Search results for: time efficient learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27102

Search results for: time efficient learning

26892 A Framework of Dynamic Rule Selection Method for Dynamic Flexible Job Shop Problem by Reinforcement Learning Method

Authors: Rui Wu

Abstract:

In the volatile modern manufacturing environment, new orders randomly occur at any time, while the pre-emptive methods are infeasible. This leads to a real-time scheduling method that can produce a reasonably good schedule quickly. The dynamic Flexible Job Shop problem is an NP-hard scheduling problem that hybrid the dynamic Job Shop problem with the Parallel Machine problem. A Flexible Job Shop contains different work centres. Each work centre contains parallel machines that can process certain operations. Many algorithms, such as genetic algorithms or simulated annealing, have been proposed to solve the static Flexible Job Shop problems. However, the time efficiency of these methods is low, and these methods are not feasible in a dynamic scheduling problem. Therefore, a dynamic rule selection scheduling system based on the reinforcement learning method is proposed in this research, in which the dynamic Flexible Job Shop problem is divided into several parallel machine problems to decrease the complexity of the dynamic Flexible Job Shop problem. Firstly, the features of jobs, machines, work centres, and flexible job shops are selected to describe the status of the dynamic Flexible Job Shop problem at each decision point in each work centre. Secondly, a framework of reinforcement learning algorithm using a double-layer deep Q-learning network is applied to select proper composite dispatching rules based on the status of each work centre. Then, based on the selected composite dispatching rule, an available operation is selected from the waiting buffer and assigned to an available machine in each work centre. Finally, the proposed algorithm will be compared with well-known dispatching rules on objectives of mean tardiness, mean flow time, mean waiting time, or mean percentage of waiting time in the real-time Flexible Job Shop problem. The result of the simulations proved that the proposed framework has reasonable performance and time efficiency.

Keywords: dynamic scheduling problem, flexible job shop, dispatching rules, deep reinforcement learning

Procedia PDF Downloads 108
26891 Challenges of the Implementation of Real Time Online Learning in a South African Context

Authors: Thifhuriwi Emmanuel Madzunye, Patricia Harpur, Ephias Ruhode

Abstract:

A review of the pertinent literature identified a gap concerning the hindrances and opportunities accompanying the implementation of real-time online learning systems (RTOLs) in rural areas. Whilst RTOLs present a possible solution to teaching and learning issues in rural areas, little is known about the implementation of digital strategies among schools in isolated communities. This study explores associated guidelines that have the potential to inform decision-making where Internet-based education could improve educational opportunities. A systematic literature review has the potential to consolidate and focus on disparate literature served to collect interlinked data from specific sources in a structured manner. During qualitative data analysis (QDA) of selected publications via the application of a QDA tool - ATLAS.ti, the following overarching themes emerged: digital divide, educational strategy, human factors, and support. Furthermore, findings from data collection and literature review suggest that signiant factors include a lack of digital knowledge, infrastructure shortcomings such as a lack of computers, poor internet connectivity, and handicapped real-time online may limit students’ progress. The study recommends that timeous consideration should be given to the influence of the digital divide. Additionally, the evolution of educational strategy that adopts digital approaches, a focus on training of role-players and stakeholders concerning human factors, and the seeking of governmental funding and support are essential to the implementation and success of RTOLs.

Keywords: communication, digital divide, digital skills, distance, educational strategy, government, ICT, infrastructures, learners, limpopo, lukalo, network, online learning systems, political-unrest, real-time, real-time online learning, real-time online learning system, pass-rate, resources, rural area, school, support, teachers, teaching and learning and training

Procedia PDF Downloads 337
26890 An Efficient Algorithm for Solving the Transmission Network Expansion Planning Problem Integrating Machine Learning with Mathematical Decomposition

Authors: Pablo Oteiza, Ricardo Alvarez, Mehrdad Pirnia, Fuat Can

Abstract:

To effectively combat climate change, many countries around the world have committed to a decarbonisation of their electricity, along with promoting a large-scale integration of renewable energy sources (RES). While this trend represents a unique opportunity to effectively combat climate change, achieving a sound and cost-efficient energy transition towards low-carbon power systems poses significant challenges for the multi-year Transmission Network Expansion Planning (TNEP) problem. The objective of the multi-year TNEP is to determine the necessary network infrastructure to supply the projected demand in a cost-efficient way, considering the evolution of the new generation mix, including the integration of RES. The rapid integration of large-scale RES increases the variability and uncertainty in the power system operation, which in turn increases short-term flexibility requirements. To meet these requirements, flexible generating technologies such as energy storage systems must be considered within the TNEP as well, along with proper models for capturing the operational challenges of future power systems. As a consequence, TNEP formulations are becoming more complex and difficult to solve, especially for its application in realistic-sized power system models. To meet these challenges, there is an increasing need for developing efficient algorithms capable of solving the TNEP problem with reasonable computational time and resources. In this regard, a promising research area is the use of artificial intelligence (AI) techniques for solving large-scale mixed-integer optimization problems, such as the TNEP. In particular, the use of AI along with mathematical optimization strategies based on decomposition has shown great potential. In this context, this paper presents an efficient algorithm for solving the multi-year TNEP problem. The algorithm combines AI techniques with Column Generation, a traditional decomposition-based mathematical optimization method. One of the challenges of using Column Generation for solving the TNEP problem is that the subproblems are of mixed-integer nature, and therefore solving them requires significant amounts of time and resources. Hence, in this proposal we solve a linearly relaxed version of the subproblems, and trained a binary classifier that determines the value of the binary variables, based on the results obtained from the linearized version. A key feature of the proposal is that we integrate the binary classifier into the optimization algorithm in such a way that the optimality of the solution can be guaranteed. The results of a study case based on the HRP 38-bus test system shows that the binary classifier has an accuracy above 97% for estimating the value of the binary variables. Since the linearly relaxed version of the subproblems can be solved with significantly less time than the integer programming counterpart, the integration of the binary classifier into the Column Generation algorithm allowed us to reduce the computational time required for solving the problem by 50%. The final version of this paper will contain a detailed description of the proposed algorithm, the AI-based binary classifier technique and its integration into the CG algorithm. To demonstrate the capabilities of the proposal, we evaluate the algorithm in case studies with different scenarios, as well as in other power system models.

Keywords: integer optimization, machine learning, mathematical decomposition, transmission planning

Procedia PDF Downloads 86
26889 Investigating the Experiences of Higher Education Academics on the Blended Approach Used during the Induction Course

Authors: Ann-May Marais

Abstract:

South African higher education institutions are following the global adoption of a blended approach to teaching and learning. Blended learning is viewed as a transformative teaching-learning approach, as it provides students with the optimum experience by mixing the best of face-to-face and online learning. Although academics realise the benefits of blended learning, they find it challenging and time-consuming to implement blended strategies. Professional development is a critical component of the adoption of higher education teaching-learning approaches. The Institutional course for higher education academics offered at a South African University was designed in a blended model, implemented and evaluated. This paper reports on a study that investigated the experiences of academics on the blended approach used during the induction course. A qualitative design-based research methodology was employed, and data was collected using participant feedback and document analysis. The data gathered from each of the four ICNL offerings were used to inform the design of the next course. Findings indicated that lecturers realised that blended learning could cater to student diversity, different learning styles, engagement, and innovation. Furthermore, it emerged that the course has to cater for diversity in technology proficiency and readiness of participants. Participants also require ongoing support in technology usage and discipline-specific blended learning workshops. This paper contends that the modelling of a blended approach to professional development can be an effective way to motivate academics to apply blended learning in their teaching-learning experiences.

Keywords: blended learning, professional development, induction course, integration of technology

Procedia PDF Downloads 162
26888 Social Network Impact on Self Learning in Teaching and Learning in UPSI (Universiti Pendidikan Sultan Idris)

Authors: Azli Bin Ariffin, Noor Amy Afiza Binti Mohd Yusof

Abstract:

This study aims to identify effect of social network usage on the self-learning method in teaching and learning at Sultan Idris Education University. The study involved 270 respondents consisting of students in the pre-graduate and post-graduate levels from nine fields of study offered. Assessment instrument used is questionnaire which measures respondent’s background includes level of study, years of study and field of study. Also measured the extent to which social pages used for self-learning and effect received when using social network for self-learning in learning process. The results of the study showed that students always visit Facebook more than other social sites. But, it is not for the purpose of self-learning. Analyzed data showed that 45.5% students not sure about using social sites for self-learning. But they realize the positive effect that they will received when use social sites for self-learning to improve teaching and learning process when 72.7% respondent agreed with all the statements provided.

Keywords: facebook, self-learning, social network, teaching, learning

Procedia PDF Downloads 539
26887 Finding Elves in Play Based Learning

Authors: Chloe L. Southern

Abstract:

If play is deemed to fulfill children’s social, emotional, and physical domains, as well as satisfy their natural curiosity and promote self-reflexivity, it is difficult to understand why play is not prioritized to the same extent for older children. This paper explores and discusses the importance of play-based learning as well as the preliminary implications beyond the realm of kindergarten. To further extend the inquiry, discussions pertaining to play-based learning are looked at through the lens of relevant methodologies and theories. Different education systems are looked at in certain areas of the world that lead to curiosities not only towards their play-based practices and curriculum but what ideologies they have that set them apart.

Keywords: 21ˢᵗ century learning, play-based learning, student-centered learning, transformative learning

Procedia PDF Downloads 79
26886 Student Learning and Motivation in an Interculturally Inclusive Classroom

Authors: Jonathan H. Westover, Jacque P. Westover, Maureen S. Andrade

Abstract:

Though learning theories vary in complexity and usefulness, a thorough understanding of foundational learning theories is a necessity in today’s educational environment. Additionally, learning theories lead to approaches in instruction that can affect student motivation and learning. The combination of a learning theory and elements to enhance student motivation can create a learning context where the student can thrive in their educational pursuits. This paper will provide an overview of three main learning theories: (1) Behavioral Theory, (2) Cognitive Theory, and (3) Constructivist Theory and explore their connection to elements of student learning motivation. Finally, we apply these learning theories and elements of student motivation to the following two context: (1) The FastStart Program at the Community College of Denver, and (2) An Online Academic English Language Course. We discussed potential of the program and course to have success in increasing student success outcomes.

Keywords: learning theory, student motivation, inclusive pedagogy, developmental education

Procedia PDF Downloads 258
26885 Stock Price Prediction Using Time Series Algorithms

Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava

Abstract:

This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.

Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series

Procedia PDF Downloads 143
26884 Two Different Learning Environments: Arabic International Students Coping with the Australian Learning System

Authors: H. van Rensburg, B. Adcock, B. Al Mansouri

Abstract:

This paper discusses the impact of pedagogical and learning differences on Arabic international students’ (AIS) learning when they come to study in Australia. It describes the difference in teaching and learning methods between the students’ home countries in the Arabic world and Australia. There are many research papers that discuss the general experiences of international students in the western learning systems, including Australia. However, there is little research conducted specifically about AIS learning in Australia. Therefore, the data was collected through in-depth, semi-structured interviews with AIS who are learning at an Australian regional university in Queensland. For that reason, this paper contributes to fill a gap by reporting on the learning experiences of AIS in Australia and, more specifically, on the AIS’ pedagogical experiences. Not only discussing the learning experiences of AIS, but also discussing the cultural adaptation using the Oberg’s cultural adaptation model. This paper suggests some learning strategies that may benefit AIS and academic lecturers when teaching students from a completely different culture and language.

Keywords: arabic international students, cultural adaption, learning differences, learning systems

Procedia PDF Downloads 604
26883 Exploring Smartphone Applications for Enhancing Second Language Vocabulary Learning

Authors: Abdulmajeed Almansour

Abstract:

Learning a foreign language with the assistant of technological tools has become an interest of learners and educators. Increased use of smartphones among undergraduate students has made them popular for not only social communication but also for entertainment and educational purposes. Smartphones have provided remarkable advantages in language learning process. Learning vocabulary is an important part of learning a language. The use of smartphone applications for English vocabulary learning provides an opportunity for learners to improve vocabulary knowledge beyond the classroom wall anytime anywhere. Recently, various smartphone applications were created specifically for vocabulary learning. This paper aims to explore the use of smartphone application Memrise designed for vocabulary learning to enhance academic vocabulary among undergraduate students. It examines whether the use of a Memrise smartphone application designed course enhances the academic vocabulary learning among ESL learners. The research paradigm used in this paper followed a mixed research model combining quantitative and qualitative research. The study included two hundred undergraduate students randomly assigned to the experimental and controlled group during the first academic year at the Faculty of English Language, Imam University. The research instruments included an attitudinal questionnaire and an English vocabulary pre-test administered to students at the beginning of the semester whereas post-test and semi-structured interviews administered at the end of the semester. The findings of the attitudinal questionnaire revealed a positive attitude towards using smartphones in learning vocabulary. The post-test scores showed a significant difference in the experimental group performance. The results from the semi-structure interviews showed that there were positive attitudes towards Memrise smartphone application. The students found the application enjoyable, convenient and efficient learning tool. From the study, the use of the Memrise application is seen to have long-term and motivational benefits to students. For this reason, there is a need for further research to identify the long-term optimal effects of learning a language using smartphone applications.

Keywords: second language vocabulary learning, academic vocabulary, mobile learning technologies, smartphone applications

Procedia PDF Downloads 161
26882 Instruction and Learning Design Consideration for the Development of Mobile Learning Application

Authors: M. Sarrab, M. Elbasir

Abstract:

Most of mobile learning applications currently available are developed for the formal education and learning environment. Those applications are characterized by the improvement of the interaction process between instructors and learners to provide more collaboration and flexibility in the learning process. Despite the long history and large amount of research on Instruction design model and mobile learning there is no complete and well defined set of steps to follow in designing mobile learning applications. Based on this scenario, this paper focuses on identifying instruction design phases considerations and influencing factors in developing mobile learning application. This set of instruction design steps includes analysis, design, development, implementation, evaluation and continuous has been built from a literature study with focus on standards for learning and mobile application software quality and guidelines. The effort is part of an Omani-funded research project investigating the development, adoption and dissemination of mobile learning in Oman.

Keywords: instruction design, mobile learning, mobile application

Procedia PDF Downloads 604
26881 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction

Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé

Abstract:

One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.

Keywords: input variable disposition, machine learning, optimization, performance, time series prediction

Procedia PDF Downloads 111
26880 Increasing the Mastery of Kanji with Language Learning Strategies through Multimedia

Authors: Sherly Ferro Lensun, Donal Matheos Ratu, Elni Jeini Usoh, Helena M. L. Pandi, Mayske Rinny Liando

Abstract:

This study aims to gain a deep understanding of the process and the increase resulting in mastery of Kanji with a Language Learning Strategies through multimedia. This research aims to gain scientific data on process and the result of improving kanji mastery by using Chokusetsu strategy in Kanji learning. The method used in this research is Action Research developed by Kemmis and Mc. Taggart is known as Spiral Model. This model consists of following stages: planning, implementation, observation, and reflection. The research results in following findings: (1) Kanji mastery comprises 4 major aspects, those are reading, writing, the use in sentence, and memorizing, and those aspects show gradual improvement from time to time. (2) Students have more participation in learning activities which can be identified from some positive behaviours such giving respond in finishing exercise in class. (3) Students’ better attention to the lesson shown by active behaviour in giving more questions or asking for more explanation to the lecturers, memorizing Kanji card, finishing the task of making Kanji card/house, doing the exercises more seriously, and finishing homework assignment punctually. (4) More attractive learning activities and tasks in the forms of more engaging colour and pictures enables students to conduct self-evaluation on their learning process.

Keywords: Kanji, action research, language learning strategies, multimedia

Procedia PDF Downloads 177
26879 The Impact of E-Learning on the Performance of History Learners in Eswatini General Certificate of Secondary Education

Authors: Joseph Osodo, Motsa Thobekani Phila

Abstract:

The study investigated the impact of e-learning on the performance of history learners in Eswatini general certificate of secondary education in the Manzini region of Eswatini. The study was guided by the theory of connectivism. The study had three objectives which were to find out the significance of e-learning during the COVID-19 era in learning History subject; challenges faced by history teachers’ and learners’ in e-learning; and how the challenges were mitigated. The study used a qualitative research approach and descriptive research design. Purposive sampling was used to select eight History teachers and eight History learners from four secondary schools in the Manzini region. Data were collected using face to face interviews. The collected data were analyzed and presented in thematically. The findings showed that history teachers had good knowledge on what e-learning was, while students had little understanding of e-learning. Some of the forms of e-learning that were used during the pandemic in teaching history in secondary schools included TV, radio, computer, projectors, and social media especially WhatsApp. E-learning enabled the continuity of teaching and learning of history subject. The use of e-learning through the social media was more convenient to the teacher and the learners. It was concluded that in some secondary school in the Manzini region, history teacher and learners encountered challenges such as lack of finances to purchase e-learning gadgets and data bundles, lack of skills as well as access to the Internet. It was recommended that History teachers should create more time to offer additional learning support to students whose performance was affected by the COVID-19 pandemic effects.

Keywords: e-learning, performance, COVID-19, history, connectivism

Procedia PDF Downloads 77
26878 Investigating the Potential of VR in Language Education: A Study of Cybersickness and Presence Metrics

Authors: Sakib Hasn, Shahid Anwar

Abstract:

This study highlights the vital importance of assessing the Simulator Sickness Questionnaire and presence measures as virtual reality (VR) incorporation into language teaching gains popularity. To address user discomfort, which prevents efficient learning in VR environments, the measurement of SSQ becomes crucial. Additionally, evaluating presence metrics is essential to determine the level of engagement and immersion, both crucial for rich language learning experiences. This paper designs a VR-based Chinese language application and proposes a thorough test technique aimed at systematically analyzing SSQ and presence measures. Subjective tests and data analysis were carried out to highlight the significance of addressing user discomfort in VR language education. The results of this study shed light on the difficulties posed by user discomfort in VR language learning and offer insightful advice on how to improve VR language learning applications. Furthermore, the outcome of the research explores ‘VR-based language education,’ ‘inclusive language learning platforms," and "cross-cultural communication,’ highlighting the potential for VR to facilitate language learning across diverse cultural backgrounds. Overall, the analysis results contribute to the enrichment of language learning experiences in the virtual realm and underscore the need for continued exploration and improvement in this field.

Keywords: virtual reality (VR), language education, simulator sickness questionnaire, presence metrics, VR-based Chinese language education

Procedia PDF Downloads 82
26877 Utilizing Federated Learning for Accurate Prediction of COVID-19 from CT Scan Images

Authors: Jinil Patel, Sarthak Patel, Sarthak Thakkar, Deepti Saraswat

Abstract:

Recently, the COVID-19 outbreak has spread across the world, leading the World Health Organization to classify it as a global pandemic. To save the patient’s life, the COVID-19 symptoms have to be identified. But using an AI (Artificial Intelligence) model to identify COVID-19 symptoms within the allotted time was challenging. The RT-PCR test was found to be inadequate in determining the COVID status of a patient. To determine if the patient has COVID-19 or not, a Computed Tomography Scan (CT scan) of patient is a better alternative. It will be challenging to compile and store all the data from various hospitals on the server, though. Federated learning, therefore, aids in resolving this problem. Certain deep learning models help to classify Covid-19. This paper will have detailed work of certain deep learning models like VGG19, ResNet50, MobileNEtv2, and Deep Learning Aggregation (DLA) along with maintaining privacy with encryption.

Keywords: federated learning, COVID-19, CT-scan, homomorphic encryption, ResNet50, VGG-19, MobileNetv2, DLA

Procedia PDF Downloads 73
26876 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact

Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed

Abstract:

Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).

Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis

Procedia PDF Downloads 128
26875 Convergence and Stability in Federated Learning with Adaptive Differential Privacy Preservation

Authors: Rizwan Rizwan

Abstract:

This paper provides an overview of Federated Learning (FL) and its application in enhancing data security, privacy, and efficiency. FL utilizes three distinct architectures to ensure privacy is never compromised. It involves training individual edge devices and aggregating their models on a server without sharing raw data. This approach not only provides secure models without data sharing but also offers a highly efficient privacy--preserving solution with improved security and data access. Also we discusses various frameworks used in FL and its integration with machine learning, deep learning, and data mining. In order to address the challenges of multi--party collaborative modeling scenarios, a brief review FL scheme combined with an adaptive gradient descent strategy and differential privacy mechanism. The adaptive learning rate algorithm adjusts the gradient descent process to avoid issues such as model overfitting and fluctuations, thereby enhancing modeling efficiency and performance in multi-party computation scenarios. Additionally, to cater to ultra-large-scale distributed secure computing, the research introduces a differential privacy mechanism that defends against various background knowledge attacks.

Keywords: federated learning, differential privacy, gradient descent strategy, convergence, stability, threats

Procedia PDF Downloads 33
26874 Students’ Attitudes towards Self-Directed Learning out of Classroom: Indonesian Context

Authors: Silmy A. Humaira'

Abstract:

There is an issue about Asian students including Indonesian students that tend to behave passively in the classroom and depend on the teachers’ instruction. Regarding this statement, this study attempts to address the Indonesian high school students’ attitudes on whether they have initiative and be responsible for their learning out of the classroom and if so, why. Therefore, 30 high school students were asked to fill out the questionnaires and interviewed in order to figure out their attitudes towards self-directed learning. The descriptive qualitative research analysis adapted Knowles’s theory (1975) about Self-directed learning (SDL) to analyze the data. The findings show that the students have a potential to possess self-directed learning through ICT, but they have difficulties in choosing appropriate learning strategy, doing self-assessment and conducting self-reflection. Therefore, this study supports the teacher to promote self-directed learning instruction for successful learning by assisting students in dealing with those aforementioned problems. Furthermore, it is expected to be a beneficial reference which gives new insights on the self-directed learning practice in specific context.

Keywords: ICT, learning autonomy, students’ attitudes, self-directed learning

Procedia PDF Downloads 228
26873 An Analysis of How Students Perceive Their Self-Efficacy in Online Speaking Classes

Authors: Heny Hartono, Cecilia Titiek Murniati

Abstract:

The pandemic has given teachers and students no other choice but having full online learning. In such an emergency situation as the time of the covid-19 pandemic, the application of LMS (Learner Management System) in higher education is the most reasonable solution for students and teachers. In fact, the online learning requires all elements of a higher education systems, including the human resources, infrastructure, and supporting systems such as the application, server, and stable internet connection. The readiness of the higher education institution in preparing the online system may secure those who are involved in the online learning process. It may also result in students’ self-efficacy in online learning. This research aimed to investigate how students perceive their self-efficacy in online English learning, especially in speaking classes which is considered as a productive language skill. This research collects qualitative data with narrative inquiry involving 25 students of speaking classes as the respondents. The results of this study show that students perceive their self-efficacy in speaking online classes as not very high.

Keywords: self-efficacy, online learning, speaking class, college students, e-learning

Procedia PDF Downloads 99
26872 The Effects of Learning Engagement on Interpreting Performance among English Major Students

Authors: Jianhua Wang, Ying Zhou, Xi Zhang

Abstract:

To establish the influential mechanism of learning engagement on interpreter’s performance, the present study submitted a questionnaire to a sample of 927 English major students with 804 valid ones and used the structural equation model as the basis for empirical analysis and statistical inference on the sample data. In order to explore the mechanism for interpreting learning engagement on student interpreters’ performance, a path model of interpreting processes with three variables of ‘input-environment-output’ was constructed. The results showed that the effect of each ‘environment’ variable on interpreting ability was different from and greater than the ‘input’ variable, and learning engagement was the greatest influencing factor. At the same time, peer interaction on interpreting performance has significant influence. Results suggest that it is crucial to provide effective guidance for optimizing learning engagement and interpreting teaching research by both improving the environmental support and building the platform of peer interaction, beginning with learning engagement.

Keywords: learning engagement, interpreting performance, interpreter training, English major students

Procedia PDF Downloads 207
26871 The Role of the Constructivist Learning Theory and Collaborative Learning Environment on Wiki Classroom and the Relationship between Them

Authors: Ibraheem Alzahrani

Abstract:

This paper seeks to discover the relationship between both the social constructivist learning theory and the collaborative learning environment. This relationship can be identified through given an example of the learning environment. Due to wiki characteristics, wiki can be used to understand the relationship between constructivist learning theory and collaborative learning environment. However, several evidences will come in this paper to support the idea of why wiki is the suitable method to explore the relationship between social constructivist theory and the collaborative learning and their role in learning. Moreover, learning activities in wiki classroom will be discussed in this paper to find out the result of the learners' interaction in the classroom groups, which will be through two types of communication; synchronous and asynchronous.

Keywords: social constructivist, collaborative, environment, wiki, activities

Procedia PDF Downloads 503
26870 Analysis and Prediction of COVID-19 by Using Recurrent LSTM Neural Network Model in Machine Learning

Authors: Grienggrai Rajchakit

Abstract:

As we all know that coronavirus is announced as a pandemic in the world by WHO. It is speeded all over the world with few days of time. To control this spreading, every citizen maintains social distance and self-preventive measures are the best strategies. As of now, many researchers and scientists are continuing their research in finding out the exact vaccine. The machine learning model finds that the coronavirus disease behaves in an exponential manner. To abolish the consequence of this pandemic, an efficient step should be taken to analyze this disease. In this paper, a recurrent neural network model is chosen to predict the number of active cases in a particular state. To make this prediction of active cases, we need a database. The database of COVID-19 is downloaded from the KAGGLE website and is analyzed by applying a recurrent LSTM neural network with univariant features to predict the number of active cases of patients suffering from the corona virus. The downloaded database is divided into training and testing the chosen neural network model. The model is trained with the training data set and tested with a testing dataset to predict the number of active cases in a particular state; here, we have concentrated on Andhra Pradesh state.

Keywords: COVID-19, coronavirus, KAGGLE, LSTM neural network, machine learning

Procedia PDF Downloads 160
26869 Importance of Collegiality to Improve the Effectiveness of a Poorly Resourced School

Authors: Prakash Singh

Abstract:

This study focused on the importance of collegiality to improve the effectiveness of a poorly resourced school (PRS). In an effective school that embraces collegiality as its culture, one can expect to find a teaching staff and a management team that shares responsibilities and accountabilities through the development of a common purpose and vision, regardless of whether the school is considered to be poorly resourced or not. Working together in collegial teams is a more effective way to accomplish tasks and to create a climate for effective learning, even for learners in PRSs from poor communities. The main aim of this study was therefore to determine whether collegiality as a leadership strategy could extract the best from people in a PRS, and consequently create the most effective and efficient educational climate possible. The responses received from the teachers and the principal at the PRS supports the notion that collegiality does have a positive influence on learning, as demonstrated by the improved academic achievement of the learners. The teachers were now more involved in the school. They agreed that this was a positive development. Their descriptions of increased involvement, shared accountability and shared decision-making identified important aspects of collegiality that transformed the school from being dysfunctional. Hence, it is abundantly clear that a collegial leadership style can help extract the best from people because the most effective and efficient educational climate can be created at a school when collegiality is employed. Collegial leadership demonstrates that even in PRSs, there are boundless opportunities to improve teaching and learning.

Keywords: collegiality, collegial leadership, effective educational climate, poorly resourced school

Procedia PDF Downloads 404
26868 Cost Efficiency of European Cooperative Banks

Authors: Karolína Vozková, Matěj Kuc

Abstract:

This paper analyzes recent trends in cost efficiency of European cooperative banks using efficient frontier analysis. Our methodology is based on stochastic frontier analysis which is run on a set of 649 European cooperative banks using data between 2006 and 2015. Our results show that average inefficiency of European cooperative banks is increasing since 2008, smaller cooperative banks are significantly more efficient than the bigger ones over the whole time period and that share of net fee and commission income to total income surprisingly seems to have no impact on bank cost efficiency.

Keywords: cooperative banks, cost efficiency, efficient frontier analysis, stochastic frontier analysis, net fee and commission income

Procedia PDF Downloads 211
26867 Real-Time Optimisation and Minimal Energy Use for Water and Environment Efficient Irrigation

Authors: Kanya L. Khatri, Ashfaque A. Memon, Rod J. Smith, Shamas Bilal

Abstract:

The viability and sustainability of crop production is currently threatened by increasing water scarcity. Water scarcity problems can be addressed through improved water productivity and the options usually presumed in this context are efficient water use and conversion of surface irrigation to pressurized systems. By replacing furrow irrigation with drip or centre pivot systems, the water efficiency can be improved by up to 30 to 45%. However, the installation and application of pumps and pipes, and the associated fuels needed for these alternatives increase energy consumption and cause significant greenhouse gas emissions. Hence, a balance between the improvement in water use and the potential increase in energy consumption is required keeping in view adverse impact of increased carbon emissions on the environment. When surface water is used, pressurized systems increase energy consumption substantially, by between 65% to 75%, and produce greenhouse gas emissions around 1.75 times higher than that of gravity based irrigation. With gravity based surface irrigation methods the energy consumption is assumed to be negligible. This study has shown that a novel real-time infiltration model REIP has enabled implementation of real-time optimization and control of surface irrigation and surface irrigation with real-time optimization has potential to bring significant improvements in irrigation performance along with substantial water savings of 2.92 ML/ha which is almost equivalent to that given by pressurized systems. Thus real-time optimization and control offers a modern, environment friendly and water efficient system with close to zero increase in energy consumption and minimal greenhouse gas emissions.

Keywords: pressurised irrigation, carbon emissions, real-time, environmentally-friendly, REIP

Procedia PDF Downloads 504
26866 A Non-Destructive Estimation Method for Internal Time in Perilla Leaf Using Hyperspectral Data

Authors: Shogo Nagano, Yusuke Tanigaki, Hirokazu Fukuda

Abstract:

Vegetables harvested early in the morning or late in the afternoon are valued in plant production, and so the time of harvest is important. The biological functions known as circadian clocks have a significant effect on this harvest timing. The purpose of this study was to non-destructively estimate the circadian clock and so construct a method for determining a suitable harvest time. We took eight samples of green busil (Perilla frutescens var. crispa) every 4 hours, six times for 1 day and analyzed all samples at the same time. A hyperspectral camera was used to collect spectrum intensities at 141 different wavelengths (350–1050 nm). Calculation of correlations between spectrum intensity of each wavelength and harvest time suggested the suitability of the hyperspectral camera for non-destructive estimation. However, even the highest correlated wavelength had a weak correlation, so we used machine learning to raise the accuracy of estimation and constructed a machine learning model to estimate the internal time of the circadian clock. Artificial neural networks (ANN) were used for machine learning because this is an effective analysis method for large amounts of data. Using the estimation model resulted in an error between estimated and real times of 3 min. The estimations were made in less than 2 hours. Thus, we successfully demonstrated this method of non-destructively estimating internal time.

Keywords: artificial neural network (ANN), circadian clock, green busil, hyperspectral camera, non-destructive evaluation

Procedia PDF Downloads 300
26865 Mobile Learning: Toward Better Understanding of Compression Techniques

Authors: Farouk Lawan Gambo

Abstract:

Data compression shrinks files into fewer bits then their original presentation. It has more advantage on internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature therefore making them difficult to digest by some students (Engineers in particular). To determine the best approach toward learning data compression technique, this paper first study the learning preference of engineering students who tend to have strong active, sensing, visual and sequential learning preferences, the paper also study the advantage that mobility of learning have experienced; Learning at the point of interest, efficiency, connection, and many more. A survey is carried out with some reasonable number of students, through random sampling to see whether considering the learning preference and advantages in mobility of learning will give a promising improvement over the traditional way of learning. Evidence from data analysis using Ms-Excel as a point of concern for error-free findings shows that there is significance different in the students after using learning content provided on smart phone, also the result of the findings presented in, bar charts and pie charts interpret that mobile learning has to be promising feature of learning.

Keywords: data analysis, compression techniques, learning content, traditional learning approach

Procedia PDF Downloads 347
26864 Time Management in the Public Sector in Nigeria

Authors: Sunny Ewankhiwimen Aigbomian

Abstract:

Time, is a scarce resource and in everything we do, time is required to accomplish any given task. The need for this presentation is predicated on the way majority of Nigerian especially in the public sector operators see “Time Management”. Time as resources cannot be regained if lost or managed badly. As a significant aspect of human life it should be handled with diligence and utmost seriousness if the public sector is to function as a coordinated entity. In our homes, private life and offices, we schedule different things to ensure that some things do not go the unexpected. When it comes to service delivery on the part of government, it ought to be more serious because government is all about effect and efficient service delivery and “Time” is a significant variable necessary to successful accomplishment. The need for Nigerian government to re-examine time management in her public sector with a view of repositioning the sector to be able to compete well with other public sectors in the world. The peculiarity of Time management in Public Sector in Nigerian context as examined and some useful recommendations of immerse assistance proffered.

Keywords: Nigeria, public sector, time management, task

Procedia PDF Downloads 100
26863 Predicting Destination Station Based on Public Transit Passenger Profiling

Authors: Xuyang Song, Jun Yin

Abstract:

The smart card has been an extremely universal tool in public transit. It collects a large amount of data on buses, urban railway transit, and ferries and provides possibilities for passenger profiling. This paper combines offline analysis of passenger profiling and real-time prediction to propose a method that can accurately predict the destination station in real-time when passengers tag on. Firstly, this article constructs a static database of user travel characteristics after identifying passenger travel patterns based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The dual travel passenger habits are identified: OD travel habits and D station travel habits. Then a rapid real-time prediction algorithm based on Transit Passenger Profiling is proposed, which can predict the destination of in-board passengers. This article combines offline learning with online prediction, providing a technical foundation for real-time passenger flow prediction, monitoring and simulation, and short-term passenger behavior and demand prediction. This technology facilitates the efficient and real-time acquisition of passengers' travel destinations and demand. The last, an actual case was simulated and demonstrated feasibility and efficiency.

Keywords: travel behavior, destination prediction, public transit, passenger profiling

Procedia PDF Downloads 21