Search results for: green DME production
6892 Green and Facile Fabrication and Characterization of Fe/ZnO Hollow Spheres and Photodegradation of Azo Dyes
Authors: Seyed Mohsen Mousavi, Ali Reza Mahjoub, Bahjat Afshari Razani
Abstract:
In this work, Fe/ZnO hollow spherical structures with high surface area using the template glucose was prepared by the hydrothermal method using an ultrasonic bath at room temperature was produced and were identified by FT-IR, XRD, FE-SEM and BET. The photocatalytic activity of synthesized spherical Fe/ZnO hollow sphere were studied in the destruction of Congo Red and Methylene Blue as Azo dyes. The results showed that the photocatalytic activity of Fe/ZnO hollow spherical structures is improved compared with ZnO hollow sphere and other morphologys.Keywords: azo dyes, Fe/ZnO hollow sphere, hollow sphere nanostructures, photocatalyst
Procedia PDF Downloads 3746891 Hydrogen Production Through Thermocatalytic Decomposition of Methane Over Biochar
Authors: Seyed Mohamad Rasool Mirkarimi, David Chiaramonti, Samir Bensaid
Abstract:
Catalytic methane decomposition (CMD, reaction 4) is a one-step process for hydrogen production where carbon in the methane molecule is sequestered in the form of stable and higher-value carbon materials. Metallic catalysts and carbon-based catalysts are two major types of catalysts utilized for the CDM process. Although carbon-based catalysts have lower activity compared to metallic ones, they are less expensive and offer high thermal stability and strong resistance to chemical impurities such as sulfur. Also, it would require less costly separation methods as some of the carbon-based catalysts may not have an active metal component in them. Since the regeneration of metallic catalysts requires burning of the C on their surfaces, which emits CO/CO2, in some cases, using carbon-based catalysts would be recommended because regeneration can be completely avoided, and the catalyst can be directly used in other processes. This work focuses on the effect of biochar as a carbon-based catalyst for the conversion of methane into hydrogen and carbon. Biochar produced from the pyrolysis of poplar wood and activated biochar are used as catalysts for this process. In order to observe the impact of carbon-based catalysts on methane conversion, methane cracking in the absence and presence of catalysts for a gas stream with different levels of methane concentration should be performed. The results of these experiments prove conversion of methane in the absence of catalysts at 900 °C is negligible, whereas in the presence of biochar and activated biochar, significant growth has been observed. Comparing the results of the tests related to using char and activated char shows the enhancement obtained in BET surface area of the catalyst through activation leads to more than 10 vol.% methane conversion.Keywords: hydrogen production, catalytic methane decomposition, biochar, activated biochar, carbon-based catalyts
Procedia PDF Downloads 856890 Analysis of Probiotic Properties of Lactobacillus Acidophilus from Commercial Yoghurt
Authors: Anwar Ali Abdulla, Thekra Abdulaali Abed Al-Chaabawi, Anwar Kadhim Al-Saffar, Hussein Kadhim Al-Saffar
Abstract:
Lactic acid bacteria are very significant to human health due to the production of some antimicrobial substances and ability to inhibit pathogenic bacteria. Furthermore, the bacteria are also used as starter culture in the production of various foods. The present study was focused on isolation and characterization of Lactobacillus acidophilus from yogurt and to demonstrate some of probiotic properties of these isolates. All isolates were phenotypically characterized including studying, biochemical, effect of sodium chloride and pH during growth, carbohydrates test and characterizing the antimicrobial activity of Lactobacillus acidophilus against pathogens. The present study demonstrates that Lactobacillus acidophilus produced a bacteriocin- like inhibitory substance with a broad spectrum of antimicrobial activity directed against pathogenic indicator organism suggesting its protective value against enteric pathogens.Keywords: lactobacillus acidophilus, bacteriocin, antimicrobial activity, probiotic
Procedia PDF Downloads 5426889 Preparation and Characterization of Biosorbent from Cactus (Opuntia ficus-indica) cladodes and its Application for Dye Removal from Aqueous Solution
Authors: Manisha Choudhary, Sudarsan Neogi
Abstract:
Malachite green (MG), an organic basic dye, has been widely used for the dyeing purpose, as well as a fungicide and antiseptic in aquaculture industry to control fish parasites and disease. However, MG has now turned out to be an extremely controversial compound due to its adverse impact on living beings. Due to high toxicity, proper treatment of wastewater containing MG is utmost important. Among different available technologies, adsorption process is one of the most efficient and cost-effective treatment method due to its simplicity of design, ease of operation and regeneration of used materials. Nonetheless, commercial activated carbon is expensive leading the researchers to focus on utilizing natural resources. In the present work, a species of cactus, Opuntia ficus-indica (OFI), was used to develop a highly efficient, low-cost powdered activated carbon by chemical activation using NaOH. The biosorbent was characterized by Fourier-transform infrared spectroscopy, field emission scanning electron microscope, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller (BET) and X-ray diffraction analysis. Batch adsorption studies were performed to remove MG from an aqueous solution as a function of contact time, initial solution pH, initial dye concentration, biosorbent dosages, the presence of salt and temperature. By increasing the initial dye concentration from 100 to 500 mg/l, adsorption capacity increased from 165.45 to 831.58 mg/g. The adsorption kinetics followed the pseudo-second-order model and the chemisorption mechanisms were revealed. The electrostatic attractions and chemical interactions were observed between amino and hydroxyl groups of the biosorbent and amine groups of the dye. The adsorption was solely controlled by film diffusion. Different isotherm models were used to fit the adsorption data. The excellent recovery of adsorption efficiency after the regeneration of biosorbent indicated the high potential of this adsorbent to remove MG from aqueous solution and an excellent cost-effective biosorbent for wide application in wastewater treatment.Keywords: adsorption, biosorbent, cactus, malachite green
Procedia PDF Downloads 3766888 Multi-Criteria Decision Making Network Optimization for Green Supply Chains
Authors: Bandar A. Alkhayyal
Abstract:
Modern supply chains are typically linear, transforming virgin raw materials into products for end consumers, who then discard them after use to landfills or incinerators. Nowadays, there are major efforts underway to create a circular economy to reduce non-renewable resource use and waste. One important aspect of these efforts is the development of Green Supply Chain (GSC) systems which enables a reverse flow of used products from consumers back to manufacturers, where they can be refurbished or remanufactured, to both economic and environmental benefit. This paper develops novel multi-objective optimization models to inform GSC system design at multiple levels: (1) strategic planning of facility location and transportation logistics; (2) tactical planning of optimal pricing; and (3) policy planning to account for potential valuation of GSC emissions. First, physical linear programming was applied to evaluate GSC facility placement by determining the quantities of end-of-life products for transport from candidate collection centers to remanufacturing facilities while satisfying cost and capacity criteria. Second, disassembly and remanufacturing processes have received little attention in industrial engineering and process cost modeling literature. The increasing scale of remanufacturing operations, worth nearly $50 billion annually in the United States alone, have made GSC pricing an important subject of research. A non-linear physical programming model for optimization of pricing policy for remanufactured products that maximizes total profit and minimizes product recovery costs were examined and solved. Finally, a deterministic equilibrium model was used to determine the effects of internalizing a cost of GSC greenhouse gas (GHG) emissions into optimization models. Changes in optimal facility use, transportation logistics, and pricing/profit margins were all investigated against a variable cost of carbon, using case study system created based on actual data from sites in the Boston area. As carbon costs increase, the optimal GSC system undergoes several distinct shifts in topology as it seeks new cost-minimal configurations. A comprehensive study of quantitative evaluation and performance of the model has been done using orthogonal arrays. Results were compared to top-down estimates from economic input-output life cycle assessment (EIO-LCA) models, to contrast remanufacturing GHG emission quantities with those from original equipment manufacturing operations. Introducing a carbon cost of $40/t CO2e increases modeled remanufacturing costs by 2.7% but also increases original equipment costs by 2.3%. The assembled work advances the theoretical modeling of optimal GSC systems and presents a rare case study of remanufactured appliances.Keywords: circular economy, extended producer responsibility, greenhouse gas emissions, industrial ecology, low carbon logistics, green supply chains
Procedia PDF Downloads 1626887 The Late School of Alexandria and Its Influence on Islamic Philosophy
Authors: Hussein El-Zohary
Abstract:
This research aims at studying the late Alexandrian school of philosophy in the 6th century AD, the adaptation of its methodologies by the Islamic world, and its impact on Muslim philosophical thought. The Alexandrian school has been underestimated by many scholars who regard its production at the end of the classical age as mere interpretations of previous writings and delimit its achievement to the preservation of ancient philosophical heritage. The research reviews the leading figures of the Alexandrian school and its production of philosophical commentaries studying ancient Greek philosophy in its entirety. It also traces the transmission of its heritage to the Islamic world through direct translations into Syriac first and then into Arabic. The research highlights the impact of the Alexandrian commentaries on Muslim recognition of Plato and Aristotle as well as its philosophical teaching methodology starting with the study of Aristotle’s Categories as introductory to understand Plato’s philosophy.Keywords: Alexandrian school of philosophy, categories, commentaries, Syriac
Procedia PDF Downloads 1466886 Site Specific Nutrient Management Need in India Now
Authors: A. H. Nanher, N. P. Singh, Shashidhar Yadav, Sachin Tyagi
Abstract:
Agricultural production system is an outcome of a complex interaction of seed, soil, water and agro-chemicals (including fertilizers). Therefore, judicious management of all the inputs is essential for the sustainability of such a complex system. Precision agriculture gives farmers the ability to use crop inputs more effectively including fertilizers, pesticides, tillage and irrigation water. More effective use of inputs means greater crop yield and/or quality, without polluting the environment the focus on enhancing the productivity during the Green Revolution coupled with total disregard of proper management of inputs and without considering the ecological impacts, has resulted into environmental degradation. To evaluate a new approach for site-specific nutrient management (SSNM). Large variation in initial soil fertility characteristics and indigenous supply of N, P, and K was observed among Field- and season-specific NPK applications were calculated by accounting for the indigenous nutrient supply, yield targets, and nutrient demand as a function of the interactions between N, P, and K. Nitrogen applications were fine-tuned based on season-specific rules and field-specific monitoring of crop N status. The performance of SSNM did not differ significantly between high-yielding and low-yielding climatic seasons, but improved over time with larger benefits observed in the second year Future, strategies for nutrient management in intensive rice systems must become more site-specific and dynamic to manage spatially and temporally variable resources based on a quantitative understanding of the congruence between nutrient supply and crop demand. The SSNM concept has demonstrated promising agronomic and economic potential. It can be used for managing plant nutrients at any scale, i.e., ranging from a general recommendation for homogenous management of a larger domain to true management of between-field variability. Assessment of pest profiles in FFP and SSNM plots suggests that SSNM may also reduce pest incidence, particularly diseases that are often associated with excessive N use or unbalanced plant nutrition.Keywords: nutrient, pesticide, crop, yield
Procedia PDF Downloads 4316885 Urban Agriculture for Sustainable Cities: Using Wastewater and Urban Wetlands as Resource
Authors: Hussnain Mukhtar, Yu-Pin Lin
Abstract:
This paper deals with the concept of ecologically engineered system for sustainable agriculture production with the view of sustainable cities development. Sustainable cities offer numerous eco-services to its inhabitants, and where, among other issues, wastewater nutrients can be considered to be a valuable resource to be used for a sustainable enhancement of urban agriculture in wetlands. Existing cities can be transferred from being only consumer of food and other agriculture product into important resource conserving and sustainable generators of these products. The review provides the food production capacity through introduction of wastewater into urban wetlands, potential for nutrient recovery and ecological engineering intervention to reduce the risk of food contamination by pathogens. Finally, we discuss the potential nutrients accumulating in our cities, as an important aspect of sustainable urban development.Keywords: ecological engineering, nutrient recovery, pathogens, urban agriculture, wetlands
Procedia PDF Downloads 2606884 Anabasine Intoxication and Its Relation to Plant Develoment Stages
Authors: Thaís T. Valério Caetano, Lívia de Carvalho Ferreira, João Máximo De Siqueira, Carlos Alexandre Carollo, Arthur Ladeira Macedo, Vanessa C. Stein
Abstract:
Nicotiana glauca, commonly known as wild tobacco or tobacco bush, belongs to the Solanaceae family. It is native to South America but has become naturalized in various regions, including Australia, California, Africa, and the Mediterranean. N. glauca is listed in the Global Invasive Species Database (GISD) and the Invasive Species Compendium (CABI). It is known for producing pyridine alkaloids, including anabasine, which is highly toxic. Anabasine is predominantly found in the leaves and can cause severe health issues such as neuromuscular blockade, respiratory arrest, and cardiovascular problems when ingested. Mistaken identity with edible plants like spinach has resulted in food poisoning cases in Israel and Brazil. Anabasine, a minor alkaloid constituent of tobacco, may contribute to tobacco addiction by mimicking or enhancing the effects of nicotine. Therefore, it is essential to investigate the production pattern of anabasine and its relationship to the developmental stages of the plant. This study aimed to establish the relationship between the phenological plant age, cultivation place, and the increase in anabasine concentration, which can lead to human intoxication cases. In this study, N. glauca plants were collected from three different rural areas in Brazil during a year to examine leaves at various stages of development. Samples were also obtained from cultivated plants in Marilândia, Minas Gerais, Brazil, as well as from Divinópolis, Minas Gerais, Brazil, and Arraial do Cabo, Rio de Janeiro, Brazil. In vitro cultivated plants on MS medium were included in the study. The collected leaves were dried, powdered, and stored. Alkaloid extraction was performed using a methanol and water mixture, followed by liquid-liquid extraction with chloroform. The anabasine content was determined using HPLC-DAD analysis with nicotine as a standard. The results indicated that anabasine production increases with the plant's development, peaking in adult leaves during the reproduction phase and declining afterward. In vitro, plants showed similar anabasine production to young leaves. The successful adaptation of N. glauca in new environments poses a global problem, and the correlation between anabasine production and the plant's developmental stages has been understudied. The presence of substances produced by the plant can pose a risk to other species, especially when mistaken for edible plants. The findings from this study shed light on the pattern of anabasine production and its association with plant development, contributing to a better understanding of the potential risks associated with N. glauca and the importance of accurate identification.Keywords: alkaloid production, invasive species, nicotiana glauca, plant phenology
Procedia PDF Downloads 906883 Immunostimulant from Biodiversity to Enhance Shrimp Survival against Vibriosis
Authors: Frank Alexis, Jenny Antonia Rodriguez Leon, Cristobal Leonardo Dominguez Borbor, Mery Rosario Ramirez Munoz
Abstract:
The shrimp industry has increased in the last years to the point of becoming one of the most dynamic industries. However, the appearance of diseases that significantly affect the production of shrimps has been an obstacle for the shrimp industry. We hypothesized that natural fibers from biodiversity can stimulate the immune system to prevent shrimp diseases like vibriosis. In this project, we extracted the fibers from vegetal sources in Ecuador and characterized them using common techniques like XRD, SEM, and then we tested the effect of fibers as immunostimulants for shrimps in-vitro and in-vivo using small aquarium and large pools. Our results demonstrate that vegetal fibers can significantly increase the survival of shrimps. Moreover, the production of shrimps in a large pool was significantly increased. Lastly, the test of color and taste successfully surpass the control group of shrimps not treated with fiber food supplements.Keywords: fibers, immunostimulant, shrimp, vibriosis
Procedia PDF Downloads 1626882 Azolla Pinnata as Promising Source for Animal Feed in India: An Experimental Study to Evaluate the Nutrient Enhancement Result of Feed
Authors: Roshni Raha, Karthikeyan S.
Abstract:
The world's largest livestock population resides in India. Existing strategies must be modified to increase the production of livestock and their by-products in order to meet the demands of the growing human population. Even though India leads the world in both milk production and the number of cows, average production is not very healthy and productive. This may be due to the animals' poor nutrition caused by a chronic under-availability of high-quality fodder and feed. This article explores Azolla pinnata to be a promising source to produce high-quality unconventional feed and fodder for effective livestock production and good quality breeding in India. This article is an exploratory study using a literature survey and experimentation analysis. In the realm of agri-biotechnology, azolla sp gained attention for helping farmers achieve sustainability, having minimal land requirements, and serving as a feed element that doesn't compete with human food sources. It has high methionine content, which is a good source of protein. It can be easily digested as the lignin content is low. It has high antioxidants and vitamins like beta carotene, vitamin A, and vitamin B12. Using this concept, the paper aims to investigate and develop a model of using azolla plants as a novel, high-potential feed source to combat the problems of low production and poor quality of animals in India. A representative sample of animal feed is collected where azolla is added. The sample is ground into a fine powder using mortar. PITC (phenylisothiocyanate) is added to derivatize the amino acids. The sample is analyzed using HPLC (High-Performance Liquid Chromatography) to measure the amino acids and monitor the protein content of the sample feed. The amino acid measurements from HPLC are converted to milligrams per gram of protein using the method of amino acid profiling via a set of calculations. The amino acid profile data is then obtained to validate the proximate results of nutrient enhancement of the composition of azolla in the sample. Based on the proximate composition of azolla meal, the enhancement results shown were higher compared to the standard values of normal fodder supplements indicating the feed to be much richer and denser in nutrient supply. Thus azolla fed sample proved to be a promising source for animal fodder. This would in turn lead to higher production and a good breed of animals that would help to meet the economic demands of the growing Indian population. Azolla plants have no side effects and can be considered as safe and effective to be immersed in the animal feed. One area of future research could begin with the upstream scaling strategy of azolla plants in India. This could involve introducing several bioreactor types for its commercial production. Since azolla sp has been proved in this paper as a promising source for high quality animal feed and fodder, large scale production of azolla plants will help to make the process much quicker, more efficient and easily accessible. Labor expenses will also be reduced by employing bioreactors for large-scale manufacturing.Keywords: azolla, fodder, nutrient, protein
Procedia PDF Downloads 616881 Pozzolanic Properties of Synthetic Zeolites as Materials Used for the Production of Building Materials
Authors: Joanna Styczen, Wojciech Franus
Abstract:
Currently, cement production reaches 3-6 Gt per year. The production of one ton of cement is associated with the emission of 0.5 to 1 ton of carbon dioxide into the atmosphere, which means that this process is responsible for 5% of global CO2 emissions. Simply improving the cement manufacturing process is not enough. An effective solution is the use of pozzolanic materials, which can partly replace clinker and thus reduce energy consumption, and emission of pollutants and give mortars the desired characteristics, shaping their microstructure. Pozzolanic additives modify the phase composition of cement, reducing the amount of portlandite and changing the CaO/SiO2 ratio in the C-S-H phase. Zeolites are a pozzolanic additive that is not commonly used. Three types of zeolites were synthesized in work: Na-A, sodalite and ZSM-5 (these zeolites come from three different structural groups). Zeolites were obtained by hydrothermal synthesis of fly ash in an aqueous NaOH solution. Then, the pozzolanicity of the obtained materials was assessed. The pozzolanic activity of the zeolites synthesized for testing was tested by chemical methods in accordance with the ASTM C 379-65 standard. The method consisted in determining the percentage content of active ingredients (soluble silicon oxide and aluminum).in alkaline solutions, i.e. those that are potentially reactive towards calcium hydroxide. The highest amount of active silica was found in zeolite ZSM-5 - 88.15%. The amount of active Al2O3 was small - 1%. The smallest pozzolanic activity was found in the Na-A zeolite (active SiO2 - 4.4%, and active Al2O3 - 2.52). The tests carried out using the XRD, SEM, XRF and textural tests showed that the obtained zeolites are characterized by high porosity, which makes them a valuable addition to mortars.Keywords: pozzolanic properties, hydration, zeolite, alite
Procedia PDF Downloads 846880 Slow and Controlled Release Fertilizer Technology via Application of Plant-available Inorganic Coatings
Authors: Eugene Rybin
Abstract:
Reduction of nutrient losses when using mineral fertilizers is a very important and urgent challenge, which is of both economic and environmental significance. This paper shows the production of slow- and controlled release fertilizers through application of inorganic coatings, which make the released nutrients plant-available. The method of production of coated fertilizers with inorganic cover material is an alternative to other methods where polymer coatings are used. The method is based on spraying an aqueous slurry onto the surface of granules with simultaneous drying in drums under certain conditions and subsequent cooling of granules. This method of production of slow- and controlled-release fertilizers is more ecofriendly compared with others because inorganic materials are used to create a membrane. That is why the coating material is definitely biodegradable. There is also shown the effect of these coatings on the properties of fertilizers, as well as on the agrochemical efficiency and nutrient efficiency/ availability to the plants. The agrochemical tests have proved the increase of nutrient efficiency for every nutrient in compound fertilizers (NPK, NPS) for 3 consecutive years by 10-20 % and by 25-28% for urea, as well as an increase in crop yield, by 10-15% in general, and its quality. Moreover, the decrease in caking by almost 70% was proven as well as slowing down the release rate of nutrients from fertilizers. Control of the release rate was achieved by regulation of thickness and contents of coating materials. All of those characteristics were researched according to the standard-used methods. The performed research has developed the fertilizer technology of slow- and controlled release of nutrients through applying of plant-available inorganic coatings. It leads to a better synchronization of nutrient release rate and plants needs, as well as reduces the harmful effects on the environment from the fertilizers applied.Keywords: controlled release, fertilizers, nutrients, plant-available coatings
Procedia PDF Downloads 996879 Application Case and Result Consideration About Basic and Working Design of Floating PV Generation System Installed in the Upstream of Dam
Authors: Jang-Hwan Yin, Hae-Jeong Jeong, Hyo-Geun Jeong
Abstract:
K-water (Korea Water Resources Corporation) conducted basic and working design about floating PV generation system installed above water in the upstream of dam to develop clean energy using water with importance of green growth is magnified ecumenically. PV Generation System on the ground applied considerably until now raise environmental damage by using farmland and forest land, PV generation system on the building roof is already installed at almost the whole place of business and additional installation is almost impossible. Installation space of PV generation system is infinite and efficient national land use is possible because it is installed above water. Also, PV module's efficiency increase by natural water cooling method and no shade. So it is identified that annual power generation is more than PV generation system on the ground by operating performance data. Although it is difficult to design and construct by high cost, little application case, difficult installation of floater, mooring device, underwater cable, etc. However, it has been examined cost reduction plan such as structure weight lightening, floater optimal design, etc. This thesis described basic and working design result systematically about K-water's floating PV generation system development and suggested optimal design method of floating PV generation system. Main contents are photovoltaic array location select, substation location select related underwater cable, PV module and inverter design, transmission and substation equipment design, floater design related structure weight lightening, mooring system design related water level fluctuation, grid connecting technical review, remote control and monitor equipment design, etc. This thesis will contribute to optimal design and business extension of floating PV generation system, and it will be opportunity revitalize clean energy development using water.Keywords: PV generation system, clean energy, green growth, solar energy
Procedia PDF Downloads 4166878 Using Serious Games to Integrate the Potential of Mass Customization into the Fuzzy Front-End of New Product Development
Authors: Michael N. O'Sullivan, Con Sheahan
Abstract:
Mass customization is the idea of offering custom products or services to satisfy the needs of each individual customer while maintaining the efficiency of mass production. Technologies like 3D printing and artificial intelligence have many start-ups hoping to capitalize on this dream of creating personalized products at an affordable price, and well established companies scrambling to innovate and maintain their market share. However, the majority of them are failing as they struggle to understand one key question – where does customization make sense? Customization and personalization only make sense where the value of the perceived benefit outweighs the cost to implement it. In other words, will people pay for it? Looking at the Kano Model makes it clear that it depends on the product. In products where customization is an inherent need, like prosthetics, mass customization technologies can be highly beneficial. However, for products that already sell as a standard, like headphones, offering customization is likely only an added bonus, and so the product development team must figure out if the customers’ perception of the added value of this feature will outweigh its premium price tag. This can be done through the use of a ‘serious game,’ whereby potential customers are given a limited budget to collaboratively buy and bid on potential features of the product before it is developed. If the group choose to buy customization over other features, then the product development team should implement it into their design. If not, the team should prioritize the features on which the customers have spent their budget. The level of customization purchased can also be translated to an appropriate production method, for example, the most expensive type of customization would likely be free-form design and could be achieved through digital fabrication, while a lower level could be achieved through short batch production. Twenty-five teams of final year students from design, engineering, construction and technology tested this methodology when bringing a product from concept through to production specification, and found that it allowed them to confidently decide what level of customization, if any, would be worth offering for their product, and what would be the best method of producing it. They also found that the discussion and negotiations between players during the game led to invaluable insights, and often decided to play a second game where they offered customers the option to buy the various customization ideas that had been discussed during the first game.Keywords: Kano model, mass customization, new product development, serious game
Procedia PDF Downloads 1396877 A Critical Review of Mechanization in Rice Farming in Indonesia
Authors: K. Suheiti, P. Soni, Yardha
Abstract:
Challenges ahead of Indonesian agricultural development include increasing rural welfare, food needs, and the provision of employment through resource optimization that are laid out in agribusiness system. The agricultural system also responsive to the changing strategic environment. However, mounting pressure of population increase and changes in land-uses, require intensive use of agricultural land with modern agricultural machinery. Similarly, environmentally friendly technologies should continue to be developed in an effort to build and develop a good farming practice model. This paper explains the development of agricultural mechanization in Indonesia, particularly on rice production. The method of the research was analyze secondary data, tabulation and interpretation. The result showed, there was a variety of tools and agricultural machinery that have been produced and used by farmers to support national food security. The role of mechanization was needed to support national rice production and food security achievement.Keywords: farming, Indonesia, mechanization, rice
Procedia PDF Downloads 4986876 Energy Strategy and Economic Growth of Russia
Authors: Young Sik Kim, Tae Kwon Ha
Abstract:
This article considers the problems of economic growth and Russian energy strategy. Also in this paper, the issues related to the economic growth prospects of Russian were discussed. Russian energy strategy without standing Russia`s stature in global energy markets, at the current production and extraction rates, will not be able to sustain its own production as well as fulfil its energy strategy. Indeed, Russia’s energy sector suffers from a chronic lack of investments which are necessary to modernize its energy supply system. In recent years, especially since the international financial crisis, Russia-EU energy cooperation has made substantive progress. Recently the break-through progress has been made, resulting mainly from long-term contributing factors between the countries and recent international economic and political situation changes. Analytical material presented in the article is intended for a more detailed or substantive analysis related to foreign economic relations of the countries and Russia as well.Keywords: Russia, energy strategy, economic growth, cooperation
Procedia PDF Downloads 3186875 Sustainable Production of Pharmaceutical Compounds Using Plant Cell Culture
Authors: David A. Ullisch, Yantree D. Sankar-Thomas, Stefan Wilke, Thomas Selge, Matthias Pump, Thomas Leibold, Kai Schütte, Gilbert Gorr
Abstract:
Plants have been considered as a source of natural substances for ages. Secondary metabolites from plants are utilized especially in medical applications but are more and more interesting as cosmetical ingredients and in the field of nutraceuticals. However, supply of compounds from natural harvest can be limited by numerous factors i.e. endangered species, low product content, climate impacts and cost intensive extraction. Especially in the pharmaceutical industry the ability to provide sufficient amounts of product and high quality are additional requirements which in some cases are difficult to fulfill by plant harvest. Whereas in many cases the complexity of secondary metabolites precludes chemical synthesis on a reasonable commercial basis, plant cells contain the biosynthetic pathway – a natural chemical factory – for a given compound. A promising approach for the sustainable production of natural products can be plant cell fermentation (PCF®). A thoroughly accomplished development process comprises the identification of a high producing cell line, optimization of growth and production conditions, the development of a robust and reliable production process and its scale-up. In order to address persistent, long lasting production, development of cryopreservation protocols and generation of working cell banks is another important requirement to be considered. So far the most prominent example using a PCF® process is the production of the anticancer compound paclitaxel. To demonstrate the power of plant suspension cultures here we present three case studies: 1) For more than 17 years Phyton produces paclitaxel at industrial scale i.e. up to 75,000 L in scale. With 60 g/kg dw this fully controlled process which is applied according to GMP results in outstanding high yields. 2) Thapsigargin is another anticancer compound which is currently isolated from seeds of Thapsia garganica. Thapsigargin is a powerful cytotoxin – a SERCA inhibitor – and the precursor for the derivative ADT, the key ingredient of the investigational prodrug Mipsagargin (G-202) which is in several clinical trials. Phyton successfully generated plant cell lines capable to express this compound. Here we present data about the screening for high producing cell lines. 3) The third case study covers ingenol-3-mebutate. This compound is found in the milky sap of the intact plants of the Euphorbiacae family at very low concentrations. Ingenol-3-mebutate is used in Picato® which is approved against actinic keratosis. Generation of cell lines expressing significant amounts of ingenol-3-mebutate is another example underlining the strength of plant cell culture. The authors gratefully acknowledge Inspyr Therapeutics for funding.Keywords: Ingenol-3-mebutate, plant cell culture, sustainability, thapsigargin
Procedia PDF Downloads 2536874 Multi-Agent System Based Solution for Operating Agile and Customizable Micro Manufacturing Systems
Authors: Dylan Santos De Pinho, Arnaud Gay De Combes, Matthieu Steuhlet, Claude Jeannerat, Nabil Ouerhani
Abstract:
The Industry 4.0 initiative has been launched to address huge challenges related to ever-smaller batch sizes. The end-user need for highly customized products requires highly adaptive production systems in order to keep the same efficiency of shop floors. Most of the classical Software solutions that operate the manufacturing processes in a shop floor are based on rigid Manufacturing Execution Systems (MES), which are not capable to adapt the production order on the fly depending on changing demands and or conditions. In this paper, we present a highly modular and flexible solution to orchestrate a set of production systems composed of a micro-milling machine-tool, a polishing station, a cleaning station, a part inspection station, and a rough material store. The different stations are installed according to a novel matrix configuration of a 3x3 vertical shelf. The different cells of the shelf are connected through horizontal and vertical rails on which a set of shuttles circulate to transport the machined parts from a station to another. Our software solution for orchestrating the tasks of each station is based on a Multi-Agent System. Each station and each shuttle is operated by an autonomous agent. All agents communicate with a central agent that holds all the information about the manufacturing order. The core innovation of this paper lies in the path planning of the different shuttles with two major objectives: 1) reduce the waiting time of stations and thus reduce the cycle time of the entire part, and 2) reduce the disturbances like vibration generated by the shuttles, which highly impacts the manufacturing process and thus the quality of the final part. Simulation results show that the cycle time of the parts is reduced by up to 50% compared with MES operated linear production lines while the disturbance is systematically avoided for the critical stations like the milling machine-tool.Keywords: multi-agent systems, micro-manufacturing, flexible manufacturing, transfer systems
Procedia PDF Downloads 1336873 Recovery of Polyphenolic Phytochemicals From Greek Grape Pomace (Vitis Vinifera L.)
Authors: Christina Drosou, Konstantina E. Kyriakopoulou, Andreas Bimpilas, Dimitrios Tsimogiannis, Magdalini C. Krokida
Abstract:
Rationale: Agiorgitiko is one of the most widely-grown and commercially well-established red wine varieties in Greece. Each year viticulture industry produces a large amount of waste consisting of grape skins and seeds (pomace) during a short period. Grapes contain polyphenolic compounds which are partially transferred to wine during winemaking. Therefore, winery wastes could be an alternative cheap source for obtaining such compounds with important antioxidant activity. Specifically, red grape waste contains anthocyanins and flavonols which are characterized by multiple biological activities, including cardioprotective, anti-inflammatory, anti-carcinogenic, antiviral and antibacterial properties attributed mainly to their antioxidant activity. Ultrasound assisted extraction (UAE) is considered an effective way to recover phenolic compounds, since it combines the advantage of mechanical effect with low temperature. Moreover, green solvents can be used in order to recover extracts intended for used in the food and nutraceutical industry. Apart from the extraction, pre-treatment process like drying can play an important role on the preservation of the grape pomace and the enhancement of its antioxidant capacity. Objective: The aim of this study is to recover natural extracts from winery waste with high antioxidant capacity using green solvents so they can be exploited and utilized as enhancers in food or nutraceuticals. Methods: Agiorgitiko grape pomace was dehydrated by air drying (AD) and accelerated solar drying (ASD) in order to explore the effect of the pre-treatment on the recovery of bioactive compounds. UAE was applied in untreated and dried samples using water and water: ethanol (1:1) as solvents. The total antioxidant potential and phenolic content of the extracts was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and Folin-Ciocalteu method, respectively. Finally, the profile of anthocyanins and flavonols was specified using HPLC-DAD analysis. The efficiency of processes was determined in terms of extraction yield, antioxidant activity, phenolic content and the anthocyanins and flavovols profile. Results & Discussion: The experiments indicated that the pre-treatment was essential for the recovery of highly nutritious compounds from the pomace as long as the extracts samples showed higher phenolic content and antioxidant capacity. Water: ethanol (1:1) was considered a more effective solvent on the recovery of phenolic compounds. Moreover, ASD grape pomace extracted with the solvent system exhibited the highest antioxidant activity (IC50=0.36±0.01mg/mL) and phenolic content (TPC=172.68±0.01mgGAE/g dry extract), followed by AD and untreated pomace. The major compounds recovered were malvidin3-O-glucoside and quercetin3-O-glucoside according to the HPLC analysis. Conclusions: Winery waste can be exploited for the recovery of nutritious compounds using green solvents such as water or ethanol. The pretreatment of the pomace can significantly affect the concentration of phenolic compounds, while UAE is considered a highly effective extraction process.Keywords: agiorgitico grape pomace, antioxidants, phenolic compounds, ultrasound assisted extraction
Procedia PDF Downloads 3956872 Measuring Environmental Efficiency of Energy in OPEC Countries
Authors: Bahram Fathi, Seyedhossein Sajadifar, Naser Khiabani
Abstract:
Data envelopment analysis (DEA) has recently gained popularity in energy efficiency analysis. A common feature of the previously proposed DEA models for measuring energy efficiency performance is that they treat energy consumption as an input within a production framework without considering undesirable outputs. However, energy use results in the generation of undesirable outputs as byproducts of producing desirable outputs. Within a joint production framework of both desirable and undesirable outputs, this paper presents several DEA-type linear programming models for measuring energy efficiency performance. In addition to considering undesirable outputs, our models treat different energy sources as different inputs so that changes in energy mix could be accounted for in evaluating energy efficiency. The proposed models are applied to measure the energy efficiency performances of 12 OPEC countries and the results obtained are presented.Keywords: energy efficiency, undesirable outputs, data envelopment analysis
Procedia PDF Downloads 7406871 Catalytic Pyrolysis of Sewage Sludge for Upgrading Bio-Oil Quality Using Sludge-Based Activated Char as an Alternative to HZSM5
Abstract:
Due to the concerns about the depletion of fossil fuel sources and the deteriorating environment, the attempt to investigate the production of renewable energy will play a crucial role as a potential to alleviate the dependency on mineral fuels. In this respect, biofuels are measured as a vital nominee for national energy security and energy sustainability. Sewage sludge (SS), as an alternative source of renewable energy with a complex composition, is a major waste generated during wastewater treatment. Stricter legislation is continuously refining the requirements for the level of removal of various pollutants in treated water, causing continuous growth of sludge production, which has become a global challenge. In general, there are two main procedures for dealing with SS: incineration and landfill. However, there are a variety of limitations in these options (e.g., production of greenhouse gases and restrictive environmental regulations) in regard to negative social and economic impacts. Pyrolysis is a feasible and cost-effective technology that can simultaneously tackle boundaries concerning the current disposal routes while retrieving bioenergy. Pyrolysis of SS has drawn vigorous interest in research due to the ability of high mass yield of pyrolytic liquid production. Nonetheless, the presence of high molecular weight hydrocarbons and oxygenated- and nitrogenated compounds poses a considerable challenge. In this context, catalytic pyrolysis is another attainable route in order to upgrade the bio-oil quality. Among different catalysts (i.e., zeolites) studied for sewage sludge pyrolysis, activated chars are eco-friendly and low-cost alternatives. The beneficial features comprise comparatively large surface area, long-term stability, and enriched surface functional groups. In light of these premises, this research attempts to investigate the catalytic pyrolysis of sewage sludge with a high-performance sludge-based activated char in contrast to HZSM5 from a theoretical and experimental point of view.Keywords: catalytic pyrolysis, sewage sludge, char, HZSM5, bio-oil.
Procedia PDF Downloads 556870 Applications of Greenhouse Data in Guatemala in the Analysis of Sustainability Indicators
Authors: Maria A. Castillo H., Andres R. Leandro, Jose F. Bienvenido B.
Abstract:
In 2015, Guatemala officially adopted the Sustainable Development Goals (SDG) according to the 2030 Agenda agreed by the United Nations Organization. In 2016, these objectives and goals were reviewed, and the National Priorities were established within the K'atún 2032 National Development Plan. In 2019 and 2021, progress was evaluated with 120 defined indicators, and the need to improve quality and availability of statistical data necessary for the analysis of sustainability indicators was detected, so the values to be reached in 2024 and 2032 were adjusted. The need for greater agricultural technology is one of the priorities established within SDG 2 "Zero Hunger". Within this area, protected agricultural production provides greater productivity throughout the year, reduces the use of chemical products to control pests and diseases, reduces the negative impact of climate and improves product quality. During the crisis caused by Covid-19, there was an increase in exports of fruits and vegetables produced in greenhouses from Guatemala. However, this information has not been considered in the 2021 revision of the Plan. The objective of this study is to evaluate the information available on Greenhouse Agricultural Production and its integration into the Sustainability Indicators for Guatemala. This study was carried out in four phases: 1. Analysis of the Goals established for SDG 2 and the indicators included in the K'atún Plan. 2. Analysis of Environmental, Social and Economic Indicator Models. 3. Definition of territorial levels in 2 geographic scales: Departments and Municipalities. 4. Diagnosis of the available data on technological agricultural production with emphasis on Greenhouses at the 2 geographical scales. A summary of the results is presented for each phase and finally some recommendations for future research are added. The main contribution of this work is to improve the available data that allow the incorporation of some agricultural technology indicators in the established goals, to evaluate their impact on Food Security and Nutrition, Employment and Investment, Poverty, the use of Water and Natural Resources, and to provide a methodology applicable to other production models and other geographical areas.Keywords: greenhouses, protected agriculture, sustainable indicators, Guatemala, sustainability, SDG
Procedia PDF Downloads 886869 Manufacturing Commercial Bricks with Construction and Demolition Wastes
Authors: Mustafa Kara, Yasemin Kilic, Bahattin Murat Demir, Ümit Ustaoglu, Cavit Unal
Abstract:
This paper reports utilization of different kind of construction and demolition wastes (C&D) in the production of bricks at industrial scale. Plastered brick waste and tile wastes were collected from ISTAÇ Co. Compost and Recovery Plant, Istanbul, Turkey. Plastered brick waste and tile waste are mixed with brick clay in the proportion of 0-30% and fired at 900ºC. The physical and mechanical properties of the produced bricks were determined and evaluated according to IKIZLER Brick Company Production values, Brick Industry Association (BIA) and Turkish Standards (TS). The resulted showed that plastered brick waste and tile waste can be used to produce good quality brick for various engineering applications in construction and building. The replacement of brick clay by plastered brick waste and tile waste at the levels of 30% has good effects on the compressive strength of the bricks.Keywords: commercial brick, construction and demolition waste, manufacturing, recycling
Procedia PDF Downloads 3616868 Metabolic Costs and Chemical Profiles of Wax Production in Cryptolaemus montrouzieri and Tenuisvalvae notata
Authors: Nataly De La Pava, Christian S. A. Silva-Torres, Arodí P. Favaris, José Maurício S. Bento
Abstract:
The lady beetles Tenuisvalve notata and Cryptolaemus montrouzieri are important predators of mealybugs (Hemiptera: Pseudococcidae). Similar to the prey, these lady beetles produce wax filaments that cover their body during the larval stage. It has been hypothesized that lady beetle body wax chemical profiles are similar to their prey as i) a mechanism of camouflage and ii) conveying protection to the lady beetle larvae against aphid-tending predatory ants. In this study, we tested those hypotheses for the predators T. notata and C. montrouzieri and two mealybug prey species, Ferissia dasyrilii, and Planococcus citri. Next, we evaluated the influence of feeding on cuticular chemistry during predator development and identified possible metabolic costs associated with wax production. Cuticular wax samples were analyzed by GC-MS and GC-FID. Also, the metabolic cost linked to wax production was evaluated in the 4th instar larvae of the two predators when subjected to body wax removal from 0 to 4 times. Results showed that predator body wax profiles are not similar to the chemical profile of prey body wax. There was a metabolic cost associated with wax removal; predators (male and female) showed a significant reduction in adult body weight when the wax was removed. This suggests the reallocation of energy to wax replacement instead of growth. In addition, it was detected effects of wax removal on fecundity and egg viability. The results do not support the hypothesis that predators mimic the cuticular wax composition of prey as a means of camouflage.Keywords: biological control, body wax, coccinellids, cuticular hydrocarbons, metabolism cost, reproduction
Procedia PDF Downloads 856867 Development of High Temperature Eutectic Oxide Ceramic Matrix Composites
Authors: Yağmur Can Gündoğan, Kübra Gürcan Bayrak, Ece Özerdem, Buse Katipoğlu, Erhan Ayas, Rifat Yılmaz
Abstract:
Eutectic oxide based ceramic matrix composites have a unique microstructure that does not include grain boundary in the form of a continuous network. Because of this, these materials have the properties of perfect high-temperature strength, creep strength, and high oxidation strength. Mechanical properties of them are much related to occurring solidification structures during eutectic reactions. One of the most important production methods of this kind of material is the process of vacuum arc melting. Within scope of this studying, it is aimed to investigate the production of Al₂O₃-YAG-based eutectic ceramics by Arc melting and Spark Plasma Sintering methods for use in aerospace and defense industries where high-temperature environments play an important role and to examine the effects of ZrO₂ and LiF additions on microstructure development and mechanical properties.Keywords: alumina, composites, eutectic, YAG
Procedia PDF Downloads 1246866 A Study on Fundamental Problems for Small and Medium Agricultural Machinery Industries in Central Region Area
Authors: P. Thepnarintra, S. Nikorn
Abstract:
Agricultural machinery industry plays an important role in the industrial development especially the production industry of the country. There has been continuing development responding to the higher demand of the production. However, the problem in agricultural machinery production still exists. Thus, the purpose of this research is to investigate problems on fundamental factors of industry based on the entrepreneurs’ point of view. The focus was on the small and medium size industry receiving a factory license typed number 0660 from the Department of Industrial Works. The investigation was on the comparison between the management of the small and medium size agricultural industry in 3 provinces in the central region of Thailand. Population in this study consisted of 189 company managers or managing directors, of which 101 were from the small size and 88 were from the medium size industry. The data were analyzed to find percentage, arithmetic mean, and standard deviation with independent sample T-test at the statistical significance .05. The results showed that the small and medium size agricultural machinery manufacturers in the central region of Thailand reported high problems in every aspect. When compared the problems on basic factors in running the business, it was found that there was no difference statistically at .05 in managing of the small and medium size agricultural machinery manufacturers. However, there was a statistically significant difference between the small and medium size agricultural machinery manufacturers on the aspect of policy and services of the government. The problems reported by the small and medium size agricultural machinery manufacturers were the services on public tap water and the problem on politic and stability of the country.Keywords: agricultural machinery, manufacturers, problems, on running the business
Procedia PDF Downloads 2976865 Choosing the Green Energy Option: A Willingness to Pay Study of Metro Manila Residents for Solar Renewable Energy
Authors: Paolo Magnata
Abstract:
The energy market in the Philippines remains to have one of the highest electricity rates in the region averaging at US$0.16/kWh (PHP6.89/kWh), excluding VAT, as opposed to the overall energy market average of US$0.13/kWh. The movement towards renewable energy, specifically solar energy, will pose as an expensive one with the country’s energy sector providing Feed-in-Tariff rates as high as US$0.17/kWh (PHP8.69/kWh) for solar energy power plants. Increasing the share of renewables at the current state of the energy regulatory background would yield a three-fold increase in residential electricity bills. The issue lies in the uniform charge that consumers bear regardless of where the electricity is sourced resulting in rates that only consider costs and not the consumers. But if they are given the option to choose where their electricity comes from, a number of consumers may potentially choose economically costlier sources of electricity due to higher levels of utility coupled with the willingness to pay of consuming environmentally-friendly sourced electricity. A contingent valuation survey was conducted to determine their willingness-to-pay for solar energy on a sample that was representative of Metro Manila to elicit their willingness-to-pay and a Single Bounded Dichotomous Choice and Double Bounded Dichotomous Choice analysis was used to estimate the amount they were willing to pay. The results showed that Metro Manila residents are willing to pay a premium on top of their current electricity bill amounting to US$5.71 (PHP268.42) – US$9.26 (PHP435.37) per month which is approximately 0.97% - 1.29% of their monthly household income. It was also discovered that besides higher income of households, a higher level of self-perceived knowledge on environmental awareness significantly affected the likelihood of a consumer to pay the premium. Shifting towards renewable energy is an expensive move not only for the government because of high capital investment but also to consumers; however, the Green Energy Option (a policy mechanism which gives consumers the option to decide where their electricity comes from) can potentially balance the shift of the economic burden by transitioning from a uniformly charged electricity rate to equitably charging consumers based on their willingness to pay for renewably sourced energy.Keywords: contingent valuation, dichotomous choice, Philippines, solar energy
Procedia PDF Downloads 3476864 Existence and Uniqueness of Solutions to Singular Higher Order Two-Point BVPs on Time Scales
Authors: Zhenjie Liu
Abstract:
This paper investigates the existence and uniqueness of solutions for singular higher order boundary value problems on time scales by using mixed monotone method. The theorems obtained are very general. For the different time scale, the problem may be the corresponding continuous or discrete boundary value problem.Keywords: mixed monotone operator, boundary value problem, time scale, green's function, positive solution, singularity
Procedia PDF Downloads 2586863 Barriers to Innovation Based on Environmentally Friendly Technology Adoption in Developing Countries: The Case of Production in Rural Areas in Cauca-Colombia
Authors: Deycy Janeth Sanchez Preciado, Bjorn Claes, Paola Andrade
Abstract:
The development of appropriate environmentally friendly technologies has aided communities in rural areas in emerging economies to better use their natural resources, increase productivity while reducing pollution. Moreover, it has improved their innovation capabilities and ability to develop products for new markets. However, despite the advances, the adoption of these technologies is not generalized and does not always show the expected benefits for the communities and other actors involved in the co-creation process. In this paper, we study the barriers that inhibit the adoption of technologies to reach innovation levels and study comparative cases in rural areas of Cauca in Colombia. We develop and test a theory grounded framework, and we compile an overview of the most important of barriers.Keywords: technology adoption, environmentally friendly technology, developing countries, rural production, innovation, appropriate technology
Procedia PDF Downloads 227