro, Ogun State, Southwest Nigeria
Authors: A. O. David, A. A. Akaho, M. A. Abah, J. O. Ogunjimi
Abstract:
This study focuses on the growing concerns about the quality of groundwater found around cement factories, which have caused several health issues for residents located within two (2) kilometer radius. The qualities of groundwater were determined by an investigative study that involved the determination of some heavy metals and physicochemical properties in drinking water samples. Eight (8) samples of groundwater were collected from the eight sampling sites. The samples were analysed for the following parameters; iron, copper, manganese, zinc, lead, color, dissolved solids, electrical conductivity, pH, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), temperature, turbidity and total hardness using standard methods. The test results showed the variation of the investigated parameters in the samples as follows: temperature 26-31oC, pH 5.9-7.2, electrical conductivity (EC) 0.37 – 0.78 µS/cm, total hardness 181.8 – 333.0 mg/l, turbidity 0.00-0.05 FTU, colour 5-10 TCU, dissolved oxygen 4.31-5.01 mg/l, BOD 0.2-1.0 mg/l, COD 2.0 -4.0 mg/l, Cu 0.04 – 0.09 mg/l, Fe 0.006-0.122 mg/l, Zn 0.016-0.306 mg/l, Mn 0.01-0.05 mg/l and Pb < 0.001 mg/l. The World Health Organization's standard for drinking water quality guidelines was exceeded in several of the analyzed parameters' amounts in the drinking water samples from the study area. The dissolved oxygen was found to exceed 5.0 mg/l, which is the WHO permissible limit; also, Limestone was found to exceed the WHO maximum limit of 170 mg/l. All the above results confirmed the high pollution of the groundwater sources, and hence, they are not suitable for consumption without any prior treatment.Keywords: groundwater, quality, heavy metals, parameters
Procedia PDF Downloads 656251 Durability Aspects of Recycled Aggregate Concrete: An Experimental Study
Authors: Smitha Yadav, Snehal Pathak
Abstract:
Aggregate compositions in the construction and demolition (C&D) waste have potential to replace normal aggregates. However, to re-utilise these aggregates, the concrete produced with these recycled aggregates needs to provide the desired compressive strength and durability. This paper examines the performance of recycled aggregate concrete made up of 60% recycled aggregates of 20 mm size in terms of durability tests namely rapid chloride permeability, drying shrinkage, water permeability, modulus of elasticity and creep without compromising the compressive strength. The experimental outcome indicates that recycled aggregate concrete provides strength and durability same as controlled concrete when processed for removal of adhered mortar.Keywords: compressive strength, recycled aggregate, shrinkage, rapid chloride permeation test, modulus of elasticity, water permeability
Procedia PDF Downloads 3156250 An Experimental Study on Service Life Prediction of Self: Compacting Concrete Using Sorptivity as a Durability Index
Abstract:
Permeation properties have been widely used to quantify durability characteristics of concrete for assessing long term performance and sustainability. The processes of deterioration in concrete are mediated largely by water. There is a strong interest in finding a better way of assessing the material properties of concrete in terms of durability. Water sorptivity is a useful single material property which can be one of the measures of durability useful in service life planning and prediction, especially in severe environmental conditions. This paper presents the results of the comparative study of sorptivity of Self-Compacting Concrete (SCC) with conventionally vibrated concrete. SCC is a new, special type of concrete mixture, characterized by high resistance to segregation that can flow through intricate geometrical configuration in the presence of reinforcement, under its own mass, without vibration and compaction. SCC mixes were developed for the paste contents of 0.38, 0.41 and 0.43 with fly ash as the filler for different cement contents ranging from 300 to 450 kg/m3. The study shows better performance by SCC in terms of capillary absorption. The sorptivity value decreased as the volume of paste increased. The use of higher paste content in SCC can make the concrete robust with better densification of the micro-structure, improving the durability and making the concrete more sustainable with improved long term performance. The sorptivity based on secondary absorption can be effectively used as a durability index to predict the time duration required for the ingress of water to penetrate the concrete, which has practical significance.Keywords: self-compacting concrete, service life prediction, sorptivity, volume of paste
Procedia PDF Downloads 3216249 Effectiveness of Opuntia ficus indica Cladodes Extract for Wound-Healing
Authors: Giuffrida Graziella, Pennisi Stefania, Coppa Federica, Iannello Giulia, Cartelli Simone, Lo Faro Riccardo, Ferruggia Greta, Brundo Maria Violetta
Abstract:
Cladode chemical composition may vary according to soil factors, cultivation season, and plant age. The primary metabolites of cladodes are water, carbohydrates, and proteins. The carbohydrates in cladodes are divided into two types: structural and storage. Polysaccharides from Opuntia ficus‐indica (L.) Mill plants build molecular networks with the capacity to retain water; thus, they act as mucoprotective agents. Mucilage is the main polysaccharide of cladodes; it contains polymers of β‐d‐galacturonic acid bound in positions (1–4) and traces of R‐linked l‐rhamnose (1-2). Mucilage regulates both the cell water content during prolonged drought and the calcium flux in the plant cells. The in vitro analysis of keratinocytes in monolayer, through the scratch-wound-healing assay, provided promising results. After 48 hours of exposure, the wound scratch was almost completely closed in cells treated with cladode extract. After 72 hours, the treated cells reached complete confluence, while in the untreated cells (negative control) the confluence was reached after 96 hours. We also added a positive control group of cells treated with colchicine, which inhibited wound closure for a more comprehensive analysis.Keywords: cladodes, metabolites, polysaccharide, scratch-wound-healing assay
Procedia PDF Downloads 546248 Investigate the Movement of Salt-Wedge at Co Chien Estuary, Vietnam in the Context of Climate Change and Reduce Upstream Flow Using 3D Model
Authors: Hieu Duy Nguyen, Chitsan Lin Jr., Dung Duc Tran
Abstract:
Nowadays, drought and salinity intrusion becomes a severe problem in the Lower Mekong region due to climate change, especially in coastal provinces. Freshwater resources are decreased due to sea-level rise and the decline in water flow from upstream in the dry season. The combination of the above issues can lead to many effects on the environment and human health in affected areas such as the pathological of digestive or decreased the immune system. Tidal cycle and upstream flows are the two main factors affecting the saline intrusion process and the former salt-wedge in the estuary. Under suitable conditions, salt-wedge can be going further upstream under the water surface and affected groundwater. In order to have a proper plan for the mitigation of the above adverse effects, we need to understand the characteristics of this process. In this study, 3D model is used to investigate the movement of salt-wedge under different conditions of tidal and flow discharge. The salinity in the vertical profile is also measured in the dry season of 2017 and 2018 for model calibrating. The data has proved that there is the presence of salt-wedge in the study area. The obtained results will help strategic planners to use and preserve water resources more effectively and serve as a basis for new research directions on saline intrusion and human health.Keywords: salt-wedge, salinity intrusion, human health, 3D model
Procedia PDF Downloads 1146247 Hydrological Characterization of a Watershed for Streamflow Prediction
Authors: Oseni Taiwo Amoo, Bloodless Dzwairo
Abstract:
In this paper, we extend the versatility and usefulness of GIS as a methodology for any river basin hydrologic characteristics analysis (HCA). The Gurara River basin located in North-Central Nigeria is presented in this study. It is an on-going research using spatial Digital Elevation Model (DEM) and Arc-Hydro tools to take inventory of the basin characteristics in order to predict water abstraction quantification on streamflow regime. One of the main concerns of hydrological modelling is the quantification of runoff from rainstorm events. In practice, the soil conservation service curve (SCS) method and the Conventional procedure called rational technique are still generally used these traditional hydrological lumped models convert statistical properties of rainfall in river basin to observed runoff and hydrograph. However, the models give little or no information about spatially dispersed information on rainfall and basin physical characteristics. Therefore, this paper synthesizes morphometric parameters in generating runoff. The expected results of the basin characteristics such as size, area, shape, slope of the watershed and stream distribution network analysis could be useful in estimating streamflow discharge. Water resources managers and irrigation farmers could utilize the tool for determining net return from available scarce water resources, where past data records are sparse for the aspect of land and climate.Keywords: hydrological characteristic, stream flow, runoff discharge, land and climate
Procedia PDF Downloads 3416246 Treatment of Oil Recovery Water Using Direct and Indirect Electrochemical Oxidation
Authors: Tareg Omar Mansour, Khaled Omar Elhaji
Abstract:
Model solutions of pentanol in the salt water of various concentrations were subjected to electrochemical oxidation using a dimensionally stable anode (DSA) and a platinised titanium cathode. The removal of pentanol was analysed over time using gas chromatography (GC) and by monitoring the total organic carbon (TOC) concentration of the reaction mixture. It was found that the removal of pentanol occurred more efficiently at higher salinities and higher applied electrical current values. When using a salt concentration of 20,000 ppm and an applied current of 100 mA there was a decrease in concentration of pentanol of 15 %. When the salt concentration and applied current were increased to 58,000 ppm and 500 mA respectively, the decrease in concentration was improved to 64 %.Keywords: dimensionally stable anode (DSA), total organic hydrocarbon (TOC), gas chromatography mass spectrometry (GCMS), electrochemical oxidation
Procedia PDF Downloads 3846245 Visitor's Perception toward Boating in Silver River, Florida
Authors: Hoda Manafian, Stephen Holland
Abstract:
Silver Springs are one of Florida's first tourist attractions. They are one of the largest artesian spring formations in the world, producing nearly 550 million gallons of crystal-clear water daily that is one of the most popular sites for water-based leisure activities. As part of managing the use of a state park, the state is interested in establishing a baseline count of number of boating users to compare this to the quality of the natural resources and environment in the park. Understanding the status of the environmental resources and also the human recreational experience is the main objective of the project. Two main goals of current study are 1) to identify the distribution of different types of watercrafts (kayak, canoe, motor boat, Jet Ski, paddleboard and pontoon). 2) To document the level of real crowdedness in the river during different seasons, months, and hours of each day based on the reliable information gained from camera versus self-reported method by tourists themselves in the past studies (the innovative achievement of this study). In line with these objectives, on-site surveys and also boat counting using a time-lapse camera at the Riverside launch was done during 12 months of 2015. 700 on-site surveys were conducted at three watercraft boat ramp sites (Rays Wayside, Riverside launch area, Ft. King Waterway) of recreational users. We used Virtualdub and ImageJ software for counting boats for meeting the first and second goals, since this two software can report even the hour of presence of watercraft in the water in addition to the number of users and the type of watercraft. The most crowded hours were between 9-11AM from February to May and kayak was the most popular watercraft. The findings of this research can make a good foundation for better management in this state park in future.Keywords: eco-tourism, Florida state, visitors' perception, water-based recreation
Procedia PDF Downloads 2476244 A Case Study of Rainfall Derived Inflow/Infiltration in a Separate Sewer System in Gwangju, Korea
Authors: Bumjo Kim, Hyun Jin Kim, Joon Ha Kim
Abstract:
The separate sewer system is that collects the wastewater as a sewer pipe and rainfall as a stormwater pipe separately, and then sewage is treated in the wastewater treatment plant, the stormwater is discharged to rivers or lakes through stormwater drainage pipes. Unfortunately, even for separate sewer systems, it is not possible to prevent Rainfall Driven Inflow/Infiltration(RDII) completely to the sewer pipe. Even if the sewerage line is renovated, there is an ineluctable RDII due to the combined sewer system in the house or the difficulty of sewage maintenance in private areas. The basic statistical analysis was performed using environmental data including rainfall, sewage, water qualities and groundwater level in the strict of Gwangju in South Korea. During rainfall in the target area, RDII showed an increased rate of 13.4 ~ 53.0% compared to that of a clear day and showed a rapid hydrograph response of 0.3 ~ 3.0 hr. As a result of water quality analysis, BOD5 concentration decreased by 17.3 % and salinity concentration decreased by 8.8 % at the representative spot in the project area compared to the sunny day during rainfall. In contrast to the seasonal fluctuation range of 0.38 m ~ 0.55 m in groundwater in Gwangju area and 0.58 m ~ 0.78 m in monthly fluctuation range, while the difference between groundwater level and the depth of sewer pipe laying was 2.70 m on average, which is larger than the range of fluctuation. Comprehensively, it can be concluded that the increasing of flowrate at sewer line is due to not infiltration water caused by groundwater level rise, construction failure, cracking due to joint failure or conduit deterioration, rainfall was directly inflowed into the sewer line rapidly. Acknowledgements: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.Keywords: ground water, rainfall, rainfall driven inflow/infiltration, separate sewer system
Procedia PDF Downloads 1596243 Properties of Epoxy Composite Reinforced with Amorphous and Crystalline Silica from Rice Husk
Authors: Norul Hisham Hamid, Amir Affan, Ummi Hani Abdullah, Paridah Md. Tahir, Khairul Akmal Azhar, Rahmat Nawai, W. B. H. Wan Sulwani Izzati
Abstract:
The dimensional stability and static bending properties of epoxy composite reinforced with amorphous and crystalline silica were investigated. The amorphous and crystalline silica was obtained by the precipitation method from carbonisation process of the rice husk at a temperature of 600 °C and 1000 °C for 7 hours respectively. The epoxy resin was mixed with 5%, 10% and 15% concentrations of amorphous and crystalline silica. The mixture was stirred for 10 minutes and cured at 28 °C for 72 hours and oven dried at 80 °C for 72 hours. The scanning electron microscope image showed the silica sized of 10-30nm was obtained. The water absorption and thickness swelling of epoxy/amorphous silica composite was not significantly different with silica concentration ranged from 0.08% to 0.09% and 0.17% to 0.20% respectively. The maximum modulus of rupture (85 MPa) and modulus of elasticity (3284 MPa) were achieved for 10% silica concentration. For epoxy/crystalline silica composite; the water absorption and thickness swelling were also not significantly different with silica concentration, ranged from 0.08% to 0.11% and 0.16% to 0.18% respectively. The maximum modulus of rupture (47.9 MPa) and modulus of elasticity (2760 MPa) were achieved for 10% silica concentration. Overall, the water absorption and thickness swelling were almost identical for epoxy composite made from either amorphous or crystalline silica. The epoxy composite made from amorphous silica was stronger than crystalline silica.Keywords: epoxy, composite, dimensional stability, static bending, silica
Procedia PDF Downloads 2156242 Physical Inactivity and Junk Food Consumption Consequent Obesity among University Girls: A Cross Sectional Study Unveils the Mayhem
Authors: Shahid Mahmood, Ghulam Mueen-Ud-Din, Farah Naz Akbar, Yousaf Quddoos, Syeda Mahvish Zahra, Wajiha Saeed, Tayyaba Sami Ullah
Abstract:
Obesity is an epidemic across the globe that affects all the segments of the population. Physical inactivity, passionate consumption of junk food, inadequate water intake and an unhealthy lifestyle are evident among university girls that are ruining their health gravely especially fat accumulation. The study was carried out to investigate the potential etiological factors of obesity development in university girls. The cross sectional study was carried out after approval of the Departmental Review Committee for Ethics (DRCE) as the par Declaration of Helsinki at Institute of Food Science and Nutrition (IFSN), University of Sargodha, Sargodha-Pakistan and Department of Food Science and Home Economics, G. C. Women University, Faisalabad-Pakistan. 400 girls were selected randomly from different departments of both universities. Nutritional status of the volunteers was assessed through approved protocols for demographics, anthropometrics, body composition, energetics, vital signs, clinical signs and symptoms, medical/family history, and dietary intake assessment (FFQ), water intake and physical activity level. The obesity was determined on body fat (%). Alarming and unheeded etiological factors for the development of obesity in girls were explored by the study. About 93 % girls had a sedentary level of physical activity, zealous consumption of junk food (5.31±1.23 servings), drank little water (1.09±0.26 L/day) that consequent high heaps of fat (35.06±3.02 %), measly body water (52.38±3.4 %), poor bone mass (05.14±0.31 Kg), and high BMI (26.68±1.14 Kg/m²) in 34% girls. The malnutrition also depicted by poor vital signs i.e. low body temperature (97.11±0.93 °F), slightly higher blood pressure (124.19±4.08 / 85.25±2.97 mmHg), rapid pulse rate (99.2 ± 6.85 beats/min), reduced blood O₂ saturation (96.53±0.96 %), scanty peak expiratory flow rate (297 ± 15.7 L /min). The outcomes of the research articulated that physical inactivity; extreme intakes of junk food, insufficient water consumption are etiological factors for obesity development among girls which are usually overlooked in Pakistan.Keywords: informed consent, junk food, obesity, physical inactivity
Procedia PDF Downloads 1896241 The Morphology and Flash Flood Characteristics of the Transboundary Khowai River: A Catchment Scale Analysis
Authors: Jonahid Chakder, Mahfuzul Haque
Abstract:
Flash flood is among the foremost disastrous characteristic hazards which cause hampering within the environment and social orders due to climate change across the world. In Northeastern region of Bangladesh faces severe flash floods regularly, Such, the Khowai river is a flash flood-prone river. But until now, there are no previous studies about the flash flood of this river. Farmlands Building resilience, protection of crops & fish enclosures of wetland in Habiganj Haor areas, regional roads, and business establishments were submerged due to flash floods. The flash floods of the Khowai River are frequent events, which happened in 1988, 1998, 2000, 2007, 2017, and 2019. Therefore, this study tries to analyze Khowai river morphology, Precipitation, Water level, Satellite image, and Catchment characteristics: a catchment scale analysis that helps to comprehend Khowai river flash flood characteristics and factors of influence. From precipitation analysis, the finding outcome disclosed the data about flash flood accurate zones at the Khowai district watershed. The morphological analysis workout from satellite image and find out the consequence of sinuosity and gradient of this river. The sinuosity indicates that the Khowai river is an antecedent and a meandering river and a meandering river can’t influence the flash flood of any region, but other factors respond here. It is understood that the Khowai river catchment elevation analysis from DEM is directly influenced. The left Baramura and Right Atharamura anticline of the Khowai basin watershed reflects a major impact on the stratigraphy as an impermeable clay layer and this consequence the water passes downward with the drainage pattern and Tributary. This drainage system, the gradient of tributary and their runoff, and the confluence of water in the pre-monsoon season rise the Khowai river water level which influences flash floods (within six hours of Precipitation).Keywords: geology, gradient, tributary, drainage, watershed, flash flood
Procedia PDF Downloads 1266240 Impact of Flood on Phytoplankton Biochemical Composition in Subtropical Reservoir, Lake Nasser
Authors: Shymaa S. Zaher, Howayda Abd El-Hady, Nehad Khalifa
Abstract:
Lake Nasser is vital to Egypt as it is the main Nile water reservoir. One of the major challenges in ecological flood is to establish how environmental enrichment in nutrients availability may affect both the biochemical composition of phytoplankton and the species communities. Samples were collected from twenty sites representing different lake sectors along the main channel of the lake during 2017. Generally, phytoplankton distribution during flood season in Lake Nasser indicates the predominance of Cyanophyceae at all lake sectors. Increases in NO₂ (9.31 µg/l) and PO₄ (7.11µg/l) at the Abu-Simble sector are associated with changes in community structure and biochemical composition of phytoplankton, where Cyanophyceae blooming occur associated with retardation in biopolymeric particulate organic carbon. The maximum total biochemical contents (91.29 mg/l) and biopolymeric particulate organic carbon (37.15 mg/l) was found at El-Madiq sector where there was optimum nutrients (NO₂ 0.479 µg/l and PO₄ 5.149µg/l), a highly positive correlation was found between Cyanophyceae and NO₂ in the lake (r = 0.956). A highly positive correlation was detected between carbohydrates and both transparency and pH in the lake (r = 0.974 and 0.787). Also carbohydrates had a positive relation with Bacillariophyceae (r = 0.610). Flood positively alter the water quality of the lake by increasing dissolved oxygen and nutrients enrichment to the aquatic ecosystem, affecting other aquatic organisms of higher trophic levels as economic fishes inhabiting the lake.Keywords: aquatic microalgae, Aswan high dam lake, biochemical composition, fresh water
Procedia PDF Downloads 1616239 Real-Time Observation of Concentration Distribution for Mix Liquids including Water in Micro Fluid Channel with Near-Infrared Spectroscopic Imaging Method
Authors: Hiroki Takiguchi, Masahiro Furuya, Takahiro Arai
Abstract:
In order to quantitatively comprehend thermal flow for some industrial applications such as nuclear and chemical reactors, detailed measurements for temperature and abundance (concentration) of materials at high temporal and spatial resolution are required. Additionally, rigorous evaluation of the size effect is also important for practical realization. This paper introduces a real-time spectroscopic imaging method in micro scale field, which visualizes temperature and concentration distribution of a liquid or mix liquids with near-infrared (NIR) wavelength region. This imaging principle is based on absorption of pre-selected narrow band from absorption spectrum peak or its dependence property of target liquid in NIR region. For example, water has a positive temperature sensitivity in the wavelength at 1905 nm, therefore the temperature of water can be measured using the wavelength band. In the experiment, the real-time imaging observation of concentration distribution in micro channel was demonstrated to investigate the applicability of micro-scale diffusion coefficient and temperature measurement technique using this proposed method. The effect of thermal diffusion and binary mutual diffusion was evaluated with the time-series visualizations of concentration distribution.Keywords: near-infrared spectroscopic imaging, micro fluid channel, concentration distribution, diffusion phenomenon
Procedia PDF Downloads 1616238 Photodegradation of Profoxydim Herbicide in Amended Paddy Soil-Water System
Authors: A. Cervantes-Diaz, B. Sevilla-Moran, Manuel Alcami, Al Mokhtar Lamsabhi, J. L. Alonso-Prados, P. Sandin-España
Abstract:
Profoxydim is a post-emergence herbicide belonging to the cyclohexanedione oxime family, used to control weeds in rice crops. The use of soil organic amendments has increased significantly in the last decades, and their effects on the behavior of many herbicides are still unknown. Additionally, it is known that photolysis is an important degradation process to be considered when evaluating the persistence of this family of herbicides in the environment. In this work, the photodegradation of profoxydim in an amended paddy soil-water system with alperujo compost was studied. Photodegradation experiments were carried out under laboratory conditions using simulated solar light (Suntest equipment) in order to evaluate the reaction kinetics of the active substance. The photochemical behavior of profoxydim was investigated in soil with and without alperujo amendment. Furthermore, due to the rice crop characteristics, profoxydim photodegradation in water in contact with these types of soils was also studied. Determination of profoxydim degradation kinetics was performed by High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD). Furthermore, we followed the evolution of resulting transformation by-products, and their tentative identification was achieved by mass spectrometry. All the experiments allowed us to fit the data of profoxydim photodegradation to a first-order kinetic. Photodegradation of profoxydim was very rapid in all cases. The half-lives in aqueous matrices were in the range of 86±0.3 to 103±0.5 min. The addition of alperujo amendment to the soil produced an increase in the half-life from 62±0.2 min (soil) to 75±0.3 min (amended soil). In addition, a comparison to other organic amendments was also performed. Results showed that the presence of the organic amendment retarded the photodegradation in paddy soil and water. Regarding degradation products, the main process involved was the cleavage of the oxime moiety giving rise to the formation of the corresponding imine compound.Keywords: by-products, herbicide, organic amendment, photodegradation, profoxydim
Procedia PDF Downloads 796237 Nuclear Power Plant Radioactive Effluent Discharge Management in China
Authors: Jie Yang, Qifu Cheng, Yafang Liu, Zhijie Gu
Abstract:
Controlled emissions of effluent from nuclear power plants are an important means of ensuring environmental safety. In order to fully grasp the actual discharge level of nuclear power plant in China's nuclear power plant in the pressurized water reactor and heavy water reactor, it will use the global average nuclear power plant effluent discharge as a reference to the standard analysis of China's nuclear power plant environmental discharge status. The results show that the average normalized emission of liquid tritium in PWR nuclear power plants in China is slightly higher than the global average value, and the other nuclides emissions are lower than the global average values.Keywords: radioactive effluent, HWR, PWR, nuclear power plant
Procedia PDF Downloads 2436236 A Reusable Foundation Solution for Onshore Windmills
Authors: Wael Mohamed, Per-Erik Austrell, Ola Dahlblom
Abstract:
Wind farms repowering is a significant topic nowadays. Wind farms repowering means the complete dismantling of the existing turbine, tower and foundation at an existing site and replacing these units with taller and larger units. Modern wind turbines are designed to withstand approximately for 20~25 years. However, a very long design life of 100 years or more can be expected for high-quality concrete foundations. Based on that there are significant economic and environmental benefits of replacing the out-of-date wind turbine with a new turbine of better power generation capacity and reuse the foundation. The big difference in lifetime shows a potential for new foundation solution to allow wind farms to be updated with taller and larger units in order to increase the energy production. This also means a significant change in the design loads on the foundations. Therefore, the new foundation solution should be able to handle the additional overturning loads. A raft surrounded by an active stabilisation system is proposed in this study. The concept of an active stabilisation system is a novel idea using a movable load to stabilise against the overturning moment. The active stabilisation system consists of a water tank being divided into eight compartments. The system uses the water as a movable load by pumping it into two compartments to stabilise against the overturning moment. The position of the water will rely on the wind direction and a water movement system depending on a number of electric motors and pipes with electric valves is used. One of the advantages of this active foundation solution is that some cost-efficient adjustment could be done to make this foundation able to support larger and taller units. After the end of the first turbine lifetime, an option is presented here to reuse this foundation and make it able to support taller and larger units. This option is considered using extra water volume to fill four compartments instead of two compartments. This extra water volume will increase the stability moment by 41% compared to using water in two compartments. The geotechnical performance of the new foundation solution is investigated using two existing weak soil profiles in Egypt and Sweden. A comparative study of the new solution and a piled raft with long friction piles is performed using finite element simulations. The results show that using a raft surrounded by an active stabilisation system decreases the tilting compared to a piled raft with friction piles. Moreover, it is found that using a raft surrounded by an active stabilisation system decreases the foundation costs compared to a piled raft with friction piles. In term of the environmental impact, it is found that the new foundation has a beneficial impact on the CO2 emissions. It saves roughly from 296.1 tonnes-CO2 to 518.21 tonnes-CO2 from the manufacture of concrete if the new foundation solution is used for another turbine-lifetime.Keywords: active stabilisation system, CO2 emissions, FE analysis, reusable, weak soils
Procedia PDF Downloads 2176235 Effect of Environmental Factors on Photoreactivation of Microorganisms under Indoor Conditions
Authors: Shirin Shafaei, James R. Bolton, Mohamed Gamal El Din
Abstract:
Ultraviolet (UV) disinfection causes damage to the DNA or RNA of microorganisms, but many microorganisms can repair this damage after exposure to near-UV or visible wavelengths (310–480 nm) by a mechanism called photoreactivation. Photoreactivation is gaining more attention because it can reduce the efficiency of UV disinfection of wastewater several hours after treatment. The focus of many photoreactivation research activities on the single species has caused a considerable lack in knowledge about complex natural communities of microorganisms and their response to UV treatment. In this research, photoreactivation experiments were carried out on the influent of the UV disinfection unit at a municipal wastewater treatment plant (WWTP) in Edmonton, Alberta after exposure to a Medium-Pressure (MP) UV lamp system to evaluate the effect of environmental factors on photoreactivation of microorganisms in the actual municipal wastewater. The effect of reactivation fluence, temperature, and river water on photoreactivation of total coliforms was examined under indoor conditions. The results showed that higher effective reactivation fluence values (up to 20 J/cm2) and higher temperatures (up to 25 °C) increased the photoreactivation of total coliforms. However, increasing the percentage of river in the mixtures of the effluent and river water decreased the photoreactivation of the mixtures. The results of this research can help the municipal wastewater treatment industry to examine the environmental effects of discharging their effluents into receiving waters.Keywords: photoreactivation, reactivation fluence, river water, temperature, ultraviolet disinfection, wastewater effluent
Procedia PDF Downloads 305