Search results for: image clustering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3320

Search results for: image clustering

950 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG

Procedia PDF Downloads 253
949 A Bayesian Network Approach to Customer Loyalty Analysis: A Case Study of Home Appliances Industry in Iran

Authors: Azam Abkhiz, Abolghasem Nasir

Abstract:

To achieve sustainable competitive advantage in the market, it is necessary to provide and improve customer satisfaction and Loyalty. To reach this objective, companies need to identify and analyze their customers. Thus, it is critical to measure the level of customer satisfaction and Loyalty very carefully. This study attempts to build a conceptual model to provide clear insights of customer loyalty. Using Bayesian networks (BNs), a model is proposed to evaluate customer loyalty and its consequences, such as repurchase and positive word-of-mouth. BN is a probabilistic approach that predicts the behavior of a system based on observed stochastic events. The most relevant determinants of customer loyalty are identified by the literature review. Perceived value, service quality, trust, corporate image, satisfaction, and switching costs are the most important variables that explain customer loyalty. The data are collected by use of a questionnaire-based survey from 1430 customers of a home appliances manufacturer in Iran. Four scenarios and sensitivity analyses are performed to run and analyze the impact of different determinants on customer loyalty. The proposed model allows businesses to not only set their targets but proactively manage their customer behaviors as well.

Keywords: customer satisfaction, customer loyalty, Bayesian networks, home appliances industry

Procedia PDF Downloads 138
948 A Case Study of Deep Learning for Disease Detection in Crops

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.

Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture

Procedia PDF Downloads 257
947 Media Coverage of the Turkish Armenian Journalist Hrant Dink Assassination: The Analysis of Media News in the Aftermath of the Assassination

Authors: Nusret Mesut Sahin

Abstract:

Hrant Dink, a prominent Turkish-Armenian journalist, and editor-in-chief of the bilingual Turkish-Armenian newspaper Agos, was assassinated in Istanbul on January 19th, 2007 by a nationalist extremist, Ogun Samast. Dink had been voicing the atrocities against the Armenians between 1915 and 1922 during the Ottoman rule, and his comments on the issue appeared in the Turkish media many times before his assassination. Despite intensive media coverage of his assassination, there is not enough research analyzing how national and international media presented Dink’s assassination. In this research, a content analysis of national and international news articles (N= 139) is conducted to identify whether there is a significant difference in national and international media’s coverage of the assassination. The content of the newspaper articles is categorized and coded according to the topics covered. The findings of this research suggested that Dink’s assassination wounded Turkey’s image as a democratic country. It has also been found that the Turkish media focused on security forces and their responsibility in Dink’s assassination, whereas international media focused more on the Article 301 of the Turkish penal code, freedom of expression, and atrocities against the Armenians during the Ottoman rule.

Keywords: Hrant Dink, Armenian, journalist, assassination

Procedia PDF Downloads 151
946 Communication About Health and Fitness in Media and Its Hidden Message About Objectification

Authors: Emiko Suzuki

Abstract:

Although fitness is defined as the body’s ability to respond to the demand of physical activity without undue fatigue in health science, in media oftentimes physical activity is presented as means to an attractive body rather than a fit and healthy one. Of all types of media, Instagram is becoming an increasingly persuasive source of information and advice on health and fitness, where individuals conceptualize what health and fitness mean for them. However, this user-generated and unregulated platform can be problematic, as it can communicate misleading information about health and fitness and possibly leading individuals to psychological problems such as eating disorders. In fact, previous research has shown that some messages that were posted with a tag that related to inspire others to do fitness, in fact, encouraged distancing the self from the internal needs of the body. For this reason, this present study aims to explore how health and fitness are communicated on Instagram by analyzing images and texts. A content analysis of images that were labeled with particular hashtags was performed, followed by a thematic analysis of texts from the same set of images. The result shows an interesting insight about messages about how health and fitness are communicated from companies through media, then digested and further shared among communities on Instagram. The study explores how the use of visual focused way of communicating health and fitness can lead to the dehumanization of human bodies.

Keywords: Instagram, fitness, dehumanization, body image, embodiment

Procedia PDF Downloads 137
945 Development of K-Factor for Road Geometric Design: A Case Study of North Coast Road in Java

Authors: Edwin Hidayat, Redi Yulianto, Disi Hanafiah

Abstract:

On the one hand, parameters which are used for determining the number of lane on the new road construction are average annual average daily traffic (AADT) and peak hour factor (K-factor). On the other hand, the value of K-factor listed in the guidelines and manual for road planning in Indonesia is a value of adoption or adaptation from foreign guidelines or manuals. Thus, the value is less suitable for Indonesian condition due to differences in road conditions, vehicle type, and driving behavior. The purpose of this study is to provide an example on how to determine k-factor values at a road segment with particular conditions in north coast road, West Java. The methodology is started with collecting traffic volume data for 24 hours over 365 days using PLATO (Automated Traffic Counter) with the approach of video image processing. Then, the traffic volume data is divided into per hour and analyzed by comparing the peak traffic volume in the 30th hour (or other) with the AADT in the same year. The analysis has resulted that for the 30th peak hour the K-factor is 0.97. This value can be used for planning road geometry or evaluating the road capacity performance for the 4/2D interurban road.

Keywords: road geometry, K-factor, annual average daily traffic, north coast road

Procedia PDF Downloads 158
944 Analysis of Public Space Usage Characteristics Based on Computer Vision Technology - Taking Shaping Park as an Example

Authors: Guantao Bai

Abstract:

Public space is an indispensable and important component of the urban built environment. How to more accurately evaluate the usage characteristics of public space can help improve its spatial quality. Compared to traditional survey methods, computer vision technology based on deep learning has advantages such as dynamic observation and low cost. This study takes the public space of Shaping Park as an example and, based on deep learning computer vision technology, processes and analyzes the image data of the public space to obtain the spatial usage characteristics and spatiotemporal characteristics of the public space. Research has found that the spontaneous activity time in public spaces is relatively random with a relatively short average activity time, while social activities have a relatively stable activity time with a longer average activity time. Computer vision technology based on deep learning can effectively describe the spatial usage characteristics of the research area, making up for the shortcomings of traditional research methods and providing relevant support for creating a good public space.

Keywords: computer vision, deep learning, public spaces, using features

Procedia PDF Downloads 69
943 Decision Making, Reward Processing and Response Selection

Authors: Benmansour Nassima, Benmansour Souheyla

Abstract:

The appropriate integration of reward processing and decision making provided by the environment is vital for behavioural success and individuals’ well being in everyday life. Functional neurological investigation has already provided an inclusive image on affective and emotional (motivational) processing in the healthy human brain and has recently focused its interest also on the assessment of brain function in anxious and depressed individuals. This article offers an overview on the theoretical approaches that relate emotion and decision-making, and spotlights investigation with anxious or depressed individuals to reveal how emotions can interfere with decision-making. This research aims at incorporating the emotional structure based on response and stimulation with a Bayesian approach to decision-making in terms of probability and value processing. It seeks to show how studies of individuals with emotional dysfunctions bear out that alterations of decision-making can be considered in terms of altered probability and value subtraction. The utmost objective is to critically determine if the probabilistic representation of belief affords could be a critical approach to scrutinize alterations in probability and value representation in subjective with anxiety and depression, and draw round the general implications of this approach.

Keywords: decision-making, motivation, alteration, reward processing, response selection

Procedia PDF Downloads 475
942 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves

Authors: Shengnan Chen, Shuhua Wang

Abstract:

Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.

Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves

Procedia PDF Downloads 283
941 Crisis Communication at Destinations: A Study for Tourism Managers

Authors: Volkan Altintas, Burcu Oksuz

Abstract:

Tourism industry essentially requires effective crisis management and crisis communication skills, as it is extremely vulnerable to crises. In terms of destinations, tourism crises cause dramatic decreases in the number of inbound tourists, impairment in the destination’s image, and decline in the level of preferability of the destination not only in the short but also in the long term. Therefore, any destination should be well prepared for crisis situation that may arise for various reasons. Currently, the advancement in communication technologies enables and facilitates information and experience to spread rapidly, and negative information and experiences tend to be shared to a further extent. Destinations are broadly exposed to the impacts of such communication stream. Turkey is almost continuously exposed to crises and their adverse impacts as a tourism destination, and thus requires effective crisis communication activities to be maintained. Hence, the approaches of tourism managers toward crisis communication and their proposals for addressing issues in question are important. This study intends to set forth the considerations of the managers serving in the tourism industry about crisis communication at destinations. The theoretical part of the study describes and explains crisis management and crisis communication at destinations; following which are provided the outcomes of the thorough in-depth interviews and discussions conducted for the establishment of the considerations of tourism managers. Managers indicated the role and importance of crisis communications in destinations.

Keywords: crisis communication, crisis management, destination, tourism managers

Procedia PDF Downloads 311
940 Research on Optimization Strategies for the Negative Space of Urban Rail Transit Based on Urban Public Art Planning

Authors: Kexin Chen

Abstract:

As an important method of transportation to solve the demand and supply contradiction generated in the rapid urbanization process, urban rail traffic system has been rapidly developed over the past ten years in China. During the rapid development, the space of urban rail Transit has encountered many problems, such as space simplification, sensory experience dullness, and poor regional identification, etc. This paper, focus on the study of the negative space of subway station and spatial softening, by comparing and learning from foreign cases. The article sorts out cases at home and abroad, make a comparative study of the cases, analysis more diversified setting of public art, and sets forth propositions on the domestic type of public art in the space of urban rail transit for reference, then shows the relationship of the spatial attribute in the space of urban rail transit and public art form. In this foundation, it aims to characterize more diverse setting ways for public art; then suggests the three public art forms corresponding properties, such as static presenting mode, dynamic image mode, and spatial softening mode; finds out the method of urban public art to optimize negative space.

Keywords: diversification, negative space, optimization strategy, public art planning

Procedia PDF Downloads 206
939 Investigation of Flow Structure over X-45 Type Non-Slender Delta Wing Planform

Authors: B. Yanıktepe, C. Özalp, B. Şahin

Abstract:

Delta wing planform is an essential aerodynamic configuration, which could be effectively used at relatively high angles of attack than conventional wings in subsonic flow conditions. The flow over delta wings can be characterized by a pair of leading edge vortices emanating from wing apex. Boundary layer separation causes these vortical structures formed by rolling up of viscous flow sheet. This flow separation mechanism is occurred due to angle of attack and sharp leading edges of the delta wing. Therefore, complexity and variety in planform designs rise to catch the best under abnormal flow conditions. The present experimental study investigates the near surface flow structure and aerodynamic flow characteristics of X-45 type non-slender delta wing planform using dye visualization, Stereoscopic Particle Image Velocimetry (stereo-PIV). The instantaneous images are acquired on the plan-view plane within 5o≤α≤20o to calculate the time-averaged flow data. It can be concluded that vortical flow with a pair of well-defined LEVs over X-45 develop at very low angles of attack, secondary vortex are also evident and form close to the wing surface similar to delta and lambda planforms. The stall occurs at an angle of attack α=32o.

Keywords: aerodynamic, delta wing, PIV, vortex breakdown

Procedia PDF Downloads 418
938 VIAN-DH: Computational Multimodal Conversation Analysis Software and Infrastructure

Authors: Teodora Vukovic, Christoph Hottiger, Noah Bubenhofer

Abstract:

The development of VIAN-DH aims at bridging two linguistic approaches: conversation analysis/interactional linguistics (IL), so far a dominantly qualitative field, and computational/corpus linguistics and its quantitative and automated methods. Contemporary IL investigates the systematic organization of conversations and interactions composed of speech, gaze, gestures, and body positioning, among others. These highly integrated multimodal behaviour is analysed based on video data aimed at uncovering so called “multimodal gestalts”, patterns of linguistic and embodied conduct that reoccur in specific sequential positions employed for specific purposes. Multimodal analyses (and other disciplines using videos) are so far dependent on time and resource intensive processes of manual transcription of each component from video materials. Automating these tasks requires advanced programming skills, which is often not in the scope of IL. Moreover, the use of different tools makes the integration and analysis of different formats challenging. Consequently, IL research often deals with relatively small samples of annotated data which are suitable for qualitative analysis but not enough for making generalized empirical claims derived quantitatively. VIAN-DH aims to create a workspace where many annotation layers required for the multimodal analysis of videos can be created, processed, and correlated in one platform. VIAN-DH will provide a graphical interface that operates state-of-the-art tools for automating parts of the data processing. The integration of tools that already exist in computational linguistics and computer vision, facilitates data processing for researchers lacking programming skills, speeds up the overall research process, and enables the processing of large amounts of data. The main features to be introduced are automatic speech recognition for the transcription of language, automatic image recognition for extraction of gestures and other visual cues, as well as grammatical annotation for adding morphological and syntactic information to the verbal content. In the ongoing instance of VIAN-DH, we focus on gesture extraction (pointing gestures, in particular), making use of existing models created for sign language and adapting them for this specific purpose. In order to view and search the data, VIAN-DH will provide a unified format and enable the import of the main existing formats of annotated video data and the export to other formats used in the field, while integrating different data source formats in a way that they can be combined in research. VIAN-DH will adapt querying methods from corpus linguistics to enable parallel search of many annotation levels, combining token-level and chronological search for various types of data. VIAN-DH strives to bring crucial and potentially revolutionary innovation to the field of IL, (that can also extend to other fields using video materials). It will allow the processing of large amounts of data automatically and, the implementation of quantitative analyses, combining it with the qualitative approach. It will facilitate the investigation of correlations between linguistic patterns (lexical or grammatical) with conversational aspects (turn-taking or gestures). Users will be able to automatically transcribe and annotate visual, spoken and grammatical information from videos, and to correlate those different levels and perform queries and analyses.

Keywords: multimodal analysis, corpus linguistics, computational linguistics, image recognition, speech recognition

Procedia PDF Downloads 107
937 Teaching How to Speak ‘Correct’ English in No Time: An Assessment of the ‘Success’ of Professor Higgins’ Motivation in George Bernard Shaw’s Pygmalion

Authors: Armel Mbon

Abstract:

This paper examines the ‘success’ of George Bernard Shaw's main character Professor Higgins' motivation in teaching Eliza Doolittle, a young Cockney flower girl, how to speak 'correct' English in no time in Pygmalion. Notice should be given that Shaw in whose writings, language issues feature prominently, does not believe there is such a thing as perfectly correct English, but believes in the varieties of spoken English as a source of its richness. Indeed, along with his fellow phonetician Colonel Pickering, Henry Higgins succeeds in teaching Eliza that he first judges unfairly, the dialect of the upper classes and Received Pronunciation, to facilitate her social advancement. So, after six months of rigorous learning, Eliza's speech and manners are transformed, and she is able to pass herself off as a lady. Such is the success of Professor Higgins’ motivation in linguistically transforming his learner in record time. On the other side, his motivation is unsuccessful since, by the end of the play, he cannot have Eliza he believes he has shaped to his so-called good image, for wife. So, this paper aims to show, in support of the psychological approach, that in motivation, feelings, pride and prejudice cannot be combined, and that one has not to pre-judge someone’s attitude based purely on how well they speak English.

Keywords: teaching, speak, in no time, success

Procedia PDF Downloads 67
936 An Optimal Matching Design Method of Space-Based Optical Payload for Typical Aerial Target Detection

Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu

Abstract:

In order to effectively detect aerial targets over long distances, an optimal matching design method of space-based optical payload is proposed. Firstly, main factors affecting optical detectability of small targets under complex environment are analyzed based on the full link of a detection system, including band center, band width and spatial resolution. Then a performance characterization model representing the relationship between image signal-to-noise ratio (SCR) and the above influencing factors is established to describe a detection system. Finally, an optimal matching design example is demonstrated for a typical aerial target by simulating and analyzing its SCR under different scene clutter coupling with multi-scale characteristics, and the optimized detection band and spatial resolution are presented. The method can provide theoretical basis and scientific guidance for space-based detection system design, payload specification demonstration and information processing algorithm optimization.

Keywords: space-based detection, aerial targets, optical system design, detectability characterization

Procedia PDF Downloads 167
935 Hydroclean Smartbin Solution for Plastic Pollution Crisis

Authors: Anish Bhargava

Abstract:

By 2050, there will be more plastic than fish in our oceans. 51 trillion micro-plastics pollute our waters and contaminate the food on our plates, increasing the risk of tumours and diseases such as cancer. Our product is a solution to the ever-growing problem of plastic pollution. We call it the SmartBin. The SmartBin is a cylindrical device which will float just below the surface of the water, able to move with the aid of 4 water thrusters situated on the sides. As it floats, our SmartBin will suck water into itself and pump it out through the bottom. All waste is collected into a reusable filter including microplastics measuring down to 1.5mm. A speaker emitting sound at a frequency of 9 hertz ensures marine life stays away from the SmartBin. Featured along with our product is a smartphone app which will enable the user to designate an area for the SmartBin to cover on a satellite image. The SmartBin will then return to its start position near the shore, configured through the app. As global pressure to tackle water pollution continues to increase, environmental spending increases too. As our product provides an effective solution to this issue, we can seize the opportunity and scale our company. Our product is unparalleled. It can move at a high speed, covering a wide area rather than being restricted to one position. We target not only oceans and sea-shores, but also rivers, lakes, reservoirs and canals, as they are much easier to access and control.

Keywords: water, plastic, pollution, solution, hydroclean, smartbin, cleanup

Procedia PDF Downloads 205
934 Ageing, the Reality, and Its Gender Dimension

Authors: Forhana Rahman Noor, Shafia Jannat Khanam

Abstract:

The image of old age in Bangladesh is associated with graying of hair, wrinkling of skin, with poor physical health, and decreased ability to work. The common expression “bura hoechi”, to be aged, means to be limited in terms of performing economically productive activities, known as ‘work’. For ‘old-old’ age, there is a saying, “uthan akhon onek dure”, which literally means “even the courtyard is like a very distant place (for an old person).” Traditionally, Bengali society had a structure caring the life of older people. It was common in the joint families of Bangladeshi culture. The situation has been changing. Complexities of the societies with growing rapid urbanization are influencing the traditional respects and caring structure of the elderly persons and facing social challenges. Bangladesh is projected to have 10 percent of its population of age 60 years and above in the year 2025. The ageing process is expected to accelerate in the next century, mainly because the large cohorts born in 1950s and 1960s respectively will be joining the ranks of 60 years and over during this period. The decline in mortality, particularly at young ages, also means that a higher proportion of the large cohorts will survive to old age. The country does not have enough policy or strategy to face this upcoming challenge for the aged persons which needs immediate attention.

Keywords: ageing, gender, dimension, elderly population, Bangladesh

Procedia PDF Downloads 236
933 Rural Tourism as a Development Strategy in Communities of the Sierra Gorda of Querétaro

Authors: Eduardo Ruiz-Corzo, Luis Rodrigo Valencia Perez, Jorge Francisco Barragan Lopez

Abstract:

The article shows the pressing conditions of marginalization prevailing in the Sierra Gorda, in the northern state of Queretaro, so it is essential to identify business options that generate a complementary source of income in a sustainable manner, in accordance with the fact that the area is a Biosphere Reserve by UNESCO. In this sense, the study identifies the enormous scenic richness of the area, the growing demand for leisure activities of the urban centers and the multifunctionality that adds, in a complementary way, the traditional activities that up to now have achieved the quality of life levels. From the application of the 43 interviews and 183 surveys, confirms the fact that the post-visit perception exceeds the expectations of the visitors emerges and affirms that the image that has been projected is attractive and timely. In order to understand how the current model of tourism promoted in the region is working, there is a need to evaluate it in a theoretical-methodological framework considering sustainable development assumptions. In order to determine the degree of contribution to business development, strengthening of social capital, and enjoyment and appreciation of cultural and natural heritage in the region.

Keywords: marginalization, rural tourism, multifunctionality, sustainability, revenue

Procedia PDF Downloads 145
932 Stereo Camera Based Speed-Hump Detection Process for Real Time Driving Assistance System in the Daytime

Authors: Hyun-Koo Kim, Yong-Hun Kim, Soo-Young Suk, Ju H. Park, Ho-Youl Jung

Abstract:

This paper presents an effective speed hump detection process at the day-time. we focus only on round types of speed humps in the day-time dynamic road environment. The proposed speed hump detection scheme consists mainly of two process as stereo matching and speed hump detection process. Our proposed process focuses to speed hump detection process. Speed hump detection process consist of noise reduction step, data fusion step, and speed hemp detection step. The proposed system is tested on Intel Core CPU with 2.80 GHz and 4 GB RAM tested in the urban road environments. The frame rate of test videos is 30 frames per second and the size of each frame of grabbed image sequences is 1280 pixels by 670 pixels. Using object-marked sequences acquired with an on-vehicle camera, we recorded speed humps and non-speed humps samples. Result of the tests, our proposed method can be applied in real-time systems by computation time is 13 ms. For instance; our proposed method reaches 96.1 %.

Keywords: data fusion, round types speed hump, speed hump detection, surface filter

Procedia PDF Downloads 508
931 Heading for Modern Construction Management: Recommendation for Employers

Authors: Robin Becker, Maike Eilers, Nane Roetmann, Manfred Helmus

Abstract:

The shortage of junior staff in the construction industry is a problem that will be further exacerbated in the coming years by the retirement of the baby-boom generations (1955-1969) from employment. In addition, the current working conditions in the field of construction management are not attractive for young professionals. A survey of students revealed a desire for an increase in flexibility and an improved work-life balance in everyday working life. Students of civil engineering and architecture are basically interested in a career in construction management but have reservations due to the image of the profession and the current working conditions. A survey among experts from the construction industry shows that the profession can become more attractive. This report provides recommendations for action in the form of working modules to improve the working conditions of employees. If these are taken into account, graduates can be attracted to the profession of construction management, and existing staff can be retained more effectively. The aim of this report is to show incentives for employers to respond to the wishes and needs of their current and future employees to the extent that can be implemented.

Keywords: modern construction management, construction industry, work modules, shortage of junior staff, sustainable personnel management, making construction management more attractive, working time model

Procedia PDF Downloads 82
930 Mechanical Properties, Vibrational Response and Flow-Field Analysis of Staghorn Coral Skeleton, Acropora cervicornis

Authors: Alejandro Carrasco-Pena, Mahmoud Omer, Nina Orlovskaya

Abstract:

The results of studies of microstructure, mechanical behavior, vibrational response, and flow field analysis of critically endangered staghorn coral (Acropora cervicornis) skeletons are reported. The CaCO₃ aragonite structure of a chemically-cleaned coral skeleton of A. cervicornis was studied by optical microscopy and computer tomography. The mechanical behavior was studied using uniaxial compression and Vickers hardness technique. The average maximum stress measured during skeleton uniaxial compression was 10.7 ± 2.24 MPa and Vickers hardness was 3.56 ± 0.31 GPa. The vibrational response of the aragonite structure was studied by micro-Raman spectroscopy, which showed a substantial dependence of the structure on applied compressive stress. The flow-field around a single coral skeleton forming vortices in the wake of the moving skeleton was measured using Particle Image Velocimetry (PIV). The results are important for further analysis of time-dependent mechanical fatigue behavior and predicting the lifetime of staghorn corals.

Keywords: failure, mechanical properties, microstructure, Raman spectroscopy

Procedia PDF Downloads 153
929 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network

Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang

Abstract:

As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.

Keywords: GUI, deep learning, GAN, data augmentation

Procedia PDF Downloads 181
928 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.

Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine

Procedia PDF Downloads 4
927 Large Strain Compression-Tension Behavior of AZ31B Rolled Sheet in the Rolling Direction

Authors: A. Yazdanmehr, H. Jahed

Abstract:

Being made with the lightest commercially available industrial metal, Magnesium (Mg) alloys are of interest for light-weighting. Expanding their application to different material processing methods requires Mg properties at large strains. Several room-temperature processes such as shot and laser peening and hole cold expansion need compressive large strain data. Two methods have been proposed in the literature to obtain the stress-strain curve at high strains: 1) anti-buckling guides and 2) small cubic samples. In this paper, an anti-buckling fixture is used with the help of digital image correlation (DIC) to obtain the compression-tension (C-T) of AZ31B-H24 rolled sheet at large strain values of up to 10.5%. The effect of the anti-bucking fixture on stress-strain curves is evaluated experimentally by comparing the results with those of the compression tests of cubic samples. For testing cubic samples, a new fixture has been designed to increase the accuracy of testing cubic samples with DIC strain measurements. Results show a negligible effect of anti-buckling on stress-strain curves, specifically at high strain values.

Keywords: large strain, compression-tension, loading-unloading, Mg alloys

Procedia PDF Downloads 236
926 Sustainability of Telecom Operators Orange-CI, MTN-CI, and MOOV Africa in Cote D’Ivoire

Authors: Odile Amoncou, Djedje-Kossu Zahui

Abstract:

The increased demand for digital communications during the COVID-19 pandemic has seen an unprecedented surge in new telecom infrastructure around the world. The expansion has been more remarkable in countries with developing telecom infrastructures. Particularly, the three telecom operators in Cote d’Ivoire, Orange CI, MTN CI, and MOOV Africa, have considerably scaled up their exploitation technologies and capacities in terms of towers, fiber optic installation, and customer service hubs. The trend will likely continue upward while expanding the carbon footprint of the Ivorian telecom operators. Therefore, the corporate social and environmental responsibilities of these telecommunication companies can no longer be overlooked. This paper assesses the sustainability of the three Ivorian telecommunication network operators by applying a combination of commonly used sustainability management indexes. These tools are streamlined and adapted to the relatively young and developing digital network of Cote D’Ivoire. We trust that this article will push the respective CEOs to make sustainability a top strategic priority and understand the substantial potential returns in terms of saving, new products, and new clients while improving their corporate image. In addition, good sustainability management can increase their stakeholders.

Keywords: sustainability of telecom operators, sustainability management index, carbon footprint, digital communications

Procedia PDF Downloads 88
925 Early Diagnosis of Alzheimer's Disease Using a Combination of Images Processing and Brain Signals

Authors: E. Irankhah, M. Zarif, E. Mazrooei Rad, K. Ghandehari

Abstract:

Alzheimer's prevalence is on the rise, and the disease comes with problems like cessation of treatment, high cost of treatment, and the lack of early detection methods. The pathology of this disease causes the formation of protein deposits in the brain of patients called plaque amyloid. Generally, the diagnosis of this disease is done by performing tests such as a cerebrospinal fluid, CT scan, MRI, and spinal cord fluid testing, or mental testing tests and eye tracing tests. In this paper, we tried to use the Medial Temporal Atrophy (MTA) method and the Leave One Out (LOO) cycle to extract the statistical properties of the three Fz, Pz, and Cz channels of ERP signals for early diagnosis of this disease. In the process of CT scan images, the accuracy of the results is 81% for the healthy person and 88% for the severe patient. After the process of ERP signaling, the accuracy of the results for a healthy person in the delta band in the Cz channel is 81% and in the alpha band the Pz channel is 90%. In the results obtained from the signal processing, the results of the severe patient in the delta band of the Cz channel were 89% and in the alpha band Pz channel 92%.

Keywords: Alzheimer's disease, image and signal processing, LOO cycle, medial temporal atrophy

Procedia PDF Downloads 197
924 Cultural Event and Urban Regeneration: Lessons from Liverpool as the 2008 European Capital of Culture

Authors: Yi-De Liu

Abstract:

For many European cities, a key motivation in developing event strategies is to use event as a catalyst for urban regeneration. One type of event that is particularly used as a means of urban development is the European Capital of Culture (ECOC) initiative. Based on a case study of the 2008 ECOC Liverpool, this paper aims at conceptualising the significance of major event for a city’s economic, cultural and social regenerations. In terms of economic regeneration, the role of the ECOC is central in creating Liverpool’s visitor economy and reshaping city image. Liverpool planned different themes for eight consecutive years as a way to ensure economic sustainability. As far as cultural regeneration is concerned, the ECOC contributed to the cultural regeneration of Liverpool by stimulating cultural participation and interest from the demand side, as well as improving cultural provision and collaboration within the cultural sector from the supply side. So as to social regeneration, Liverpool treated access development as a policy guideline and considered the ECOC as an opportunity to enhance the sense of place. The most significant lesson learned from Liverpool is its long-term planning and efforts made to integrate the ECOC into the overall urban development strategy. As a result, a more balanced and long-term effect on urban regeneration could be achieved.

Keywords: cultural event, urban regeneration, european capital of culture, Liverpool

Procedia PDF Downloads 262
923 The Effectiveness of Scalp Cooling Therapy on Reducing Chemotherapy Induced Alopecia: A Critical Literature Review

Authors: M. Krishna

Abstract:

The study was intended to identify if scalp cooling therapy is effective on preventing chemotherapy-induced hair loss among cancer patients. Critical literature of non-randomized controlled trials was used to investigate whether scalp cooling therapy is effective on preventing chemotherapy-induced alopecia. The review identified that scalp cooling therapy is effective on preventing chemotherapy-induced alopecia. Most of the patients receiving chemotherapy experience alopecia. It is also perceived as the worst effect of chemotherapy. This may be severe and lead the patients to withdraw the chemo treatment. The image disturbance caused by alopecia will make the patient depressed and will lead to declined immunity. With the knowledge on effectiveness of scalp cooling therapy on preventing chemotherapy-induced alopecia, patient undergoing chemotherapy will not be hesitant to undergo the treatment. Patients are recommended to go through scalp cooling therapy every chemo cycle and the proper therapy duration is 30 minutes before, during chemo. The suggested duration of the scalp cooling therapy is 45-90 minutes for an effective and positive outcome. This finding is excluding other factors of alopecia such as menopause, therapeutic drugs, poor hair density, liver function problems, and drug regimes.

Keywords: alopecia, cancer, chemotherapy, scalp cooling therapy

Procedia PDF Downloads 205
922 Change Detection of Vegetative Areas Using Land Use Land Cover Derived from NDVI of Desert Encroached Areas

Authors: T. Garba, T. O. Quddus, Y. Y. Babanyara, M. A. Modibbo

Abstract:

Desertification is define as the changing of productive land into a desert as the result of ruination of land by man-induced soil erosion, which forces famers in the affected areas to move migrate or encourage into reserved areas in search of a fertile land for their farming activities. This study therefore used remote sensing imageries to determine the level of changes in the vegetative areas. To achieve that Normalized Difference of the Vegetative Index (NDVI), classified imageries and image slicing derived from landsat TM 1986, land sat ETM 1999 and Nigeria sat 1 2007 were used to determine changes in vegetations. From the Classified imageries it was discovered that there a more natural vegetation in classified images of 1986 than that of 1999 and 2007. This finding is also future in the three NDVI imageries, it was discovered that there is increased in high positive pixel value from 0.04 in 1986 to 0.22 in 1999 and to 0.32 in 2007. The figures in the three histogram also indicted that there is increased in vegetative areas from 29.15 Km2 in 1986, to 60.58 Km2 in 1999 and then to 109 Km2 in 2007. The study recommends among other things that there is need to restore natural vegetation through discouraging of farming activities in and around the natural vegetation in the study area.

Keywords: vegetative index, classified imageries, change detection, landsat, vegetation

Procedia PDF Downloads 358
921 Effect of Media Reputation on Financial Performance and Abnormal Returns of Corporate Social Responsibility Winner

Authors: Yu-Chen Wei, Dan-Leng Wang

Abstract:

This study examines whether the reputation from media press affect the financial performance and market abnormal returns around the announcement of corporate social responsibility (CSR) award in the Taiwan Stock Market. The differences between this study and prior literatures are that the media reputation of media coverage and net optimism are constructed by using content analyses. The empirical results show the corporation which won CSR awards could promote financial performance next year. The media coverage and net optimism related to CSR winner are higher than the non-CSR companies prior and after the CSR award is announced, and the differences are significant, but the difference would decrease when the day was closing to announcement. We propose that non-CSR companies may try to manipulate media press to increase the coverage and positive image received by investors compared to the CSR winners. The cumulative real returns and abnormal returns of CSR winners did not significantly higher than the non-CSR samples however the leading returns of CSR winners would higher after the award announcement two months. The comparisons of performances between CSR and non-CSR companies could be the consideration of portfolio management for mutual funds and investors.

Keywords: corporate social responsibility, financial performance, abnormal returns, media, reputation management

Procedia PDF Downloads 432