Search results for: wound classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2554

Search results for: wound classification

2344 Valorisation of Waste Chicken Feathers: Electrospun Antibacterial Nanoparticles-Embedded Keratin Composite Nanofibers

Authors: Lebogang L. R. Mphahlele, Bruce B. Sithole

Abstract:

Chicken meat is the highest consumed meat in south Africa, with a per capita consumption of >33 kg yearly. Hence, South Africa produces over 250 million kg of waste chicken feathers each year, the majority of which is landfilled or incinerated. The discarded feathers have caused environmental pollution and natural protein resource waste. Therefore, the valorisation of waste chicken feathers is measured as a more environmentally friendly and cost-effective treatment. Feather contains 91% protein, the main component being beta-keratin, a fibrous and insoluble structural protein extensively cross linked by disulfide bonds. Keratin is usually converted it into nanofibers via electrospinning for a variety of applications. keratin nanofiber composites have many potential biomedical applications for their attractive features, such as high surface-to-volume ratio and very high porosity. The application of nanofibers in the biomedical wound dressing requires antimicrobial properties for materials. One approach is incorporating inorganic nanoparticles, among which silver nanoparticles played an important alternative antibacterial agent and have been studied against many types of microbes. The objective of this study is to combine synthetic polymer, chicken feather keratin, and antibacterial nanoparticles to develop novel electrospun antibacterial nanofibrous composites for possible wound dressing application. Furthermore, this study will converting a two-dimensional electrospun nanofiber membrane to three-dimensional fiber networks that resemble the structure of the extracellular matrix (ECM)

Keywords: chicken feather keratin, nanofibers, nanoparticles, nanocomposites, wound dressing

Procedia PDF Downloads 133
2343 New Approach to Construct Phylogenetic Tree

Authors: Ouafae Baida, Najma Hamzaoui, Maha Akbib, Abdelfettah Sedqui, Abdelouahid Lyhyaoui

Abstract:

Numerous scientific works present various methods to analyze the data for several domains, specially the comparison of classifications. In our recent work, we presented a new approach to help the user choose the best classification method from the results obtained by every method, by basing itself on the distances between the trees of classification. The result of our approach was in the form of a dendrogram contains methods as a succession of connections. This approach is much needed in phylogeny analysis. This discipline is intended to analyze the sequences of biological macro molecules for information on the evolutionary history of living beings, including their relationship. The product of phylogeny analysis is a phylogenetic tree. In this paper, we recommend the use of a new method of construction the phylogenetic tree based on comparison of different classifications obtained by different molecular genes.

Keywords: hierarchical classification, classification methods, structure of tree, genes, phylogenetic analysis

Procedia PDF Downloads 511
2342 Brainwave Classification for Brain Balancing Index (BBI) via 3D EEG Model Using k-NN Technique

Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan

Abstract:

In this paper, the comparison between k-Nearest Neighbor (kNN) algorithms for classifying the 3D EEG model in brain balancing is presented. The EEG signal recording was conducted on 51 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, maximum PSD values were extracted as features from the model. There are three indexes for the balanced brain; index 3, index 4 and index 5. There are significant different of the EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 Hz) and beta-β (13–30 Hz) were used as input signals for the classification model. The k-NN classification result is 88.46% accuracy. These results proved that k-NN can be used in order to predict the brain balancing application.

Keywords: power spectral density, 3D EEG model, brain balancing, kNN

Procedia PDF Downloads 489
2341 Role of Hyperbaric Oxygen Therapy in Management of Diabetic Foot

Authors: Magdy Al Shourbagi

Abstract:

Diabetes mellitus is the commonest cause of neuropathy. The common pattern is a distal symmetrical sensory polyneuropathy, associated with autonomic disturbances. Less often, Diabetes mellitus is responsible for a focal or multifocal neuropathy. Common causes for non-healing of diabetic foot are the infection and ischemia. Diabetes mellitus is associated with a defective cellular and humoral immunity. Particularly, decreased phagocytosis, decreased chemotaxis, impaired bacterial killing and abnormal lymphocytic function resulting in a reduced inflammatory reaction and defective wound healing. Hyperbaric oxygen therapy is defined by the Undersea and Hyperbaric Medical Society as a treatment in which a patient intermittently breathes 100% oxygen and the treatment chamber is pressurized to a pressure greater than sea level (1 atmosphere absolute). The pressure increase may be applied in mono-place (single person) or multi-place chambers. Multi-place chambers are pressurized with air, with oxygen given via face mask or endotracheal tube; while mono-place chambers are pressurized with oxygen. Oxygen gas plays an important role in the physiology of wound healing. Hyperbaric oxygen therapy can raise tissue oxygen tensions to levels where wound healing can be expected. HBOT increases the killing ability of leucocytes also it is lethal for certain anaerobic bacteria and inhibits toxin formation in many other anaerobes. Multiple anecdotal reports and studies in HBO therapy in diabetic patients report that HBO can be an effective adjunct therapy in the management of diabetic foot wounds and is associated with better functional outcomes.

Keywords: hyperbari oxygen therapy, diabetic foot, neuropathy, multiplace chambers

Procedia PDF Downloads 293
2340 Antibacterial Wound Dressing Based on Metal Nanoparticles Containing Cellulose Nanofibers

Authors: Mohamed Gouda

Abstract:

Antibacterial wound dressings based on cellulose nanofibers containing different metal nanoparticles (CMC-MNPs) were synthesized using an electrospinning technique. First, the composite of carboxymethyl cellulose containing different metal nanoparticles (CMC/MNPs), such as copper nanoparticles (CuNPs), iron nanoparticles (FeNPs), zinc nanoparticles (ZnNPs), cadmium nanoparticles (CdNPs) and cobalt nanoparticles (CoNPs) were synthesized, and finally, these composites were transferred to the electrospinning process. Synthesized CMC-MNPs were characterized using scanning electron microscopy (SEM) coupled with high-energy dispersive X-ray (EDX) and UV-visible spectroscopy used to confirm nanoparticle formation. The SEM images clearly showed regular flat shapes with semi-porous surfaces. All MNPs were well distributed inside the backbone of the cellulose without aggregation. The average particle diameters were 29-39 nm for ZnNPs, 29-33 nm for CdNPs, 25-33 nm for CoNPs, 23-27 nm for CuNPs and 22-26 nm for FeNPs. Surface morphology, water uptake and release of MNPs from the nanofibers in water and antimicrobial efficacy were studied. SEM images revealed that electrospun CMC-MNPs nanofibers are smooth and uniformly distributed without bead formation with average fiber diameters in the range of 300 to 450 nm. Fiber diameters were not affected by the presence of MNPs. TEM images showed that MNPs are present in/on the electrospun CMC-MNPs nanofibers. The diameter of the electrospun nanofibers containing MNPs was in the range of 300–450 nm. The MNPs were observed to be spherical in shape. The CMC-MNPs nanofibers showed good hydrophilic properties and had excellent antibacterial activity against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus.

Keywords: electrospinning technique, metal nanoparticles, cellulosic nanofibers, wound dressing

Procedia PDF Downloads 329
2339 Comparison of Anterolateral Thigh Flap with or without Acellular Dermal Matrix in Repair of Hypopharyngeal Squamous Cell Carcinoma Defect: A Retrospective Study

Authors: Yaya Gao, Bing Zhong, Yafeng Liu, Fei Chen

Abstract:

Aim: The purpose of this study was to explore the difference between acellular dermal matrix (ADM) combined with anterolateral thigh (ALT) flap and ALT flap alone. Methods: HSCC patients were treated and divided into group A (ALT) and group B (ALT+ADM) between January 2014 and December 2018. We compared and analyzed the intraoperative information and postoperative outcomes of the patients. Results: There were 21 and 17 patients in group A and group B, respectively. The operation time, blood loss, defect size and anastomotic vessel selection showed no significant difference between two groups. The postoperative complications, including wound bleeding (n=0 vs. 1, p=0.459), wound dehiscence (n=0 vs. 1, p=0.459), wound infection (n=5vs.3, p=0.709), pharyngeal fistula (n=5vs.4, p=1.000) and hypoproteinemia (n=11 vs. 12, p=0.326) were comparable between the groups. Dysphagia at 6 months (number of liquid diets=0vs. 0; number of partial tube feedings=1vs. 1; number of total tube feedings=1vs. 0, p=0.655) also showed no significant differences. However, significant differences was observed in dysphagia at 12 months (number of liquid diets=0vs. 0; number of partial tube feedings=3 vs. 1; number of total tube feedings=10vs. 1, p=0.006). Conclusion: For HSCC patients, the use of the ALT flap combined ADM, compared to ALT treatment, showed better swallowing function at 12 months. The ALT flap combined ADM may serve as a safe and feasible alternative for selected HSCC patients.

Keywords: hypopharyngeal squamous cell carcinoma, anterolateral thigh free flap, acellular dermal matrix, reconstruction, dysphagia

Procedia PDF Downloads 77
2338 Development of Fake News Model Using Machine Learning through Natural Language Processing

Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini

Abstract:

Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.

Keywords: fake news detection, natural language processing, machine learning, classification techniques.

Procedia PDF Downloads 168
2337 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting

Authors: Yiannis G. Smirlis

Abstract:

The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.

Keywords: data envelopment analysis, interval DEA, efficiency classification, efficiency prediction

Procedia PDF Downloads 164
2336 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction

Procedia PDF Downloads 340
2335 Visual and Clinical Outcome in Patients with Corneal Lacerations

Authors: Avantika Verma

Abstract:

In industrialized nations, corneal lacerations are one of the most common reason for hospitalization. This study was designed to study visual and clinical outcome in patients presenting with full thickness corneal lacerations in Indian population and to ascertain the impact of various preoperative and operative factors influencing prognosis after repair of corneal lacerations. Males in third decade with injuries at work with metallic objects were common. Lens damage, hyphema, vitreous hemorrhage, retinal detachment and endophthalmitis were seen. All the patients underwent primary repair within first 24 hours of presentation. At 3 months, 74.3% had a good visual outcome. About 5.7% of patients had no perception of light.In conclusion, various demographic and preoperative factors like age, time of presentation, vision at presentation, length of corneal wound, involvement of visual axis, associated ocular features like hyphaema, lenticular changes, vitreous haemorrhage and retinal detachment are significant prognostic indicators for final visual outcome.

Keywords: corneal laceration, corneal wound repair, injury, visual outcome

Procedia PDF Downloads 359
2334 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review

Authors: Faisal Muhibuddin, Ani Dijah Rahajoe

Abstract:

This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.

Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review

Procedia PDF Downloads 68
2333 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy

Authors: Kemal Polat

Abstract:

In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.

Keywords: machine learning, data weighting, classification, data mining

Procedia PDF Downloads 327
2332 Treatment of NMSC with Traditional Medicine Method

Authors: Aferdita Stroka Koka, Laver Stroka, Juna Musa, Samanda Celaj

Abstract:

Non-melanoma skin cancers (NMSCs) are the most common human malignancies. About 5.4 million basal and squamous cell skin cancers are diagnosed each year in the US and new cases continue to grow. About eight out of ten of these are basal cell cancers. Squamous cell cancers occur less often. NMSC usually are treatable, but treatment is expensive and can leave scars. In 2019, 167 patients of both sexes suffering from NMSC were treated by traditional medicine. Patients who have been diagnosed with Basal Cell Carcinoma were 122 cases, Squamous Cell Carcinoma 32 cases and both of them 13 cases. Of these,122 cases were ulcerated lesions and 45 unulcerated lesions. All patients were treated with the herbal solution called NILS, which contains extracts of some Albanian plants such as Allium sativum, Jugulans regia and Laurus nobilis. The treatment is done locally, on the surface of the tumor, applying the solution until the tumor mass is destroyed and, after that, giving the necessary time to the wound to make the regeneration that coincides with the complete healing of the wound. We have prepared a collection of photos for each case. Since the first sessions, a shrinkage and reduction of the tumor mass were evident, up to the total disappearance of the lesion at the end of treatment. The normal period of treatment lasted 1 to 2 weeks, depending on the size of the tumor, then take care of it until the closure of the wound, taking the whole process from 1 to 3 months. In 7 patients, the lesion failed to be dominated by treatment and they underwent standard treatment with radiotherapy or surgery, while in 10 patients, the lesion recurred and was treated again. The aim of this survey was to put in evidence the good results obtained by treatment of NMSC with Albanian traditional medicine methods.

Keywords: local treatment, nils, NMSC, traditional medicine

Procedia PDF Downloads 211
2331 Development of Biodegradable Wound Healing Patch of Curcumin

Authors: Abhay Asthana, Shally Toshkhani, Gyati Shilakari

Abstract:

The objective of the present research work is to develop a topical biodegradable dermal patch based formulation to aid accelerated wound healing. It is always better for patient compliance to be able to reduce the frequency of dressings with improved drug delivery and overall therapeutic efficacy. In present study optimized formulation using biodegradable components was obtained evaluating polymers and excipients (HPMC K4M, Ethylcellulose, Povidone, Polyethylene glycol and Gelatin) to impart significant folding endurance, elasticity, and strength. Molten gelatin was used to get a mixture using ethylene glycol. Chitosan dissolved in acidic medium was mixed with stirring to Gelatin mixture. With continued stirring to the mixture Curcumin was added with the aid of DCM and Methanol in an optimized ratio of 60:40 to get homogenous dispersion. Polymers were dispersed with stirring in the final formulation. The mixture was sonicated casted to get the film form. All steps were carried out under strict aseptic conditions. The final formulation was a thin uniformly smooth textured film with dark brown-yellow color. The film was found to have folding endurance was around 20 to 21 times without a crack in an optimized formulation at RT (23°C). The drug content was in range 96 to 102% and it passed the content uniform test. The final moisture content of the optimized formulation film was NMT 9.0%. The films passed stability study conducted at refrigerated conditions (4±0.2°C) and at room temperature (23 ± 2°C) for 30 days. Further, the drug content and texture remained undisturbed with stability study conducted at RT 23±2°C for 45 and 90 days. Percentage cumulative drug release was found to be 80% in 12h and matched the biodegradation rate as tested in vivo with correlation factor R2>0.9. In in vivo study administration of one dose in equivalent quantity per 2 days was applied topically. The data demonstrated a significant improvement with percentage wound contraction in contrast to control and plain drug respectively in given period. The film based formulation developed shows promising results in terms of stability and in vivo performance.

Keywords: wound healing, biodegradable, polymers, patch

Procedia PDF Downloads 482
2330 Feature Extraction and Classification Based on the Bayes Test for Minimum Error

Authors: Nasar Aldian Ambark Shashoa

Abstract:

Classification with a dimension reduction based on Bayesian approach is proposed in this paper . The first step is to generate a sample (parameter) of fault-free mode class and faulty mode class. The second, in order to obtain good classification performance, a selection of important features is done with the discrete karhunen-loeve expansion. Next, the Bayes test for minimum error is used to classify the classes. Finally, the results for simulated data demonstrate the capabilities of the proposed procedure.

Keywords: analytical redundancy, fault detection, feature extraction, Bayesian approach

Procedia PDF Downloads 528
2329 Network Traffic Classification Scheme for Internet Network Based on Application Categorization for Ipv6

Authors: Yaser Miaji, Mohammed Aloryani

Abstract:

The rise of recent applications in everyday implementation like videoconferencing, online recreation and voice speech communication leads to pressing the need for novel mechanism and policy to serve this steep improvement within the application itself and users‟ wants. This diversity in web traffics needs some classification and prioritization of the traffics since some traffics merit abundant attention with less delay and loss, than others. This research is intended to reinforce the mechanism by analysing the performance in application according to the proposed mechanism implemented. The mechanism used is quite direct and analytical. The mechanism is implemented by modifying the queue limit in the algorithm.

Keywords: traffic classification, IPv6, internet, application categorization

Procedia PDF Downloads 566
2328 The Thinking of Dynamic Formulation of Rock Aging Agent Driven by Data

Authors: Longlong Zhang, Xiaohua Zhu, Ping Zhao, Yu Wang

Abstract:

The construction of mines, railways, highways, water conservancy projects, etc., have formed a large number of high steep slope wounds in China. Under the premise of slope stability and safety, the minimum cost, green and close to natural wound space repair, has become a new problem. Nowadays, in situ element testing and analysis, monitoring, field quantitative factor classification, and assignment evaluation will produce vast amounts of data. Data processing and analysis will inevitably differentiate the morphology, mineral composition, physicochemical properties between rock wounds, by which to dynamically match the appropriate techniques and materials for restoration. In the present research, based on the grid partition of the slope surface, tested the content of the combined oxide of rock mineral (SiO₂, CaO, MgO, Al₂O₃, Fe₃O₄, etc.), and classified and assigned values to the hardness and breakage of rock texture. The data of essential factors are interpolated and normalized in GIS, which formed the differential zoning map of slope space. According to the physical and chemical properties and spatial morphology of rocks in different zones, organic acids (plant waste fruit, fruit residue, etc.), natural mineral powder (zeolite, apatite, kaolin, etc.), water-retaining agent, and plant gum (melon powder) were mixed in different proportions to form rock aging agents. To spray the aging agent with different formulas on the slopes in different sections can affectively age the fresh rock wound, providing convenience for seed implantation, and reducing the transformation of heavy metals in the rocks. Through many practical engineering practices, a dynamic data platform of rock aging agent formula system is formed, which provides materials for the restoration of different slopes. It will also provide a guideline for the mixed-use of various natural materials to solve the complex, non-uniformity ecological restoration problem.

Keywords: data-driven, dynamic state, high steep slope, rock aging agent, wounds

Procedia PDF Downloads 116
2327 A Lightweight Pretrained Encrypted Traffic Classification Method with Squeeze-and-Excitation Block and Sharpness-Aware Optimization

Authors: Zhiyan Meng, Dan Liu, Jintao Meng

Abstract:

Dependable encrypted traffic classification is crucial for improving cybersecurity and handling the growing amount of data. Large language models have shown that learning from large datasets can be effective, making pre-trained methods for encrypted traffic classification popular. However, attention-based pre-trained methods face two main issues: their large neural parameters are not suitable for low-computation environments like mobile devices and real-time applications, and they often overfit by getting stuck in local minima. To address these issues, we developed a lightweight transformer model, which reduces the computational parameters through lightweight vocabulary construction and Squeeze-and-Excitation Block. We use sharpness-aware optimization to avoid local minima during pre-training and capture temporal features with relative positional embeddings. Our approach keeps the model's classification accuracy high for downstream tasks. We conducted experiments on four datasets -USTC-TFC2016, VPN 2016, Tor 2016, and CICIOT 2022. Even with fewer than 18 million parameters, our method achieves classification results similar to methods with ten times as many parameters.

Keywords: sharpness-aware optimization, encrypted traffic classification, squeeze-and-excitation block, pretrained model

Procedia PDF Downloads 32
2326 Functional Slow Release of Encapsulated Ibuprofen in Cross-linked Gellan Gum Hydrogel for Tissue Engineering Application

Authors: Nor Jannah Mohd Sebri, Khairul Anuar Mat Amin

Abstract:

Dication cross-linked gellan gum hydrogel loaded with Ibuprofen with excellent mechanical properties had been synthesized as potential candidate for non-toxic biocompatible polymer material in tissue engineering. The gellan gum hydrogel with 5% Ibuprofen had produced a slow release profile with total drug release time of 25 hours as a resulting low swelling value recorded at 22+0.5%. Its compressive strength, 200.13+21 kPa was highest of all other hydrogel ratio of 0.5% and 1.0% Ibuprofen incorporation. Young’s Modulus of the hydrogel with 5% Ibuprofen was recorded at 1.8+0.01 MPa, indicating good gel strength in which it is capable of withstanding a fair amount of subjected force during topical wound dressing application. Excellent mechanical properties, together with slow release profile, make the ibuprofen-loaded hydrogel a prospect candidate as biocompatible extracellular matrices in wound management.

Keywords: gellan gum, ibuprofen, slow drug release, hydrogel

Procedia PDF Downloads 400
2325 Comparison of the Classification of Cystic Renal Lesions Using the Bosniak Classification System with Contrast Enhanced Ultrasound and Magnetic Resonance Imaging to Computed Tomography: A Prospective Study

Authors: Dechen Tshering Vogel, Johannes T. Heverhagen, Bernard Kiss, Spyridon Arampatzis

Abstract:

In addition to computed tomography (CT), contrast enhanced ultrasound (CEUS), and magnetic resonance imaging (MRI) are being increasingly used for imaging of renal lesions. The aim of this prospective study was to compare the classification of complex cystic renal lesions using the Bosniak classification with CEUS and MRI to CT. Forty-eight patients with 65 cystic renal lesions were included in this study. All participants signed written informed consent. The agreement between the Bosniak classifications of complex renal lesions ( ≥ BII-F) on CEUS and MRI were compared to that of CT and were tested using Cohen’s Kappa. Sensitivity, specificity, positive and negative predictive values (PPV/NPV) and the accuracy of CEUS and MRI compared to CT in the detection of complex renal lesions were calculated. Twenty-nine (45%) out of 65 cystic renal lesions were classified as complex using CT. The agreement between CEUS and CT in the classification of complex cysts was fair (agreement 50.8%, Kappa 0.31), and was excellent between MRI and CT (agreement 93.9%, Kappa 0.88). Compared to CT, MRI had a sensitivity of 96.6%, specificity of 91.7%, a PPV of 54.7%, and an NPV of 54.7% with an accuracy of 63.1%. The corresponding values for CEUS were sensitivity 100.0%, specificity 33.3%, PPV 90.3%, and NPV 97.1% with an accuracy 93.8%. The classification of complex renal cysts based on MRI and CT scans correlated well, and MRI can be used instead of CT for this purpose. CEUS can exclude complex lesions, but due to higher sensitivity, cystic lesions tend to be upgraded. However, it is useful for initial imaging, for follow up of lesions and in those patients with contraindications to CT and MRI.

Keywords: Bosniak classification, computed tomography, contrast enhanced ultrasound, cystic renal lesions, magnetic resonance imaging

Procedia PDF Downloads 144
2324 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags

Authors: Zhang Shuqi, Liu Dan

Abstract:

For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.

Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation

Procedia PDF Downloads 106
2323 International Classification of Primary Care as a Reference for Coding the Demand for Care in Primary Health Care

Authors: Souhir Chelly, Chahida Harizi, Aicha Hechaichi, Sihem Aissaoui, Leila Ben Ayed, Maha Bergaoui, Mohamed Kouni Chahed

Abstract:

Introduction: The International Classification of Primary Care (ICPC) is part of the morbidity classification system. It had 17 chapters, and each is coded by an alphanumeric code: the letter corresponds to the chapter, the number to a paragraph in the chapter. The objective of this study is to show the utility of this classification in the coding of the reasons for demand for care in Primary health care (PHC), its advantages and limits. Methods: This is a cross-sectional descriptive study conducted in 4 PHC in Ariana district. Data on the demand for care during 2 days in the same week were collected. The coding of the information was done according to the CISP. The data was entered and analyzed by the EPI Info 7 software. Results: A total of 523 demands for care were investigated. The patients who came for the consultation are predominantly female (62.72%). Most of the consultants are young with an average age of 35 ± 26 years. In the ICPC, there are 7 rubrics: 'infections' is the most common reason with 49.9%, 'other diagnoses' with 40.2%, 'symptoms and complaints' with 5.5%, 'trauma' with 2.1%, 'procedures' with 2.1% and 'neoplasm' with 0.3%. The main advantage of the ICPC is the fact of being a standardized tool. It is very suitable for classification of the reasons for demand for care in PHC according to their specificity, capacity to be used in a computerized medical file of the PHC. Its current limitations are related to the difficulty of classification of some reasons for demand for care. Conclusion: The ICPC has been developed to provide healthcare with a coding reference that takes into account their specificity. The CIM is in its 10th revision; it would gain from revision to revision to be more efficient to be generalized and used by the teams of PHC.

Keywords: international classification of primary care, medical file, primary health care, Tunisia

Procedia PDF Downloads 269
2322 A Quantitative Evaluation of Text Feature Selection Methods

Authors: B. S. Harish, M. B. Revanasiddappa

Abstract:

Due to rapid growth of text documents in digital form, automated text classification has become an important research in the last two decades. The major challenge of text document representations are high dimension, sparsity, volume and semantics. Since the terms are only features that can be found in documents, selection of good terms (features) plays an very important role. In text classification, feature selection is a strategy that can be used to improve classification effectiveness, computational efficiency and accuracy. In this paper, we present a quantitative analysis of most widely used feature selection (FS) methods, viz. Term Frequency-Inverse Document Frequency (tfidf ), Mutual Information (MI), Information Gain (IG), CHISquare (x2), Term Frequency-Relevance Frequency (tfrf ), Term Strength (TS), Ambiguity Measure (AM) and Symbolic Feature Selection (SFS) to classify text documents. We evaluated all the feature selection methods on standard datasets like 20 Newsgroups, 4 University dataset and Reuters-21578.

Keywords: classifiers, feature selection, text classification

Procedia PDF Downloads 461
2321 A Lung Cancer Patients with Septic Shock Nursing Experience

Authors: Syue-Wen Lin

Abstract:

Objective: This article explores the nursing experience of an 84-year-old male lung cancer patient who underwent a thoracoscopic right lower lobectomy and treatment. The patient has multiple medical histories, including hypertension and diabetes. The nursing process involved cancer treatment, postoperative pain management, as well as wound care and healing. Methods: The nursing period is from February 10 to February 17, 2024. During the nursing process, pain management strategies are implemented, including morphine drugs and non-drug methods, and music therapy, essential oil massage, and extended reception time are used to make patients feel physically and mentally comfortable so as to reduce postoperative pain and encourage active participation in rehabilitation. Strict sterile wound dressing procedures and advanced wound care techniques are used to promote wound healing and prevent infection. Due to septic shock, dialysis is used to relieve worsening symptoms. Taking into account the patient's cancer status, the nursing team provides comprehensive cancer care based on the patient's physical and psychological needs. Given the complexity of the patient's condition, including advanced cancer, palliative care is also incorporated throughout the care process to relieve discomfort and provide psychological support. Results: Through comprehensive health assessment, the nursing team fully understood the patient's condition and developed a personalized care plan based on the patient's condition. The interprofessional critical care team provides respiratory therapy and lung expansion exercises to reduce muscle loss while addressing the patient's psychological status, pain management, and vital sign stabilization needs, resulting in a comprehensive approach to care. Lung expansion exercises and the use of a high-frequency chest wall oscillation vest successfully improved sputum drainage and facilitated weaning from mechanical ventilation. In addition, helping patients stabilize their vital signs and the integration of cancer care, pain management, wound care and palliative care helps the patient be fully supported throughout the recovery process, ultimately improving his quality of life. Conclusion: Lung cancer and septic shock present significant challenges to patients, and the nursing team not only provides critical care but also addresses the unique needs of patients through comprehensive infection control, cancer care, pain management, wound care, and palliative care interventions. These measures effectively improve patients' quality of life, promote recovery, and provide compassionate palliative care for terminally ill patients. Nursing staff work closely with family members to develop a comprehensive care plan to ensure that patients receive high-quality medical care as well as psychological support and a comfortable recovery environment.

Keywords: septic shock, lung cancer, palliative care, nursing experience

Procedia PDF Downloads 25
2320 Evaluation and Fault Classification for Healthcare Robot during Sit-To-Stand Performance through Center of Pressure

Authors: Tianyi Wang, Hieyong Jeong, An Guo, Yuko Ohno

Abstract:

Healthcare robot for assisting sit-to-stand (STS) performance had aroused numerous research interests. To author’s best knowledge, knowledge about how evaluating healthcare robot is still unknown. Robot should be labeled as fault if users feel demanding during STS when they are assisted by robot. In this research, we aim to propose a method to evaluate sit-to-stand assist robot through center of pressure (CoP), then classify different STS performance. Experiments were executed five times with ten healthy subjects under four conditions: two self-performed STSs with chair heights of 62 cm and 43 cm, and two robot-assisted STSs with chair heights of 43 cm and robot end-effect speed of 2 s and 5 s. CoP was measured using a Wii Balance Board (WBB). Bayesian classification was utilized to classify STS performance. The results showed that faults occurred when decreased the chair height and slowed robot assist speed. Proposed method for fault classification showed high probability of classifying fault classes form others. It was concluded that faults for STS assist robot could be detected by inspecting center of pressure and be classified through proposed classification algorithm.

Keywords: center of pressure, fault classification, healthcare robot, sit-to-stand movement

Procedia PDF Downloads 197
2319 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images

Authors: Jameela Ali Alkrimi, Abdul Rahim Ahmad, Azizah Suliman, Loay E. George

Abstract:

Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. The lack of RBCs is a condition characterized by lower than normal hemoglobin level; this condition is referred to as 'anemia'. In this study, a software was developed to isolate RBCs by using a machine learning approach to classify anemic RBCs in microscopic images. Several features of RBCs were extracted using image processing algorithms, including principal component analysis (PCA). With the proposed method, RBCs were isolated in 34 second from an image containing 18 to 27 cells. We also proposed that PCA could be performed to increase the speed and efficiency of classification. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network ANN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained for a short time period with more efficient when PCA was used.

Keywords: red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC

Procedia PDF Downloads 405
2318 An Attempt at the Multi-Criterion Classification of Small Towns

Authors: Jerzy Banski

Abstract:

The basic aim of this study is to discuss and assess different classifications and research approaches to small towns that take their social and economic functions into account, as well as relations with surrounding areas. The subject literature typically includes three types of approaches to the classification of small towns: 1) the structural, 2) the location-related, and 3) the mixed. The structural approach allows for the grouping of towns from the point of view of the social, cultural and economic functions they discharge. The location-related approach draws on the idea of there being a continuum between the center and the periphery. A mixed classification making simultaneous use of the different approaches to research brings the most information to bear in regard to categories of the urban locality. Bearing in mind the approaches to classification, it is possible to propose a synthetic method for classifying small towns that takes account of economic structure, location and the relationship between the towns and their surroundings. In the case of economic structure, the small centers may be divided into two basic groups – those featuring a multi-branch structure and those that are specialized economically. A second element of the classification reflects the locations of urban centers. Two basic types can be identified – the small town within the range of impact of a large agglomeration, or else the town outside such areas, which is to say located peripherally. The third component of the classification arises out of small towns’ relations with their surroundings. In consequence, it is possible to indicate 8 types of small-town: from local centers enjoying good accessibility and a multi-branch economic structure to peripheral supra-local centers characterised by a specialized economic structure.

Keywords: small towns, classification, functional structure, localization

Procedia PDF Downloads 182
2317 Multi-Class Text Classification Using Ensembles of Classifiers

Authors: Syed Basit Ali Shah Bukhari, Yan Qiang, Saad Abdul Rauf, Syed Saqlaina Bukhari

Abstract:

Text Classification is the methodology to classify any given text into the respective category from a given set of categories. It is highly important and vital to use proper set of pre-processing , feature selection and classification techniques to achieve this purpose. In this paper we have used different ensemble techniques along with variance in feature selection parameters to see the change in overall accuracy of the result and also on some other individual class based features which include precision value of each individual category of the text. After subjecting our data through pre-processing and feature selection techniques , different individual classifiers were tested first and after that classifiers were combined to form ensembles to increase their accuracy. Later we also studied the impact of decreasing the classification categories on over all accuracy of data. Text classification is highly used in sentiment analysis on social media sites such as twitter for realizing people’s opinions about any cause or it is also used to analyze customer’s reviews about certain products or services. Opinion mining is a vital task in data mining and text categorization is a back-bone to opinion mining.

Keywords: Natural Language Processing, Ensemble Classifier, Bagging Classifier, AdaBoost

Procedia PDF Downloads 235
2316 Determination of the Bank's Customer Risk Profile: Data Mining Applications

Authors: Taner Ersoz, Filiz Ersoz, Seyma Ozbilge

Abstract:

In this study, the clients who applied to a bank branch for loan were analyzed through data mining. The study was composed of the information such as amounts of loans received by personal and SME clients working with the bank branch, installment numbers, number of delays in loan installments, payments available in other banks and number of banks to which they are in debt between 2010 and 2013. The client risk profile was examined through Classification and Regression Tree (CART) analysis, one of the decision tree classification methods. At the end of the study, 5 different types of customers have been determined on the decision tree. The classification of these types of customers has been created with the rating of those posing a risk for the bank branch and the customers have been classified according to the risk ratings.

Keywords: client classification, loan suitability, risk rating, CART analysis

Procedia PDF Downloads 338
2315 Formulation of a Submicron Delivery System including a Platelet Lysate to Be Administered in Damaged Skin

Authors: Sergio A. Bernal-Chavez, Sergio Alcalá-Alcalá, Doris A. Cerecedo-Mercado, Adriana Ganem-Rondero

Abstract:

The prevalence of people with chronic wounds has increased dramatically by many factors including smoking, obesity and chronic diseases, such as diabetes, that can slow the healing process and increase the risk of becoming chronic. Because of this situation, the improvement of chronic wound treatments is a necessity, which has led to the scientific community to focus on improving the effectiveness of current therapies and the development of new treatments. The wound formation is a physiological complex process, which is characterized by an inflammatory stage with the presence of proinflammatory cells that create a proteolytic microenvironment during the healing process, which includes the degradation of important growth factors and cytokines. This decrease of growth factors and cytokines provides an interesting strategy for wound healing if they are administered externally. The use of nanometric drug delivery systems, such as polymer nanoparticles (NP), also offers an interesting alternative around dermal systems. An interesting strategy would be to propose a formulation based on a thermosensitive hydrogel loaded with polymeric nanoparticles that allows the inclusion and application of a platelet lysate (PL) on damaged skin, with the aim of promoting wound healing. In this work, NP were prepared by a double emulsion-solvent evaporation technique, using polylactic-co-glycolic acid (PLGA) as biodegradable polymer. Firstly, an aqueous solution of PL was emulsified into a PLGA organic solution, previously prepared in dichloromethane (DCM). Then, this disperse system (W/O) was poured into a polyvinyl alcohol (PVA) solution to get the double emulsion (W/O/W), finally the DCM was evaporated by magnetic stirring resulting in the NP formation containing PL. Once the NP were obtained, these systems were characterized by morphology, particle size, Z-potential, encapsulation efficiency (%EE), physical stability, infrared spectrum, calorimetric studies (DSC) and in vitro release profile. The optimized nanoparticles were included in a thermosensitive gel formulation of Pluronic® F-127. The gel was prepared by the cold method at 4 °C and 20% of polymer concentration. Viscosity, sol-gel phase transition, time of no flow solid-gel at wound temperature, changes in particle size by temperature-effect using dynamic light scattering (DLS), occlusive effect, gel degradation, infrared spectrum and micellar point by DSC were evaluated in all gel formulations. PLGA NP of 267 ± 10.5 nm and Z-potential of -29.1 ± 1 mV were obtained. TEM micrographs verified the size of NP and evidenced their spherical shape. The %EE for the system was around 99%. Thermograms and in infrared spectra mark the presence of PL in NP. The systems did not show significant changes in the parameters mentioned above, during the stability studies. Regarding the gel formulation, the transition sol-gel occurred at 28 °C with a time of no flow solid-gel of 7 min at 33°C (common wound temperature). Calorimetric, DLS and infrared studies corroborated the physical properties of a thermosensitive gel, such as the micellar point. In conclusion, the thermosensitive gel described in this work, contains therapeutic amounts of PL and fulfills the technological properties to be used in damaged skin, with potential application in wound healing and tissue regeneration.

Keywords: growth factors, polymeric nanoparticles, thermosensitive hydrogels, tissue regeneration

Procedia PDF Downloads 172