Search results for: proposed module
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9458

Search results for: proposed module

9248 Validation of the Arabic Version of the InterSePT Scale for Suicidal Thinking (ISST) among the Arab Population in Qatar

Authors: S. Hammoudeh, S. Ghuloum, A. Abdelhakam, A. AlMujalli, M. Opler, Y. Hani, A. Yehya, S. Mari, R. Elsherbiny, Z. Mahfoud, H. Al-Amin

Abstract:

Introduction: Suicidal ideation and attempts are very common in patients with schizophrenia and still contributes to the high mortality in this population. The InterSePT Scale for Suicidal Thinking (ISST) is a validated tool used to assess suicidal ideation in patients with schizophrenia. This research aims to validate the Arabic version of the ISST among the Arabs residing in Qatar. Methods: Patients diagnosed with schizophrenia were recruited from the department of Psychiatry, Rumailah Hospital, Doha, Qatar. Healthy controls were recruited from the primary health care centers in Doha, Qatar. The validation procedures including professional and expert translation, pilot survey and back translation of the ISST were implemented. Diagnosis of schizophrenia was confirmed using the validated Arabic version of Mini International Neuropsychiatric Interview (MINI 6, module K) for schizophrenia. The gold standard was the module B on suicidality from MINI 6 also. This module was administered by a rater who was blinded to the results of ISST. Results: Our sample (n=199) was composed of 98 patients diagnosed with schizophrenia (age 36.03 ± 9.88 years; M/F is 2/1) and 101 healthy participants (age 35.01 ± 8.23 years; M/F is 1/2). Among patients with schizophrenia: 26.5% were married, 17.3% had a college degree, 28.6% were employed, 9% had committed suicide once, and 4.4% had more than 4 suicide attempts. Among the control group: 77.2% were married, 57.4% had a college degree, and 99% were employed. The mean score on the ISST was 2.36 ± 3.97 vs. 0.47 ± 1.44 for the schizophrenia and control groups, respectively. The overall Cronbach’s alpha was 0.91. Conclusions: This is the first study in the Arab world to validate the ISST in an Arabic-based population. The psychometric properties indicate that the Arabic version of the ISST is a valid tool to assess the severity of suicidal ideation in Arabic speaking patients diagnosed with schizophrenia.

Keywords: mental health, Qatar, schizophrenia, suicide

Procedia PDF Downloads 560
9247 Development of Coastal Inundation–Inland and River Flow Interface Module Based on 2D Hydrodynamic Model

Authors: Eun-Taek Sin, Hyun-Ju Jang, Chang Geun Song, Yong-Sik Han

Abstract:

Due to the climate change, the coastal urban area repeatedly suffers from the loss of property and life by flooding. There are three main causes of inland submergence. First, when heavy rain with high intensity occurs, the water quantity in inland cannot be drained into rivers by increase in impervious surface of the land development and defect of the pump, storm sewer. Second, river inundation occurs then water surface level surpasses the top of levee. Finally, Coastal inundation occurs due to rising sea water. However, previous studies ignored the complex mechanism of flooding, and showed discrepancy and inadequacy due to linear summation of each analysis result. In this study, inland flooding and river inundation were analyzed together by HDM-2D model. Petrov-Galerkin stabilizing method and flux-blocking algorithm were applied to simulate the inland flooding. In addition, sink/source terms with exponentially growth rate attribute were added to the shallow water equations to include the inland flooding analysis module. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. To consider the coastal surge, another module was developed by adding seawater to the existing Inland Flooding-River Inundation binding module for comprehensive flooding analysis. Based on the combined modules, the Coastal Inundation – Inland & River Flow Interface was simulated by inputting the flow rate and depth data in artificial flume. Accordingly, it was able to analyze the flood patterns of coastal cities over time. This study is expected to help identify the complex causes of flooding in coastal areas where complex flooding occurs, and assist in analyzing damage to coastal cities. Acknowledgements—This research was supported by a grant ‘Development of the Evaluation Technology for Complex Causes of Inundation Vulnerability and the Response Plans in Coastal Urban Areas for Adaptation to Climate Change’ [MPSS-NH-2015-77] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of Korea.

Keywords: flooding analysis, river inundation, inland flooding, 2D hydrodynamic model

Procedia PDF Downloads 361
9246 Mechanical Properties of Lithium-Ion Battery at Different Packing Angles Under Impact Loading

Authors: Wei Zhao, Yuxuan Yao, Hao Chen

Abstract:

In order to find out the mechanical properties and failure behavior of lithium-ion batteries, drop hammer impact experiments and finite element simulations are carried out on batteries with different packed angles. Firstly, a drop hammer impact experiment system, which is based on the DHR-1808 drop hammer and oscilloscope, is established, and then a drop test of individual batteries and packed angles of 180 ° and 120 ° are carried out. The image of battery deformation, force-time curve and voltage-time curve are recorded. Secondly, finite element models of individual batteries and two packed angles are established, and the results of the test and simulation are compared. Finally, the mechanical characteristics and failure behavior of lithium-ion battery modules with the packed arrangement of 6 * 6 and packing angles of 180 °, 120 °, 90 ° and 60 ° are analyzed under the same velocity with different battery packing angles, and the same impact energy with different impact velocity and different packing angles. The result shows that the individual battery is destroyed completely in the drop hammer impact test with an initial impact velocity of 3m/s and drop height of 459mm, and the voltage drops to close to 0V when the test ends. The voltage drops to 12V when packed angle of 180°, and 3.6V when packed angle of 120°. It is found that the trend of the force-time curve between simulation and experiment is generally consistent. The difference in maximum peak value is 3.9kN for a packing angle of 180° and 1.3kN for a packing angle of 120°. Under the same impact velocity and impact energy, the strain rate of the battery module with a packing angle of 180° is the lowest, and the maximum stress can reach 26.7MPa with no battery short-circuited. The research under our experiment and simulation shows that the lithium-ion battery module with a packing angle of 180 ° is the least likely to be damaged, which can sustain the maximum stress under the same impact load.

Keywords: battery module, finite element simulation, power battery, packing angle

Procedia PDF Downloads 68
9245 Effect of Reflective Practices on the Performance of Prospective Teachers

Authors: Madiha Zahid, Afifa Khanam

Abstract:

The present study aims to investigate the effect of reflective teaching practices on prospective teachers’ performance. Reflective teaching practice helps teachers to plan, implement and improve their performance by rethinking about their strengths and weaknesses. An action research was conducted by the researcher. All prospective teachers of sixth semester in a women university’s teacher education program were the population of the study. From 40 students, 20 students were taken as experimental group, and the rest of 20 students were taken as control group. During the action research a cyclic process of producing a module, training teachers for the reflective practices and then observing them during their class for reflective practice was done by the researchers. The research used a set of rubrics and checklists for assessing prospective teachers’ performance during their class. Finally, the module was modified with the help of findings. It was found that the training has improved the performance of teachers as they revised and modified their teaching strategies through reflective practice. However, they were not able to train their students for reflective practice as per expectation. The study has implications for teacher training programs to include reflective practice modules as part of their course work for making them better teachers.

Keywords: reflective practices, prospective teacher, effect, performance

Procedia PDF Downloads 173
9244 Improving Student Retention: Enhancing the First Year Experience through Group Work, Research and Presentation Workshops

Authors: Eric Bates

Abstract:

Higher education is recognised as being of critical importance in Ireland and has been linked as a vital factor to national well-being. Statistics show that Ireland has one of the highest rates of higher education participation in Europe. However, student retention and progression, especially in Institutes of Technology, is becoming an issue as rates on non-completion rise. Both within Ireland and across Europe student retention is seen as a key performance indicator for higher education and with these increasing rates the Irish higher education system needs to be flexible and adapt to the situation it now faces. The author is a Programme Chair on a Level 6 full time undergraduate programme and experience to date has shown that the first year undergraduate students take some time to identify themselves as a group within the setting of a higher education institute. Despite being part of a distinct class on a specific programme some individuals can feel isolated as he or she take the first step into higher education. Such feelings can contribute to students eventually dropping out. This paper reports on an ongoing initiative that aims to accelerate the bonding experience of a distinct group of first year undergraduates on a programme which has a high rate of non-completion. This research sought to engage the students in dynamic interactions with their peers to quickly evolve a group sense of coherence. Two separate modules – a Research Module and a Communications module - delivered by the researcher were linked across two semesters. Students were allocated into random groups and each group was given a topic to be researched. There were six topics – essentially the six sub-headings on the DIT Graduate Attribute Statement. The research took place in a computer lab and students also used the library. The output from this was a document that formed part of the submission for the Research Module. In the second semester the groups then had to make a presentation of their findings where each student spoke for a minimum amount of time. Presentation workshops formed part of that module and students were given the opportunity to practice their presentation skills. These presentations were video recorded to enable feedback to be given. Although this was a small scale study preliminary results found a strong sense of coherence among this particular cohort and feedback from the students was very positive. Other findings indicate that spreading the initiative across two semesters may have been an inhibitor. Future challenges include spreading such Initiatives College wide and indeed sector wide.

Keywords: first year experience, student retention, group work, presentation workshops

Procedia PDF Downloads 227
9243 Designing an Introductory Python Course for Finance Students

Authors: Joelle Thng, Li Fang

Abstract:

Objective: As programming becomes a highly valued and sought-after skill in the economy, many universities have started offering Python courses to help students keep up with the demands of employers. This study focuses on designing a university module that effectively educates undergraduate students on financial analysis using Python programming. Methodology: To better satisfy the specific demands for each sector, this study adopted a qualitative research modus operandi to craft a module that would complement students’ existing financial skills. The lessons were structured using research-backed educational learning tools, and important Python concepts were prudently screened before being included in the syllabus. The course contents were streamlined based on criteria such as ease of learning and versatility. In particular, the skills taught were modelled in a way to ensure they were beneficial for financial data processing and analysis. Results: Through this study, a 6-week course containing the chosen topics and programming applications was carefully constructed for finance students. Conclusion: The findings in this paper will provide valuable insights as to how teaching programming could be customised for students hailing from various academic backgrounds.

Keywords: curriculum development, designing effective instruction, higher education strategy, python for finance students

Procedia PDF Downloads 78
9242 Resilient Manufacturing in Times of Mass Customisation: Using Augmented Reality to Improve Training and Operating Practices of EV’s Battery Assembly

Authors: Lorena Caires Moreira, Marcos Kauffman

Abstract:

This paper outlines the results of experimental research on deploying an emerging augmented reality (AR) system for real-time task assistance of highly customized and high-risk manual operations. The focus is on operators’ training capabilities and the aim is to test if such technologies can support achieving higher levels of knowledge retention and accuracy of task execution to improve health and safety (H and S) levels. The proposed solution is tested and validated using a real-world case study of electric vehicles’ battery module assembly. The experimental results revealed that the proposed AR method improved the training practices by increasing the knowledge retention levels from 40% to 84% and improved the accuracy of task execution from 20% to 71%, compared to the traditional paper-based method. The results of this research can be used as a demonstration of how emerging technologies are advancing the choice of manual, hybrid, or fully automated processes by promoting the connected worker (Industry 5.0) and supporting manufacturing in becoming more resilient in times of constant market changes.

Keywords: augmented reality, extended reality, connected worker, XR-assisted operator, manual assembly, industry 5.0, smart training, battery assembly

Procedia PDF Downloads 126
9241 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection

Authors: Yulan Wu

Abstract:

With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.

Keywords: fake news, deep learning, natural language processing, multiple domains

Procedia PDF Downloads 96
9240 U-Net Based Multi-Output Network for Lung Disease Segmentation and Classification Using Chest X-Ray Dataset

Authors: Jaiden X. Schraut

Abstract:

Medical Imaging Segmentation of Chest X-rays is used for the purpose of identification and differentiation of lung cancer, pneumonia, COVID-19, and similar respiratory diseases. Widespread application of computer-supported perception methods into the diagnostic pipeline has been demonstrated to increase prognostic accuracy and aid doctors in efficiently treating patients. Modern models attempt the task of segmentation and classification separately and improve diagnostic efficiency; however, to further enhance this process, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional CNN module for auxiliary classification output. The proposed model achieves a final Jaccard Index of .9634 for image segmentation and a final accuracy of .9600 for classification on the COVID-19 radiography database.

Keywords: chest X-ray, deep learning, image segmentation, image classification

Procedia PDF Downloads 142
9239 Detecting Memory-Related Gene Modules in sc/snRNA-seq Data by Deep-Learning

Authors: Yong Chen

Abstract:

To understand the detailed molecular mechanisms of memory formation in engram cells is one of the most fundamental questions in neuroscience. Recent single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) techniques have allowed us to explore the sparsely activated engram ensembles, enabling access to the molecular mechanisms that underlie experience-dependent memory formation and consolidation. However, the absence of specific and powerful computational methods to detect memory-related genes (modules) and their regulatory relationships in the sc/snRNA-seq datasets has strictly limited the analysis of underlying mechanisms and memory coding principles in mammalian brains. Here, we present a deep-learning method named SCENTBOX, to detect memory-related gene modules and causal regulatory relationships among themfromsc/snRNA-seq datasets. SCENTBOX first constructs codifferential expression gene network (CEGN) from case versus control sc/snRNA-seq datasets. It then detects the highly correlated modules of differential expression genes (DEGs) in CEGN. The deep network embedding and attention-based convolutional neural network strategies are employed to precisely detect regulatory relationships among DEG genes in a module. We applied them on scRNA-seq datasets of TRAP; Ai14 mouse neurons with fear memory and detected not only known memory-related genes, but also the modules and potential causal regulations. Our results provided novel regulations within an interesting module, including Arc, Bdnf, Creb, Dusp1, Rgs4, and Btg2. Overall, our methods provide a general computational tool for processing sc/snRNA-seq data from case versus control studie and a systematic investigation of fear-memory-related gene modules.

Keywords: sc/snRNA-seq, memory formation, deep learning, gene module, causal inference

Procedia PDF Downloads 119
9238 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: decision tree, genetic algorithm, machine learning, software defect prediction

Procedia PDF Downloads 328
9237 Building User Behavioral Models by Processing Web Logs and Clustering Mechanisms

Authors: Madhuka G. P. D. Udantha, Gihan V. Dias, Surangika Ranathunga

Abstract:

Today Websites contain very interesting applications. But there are only few methodologies to analyze User navigations through the Websites and formulating if the Website is put to correct use. The web logs are only used if some major attack or malfunctioning occurs. Web Logs contain lot interesting dealings on users in the system. Analyzing web logs has become a challenge due to the huge log volume. Finding interesting patterns is not as easy as it is due to size, distribution and importance of minor details of each log. Web logs contain very important data of user and site which are not been put to good use. Retrieving interesting information from logs gives an idea of what the users need, group users according to their various needs and improve site to build an effective and efficient site. The model we built is able to detect attacks or malfunctioning of the system and anomaly detection. Logs will be more complex as volume of traffic and the size and complexity of web site grows. Unsupervised techniques are used in this solution which is fully automated. Expert knowledge is only used in validation. In our approach first clean and purify the logs to bring them to a common platform with a standard format and structure. After cleaning module web session builder is executed. It outputs two files, Web Sessions file and Indexed URLs file. The Indexed URLs file contains the list of URLs accessed and their indices. Web Sessions file lists down the indices of each web session. Then DBSCAN and EM Algorithms are used iteratively and recursively to get the best clustering results of the web sessions. Using homogeneity, completeness, V-measure, intra and inter cluster distance and silhouette coefficient as parameters these algorithms self-evaluate themselves to input better parametric values to run the algorithms. If a cluster is found to be too large then micro-clustering is used. Using Cluster Signature Module the clusters are annotated with a unique signature called finger-print. In this module each cluster is fed to Associative Rule Learning Module. If it outputs confidence and support as value 1 for an access sequence it would be a potential signature for the cluster. Then the access sequence occurrences are checked in other clusters. If it is found to be unique for the cluster considered then the cluster is annotated with the signature. These signatures are used in anomaly detection, prevent cyber attacks, real-time dashboards that visualize users, accessing web pages, predict actions of users and various other applications in Finance, University Websites, News and Media Websites etc.

Keywords: anomaly detection, clustering, pattern recognition, web sessions

Procedia PDF Downloads 286
9236 Intrusion Detection in SCADA Systems

Authors: Leandros A. Maglaras, Jianmin Jiang

Abstract:

The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm.

Keywords: cyber-security, SCADA systems, OCSVM, intrusion detection

Procedia PDF Downloads 552
9235 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism

Authors: Kun Xu, Yuan Xu, Jia Qiao

Abstract:

The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.

Keywords: document detection, corner detection, attention mechanism, lightweight

Procedia PDF Downloads 352
9234 Analysis of the Use of a NAO Robot to Improve Social Skills in Children with Autism Spectrum Disorder in Saudi Arabia

Authors: Eman Alarfaj, Hissah Alabdullatif, Huda Alabdullatif, Ghazal Albakri, Nor Shahriza Abdul Karim

Abstract:

Autism Spectrum Disorder is extensively spread amid children; it affects their social, communication and interactive skills. As robotics technology has been proven to be a significant helpful utility those able individuals to overcome their disabilities. Robotic technology is used in ASD therapy. The purpose of this research is to show how Nao robots can improve the social skills for children who suffer from autism in Saudi Arabia by interacting with the autistic child and perform a number of tasks. The objective of this research is to identify, implement, and test the effectiveness of the module for interacting with ASD children in an autism center in Saudi Arabia. The methodology in this study followed the ten layers of protocol that needs to be followed during any human-robot interaction. Also, in order to elicit the scenario module, TEACCH Autism Program was adopted. Six different qualified interaction modules have been elicited and designed in this study; the robot will be programmed to perform these modules in a series of controlled interaction sessions with the Autistic children to enhance their social skills.

Keywords: humanoid robot Nao, ASD, human-robot interaction, social skills

Procedia PDF Downloads 262
9233 A Location-Based Search Approach According to Users’ Application Scenario

Authors: Shih-Ting Yang, Chih-Yun Lin, Ming-Yu Li, Jhong-Ting Syue, Wei-Ming Huang

Abstract:

Global positioning system (GPS) has become increasing precise in recent years, and the location-based service (LBS) has developed rapidly. Take the example of finding a parking lot (such as Parking apps). The location-based service can offer immediate information about a nearby parking lot, including the information about remaining parking spaces. However, it cannot provide expected search results according to the requirement situations of users. For that reason, this paper develops a “Location-based Search Approach according to Users’ Application Scenario” according to the location-based search and demand determination to help users obtain the information consistent with their requirements. The “Location-based Search Approach based on Users’ Application Scenario” of this paper consists of one mechanism and three kernel modules. First, in the Information Pre-processing Mechanism (IPM), this paper uses the cosine theorem to categorize the locations of users. Then, in the Information Category Evaluation Module (ICEM), the kNN (k-Nearest Neighbor) is employed to classify the browsing records of users. After that, in the Information Volume Level Determination Module (IVLDM), this paper makes a comparison between the number of users’ clicking the information at different locations and the average number of users’ clicking the information at a specific location, so as to evaluate the urgency of demand; then, the two-dimensional space is used to estimate the application situations of users. For the last step, in the Location-based Search Module (LBSM), this paper compares all search results and the average number of characters of the search results, categorizes the search results with the Manhattan Distance, and selects the results according to the application scenario of users. Additionally, this paper develops a Web-based system according to the methodology to demonstrate practical application of this paper. The application scenario-based estimate and the location-based search are used to evaluate the type and abundance of the information expected by the public at specific location, so that information demanders can obtain the information consistent with their application situations at specific location.

Keywords: data mining, knowledge management, location-based service, user application scenario

Procedia PDF Downloads 123
9232 Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System

Authors: Rohit Tripathi, Sumit Tiwari, G. N. Tiwari

Abstract:

In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, India. Energy and exergy performance of N - partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Water collector system has been compared for two cases: (i) 25% area of water collector covered by PV module, (ii) 75% area of water collector covered by PV module. It is observed that case (i) has been best suited for thermal performance and case (ii) for electrical energy as well as overall exergy.

Keywords: compound parabolic concentrator, energy, photovoltaic thermal, temperature dependent electrical efficiency

Procedia PDF Downloads 402
9231 Scope of Implmenting Building Information Modeling in (Aec) Industry Firms in India

Authors: Padmini Raman

Abstract:

The architecture, engineering, and construction (AEC) industry is facing enormous technological and institutional changes and challenges including the information technology and appropriate application of sustainable practices. The engineer and architect must be able to handle with a rapid pace of technological change. BIM is a unique process of producing and managing a building by exploring a digital module before the actual project is constructed and later during its construction, facility operation and maintenance. BIM has been Adopted by construction contractors and architects in the western country mostly in US and UK to improve the planning and management of construction projects. In India, BIM is a basic stage of adoption only, several issues about data acquisition and management comes during the design formation and planning of a construction project due to the complexity, ambiguity, and fragmented nature of the Indian construction industry. This paper tells about the view a strategy for India’s AEC firms to successfully implement BIM in their current working processes. By surveying and collecting data about problems faced by these architectural firms, it will be analysed how to avoid those situations from rising and, thus, introducing BIM Capabilities in such firms in the most effective way. while this application is widely accepted throughout the industry in many countries for managing project information for cost control and facilities management.

Keywords: AEC industry, building information module, Indian industry, new technology, BIM implementation in India

Procedia PDF Downloads 444
9230 Decision Support for Modularisation: Engineering Construction Case Studies

Authors: Rolla Monib, Chris Ian Goodier, Alistair Gibb

Abstract:

This paper aims to investigate decision support strategies in the EC sector to determine the most appropriate degree of modularization. This is achieved through three oil and gas (O&G) and two power plant case studies via semi-structured interviews (n=59 and n=27, respectively), analysis of project documents, and case study-specific semi-structured validation interviews (n=12 and n=8). New terminology to distinguish degrees of modularization is proposed, along with a decision-making support checklist and a diagrammatic decision-making support figure. Results indicate that the EC sub-sectors were substantially more satisfied with the application of component, structural, or traditional modularization compared with system modularization for some types of modules. Key drivers for decisions on the degree of modularization vary across module types. This paper can help the EC sector determine the most suitable degree of modularization via a decision-making support strategy.

Keywords: modularization, engineering construction, case study, decision support

Procedia PDF Downloads 92
9229 Grid Connected Photovoltaic Micro Inverter

Authors: S. J. Bindhu, Edwina G. Rodrigues, Jijo Balakrishnan

Abstract:

A grid-connected photovoltaic (PV) micro inverter with good performance properties is proposed in this paper. The proposed inverter with a quadrupler, having more efficiency and less voltage stress across the diodes. The stress that come across the diodes that use in the inverter section is considerably low in the proposed converter, also the protection scheme that we provided can eliminate the chances of the error due to fault. The proposed converter is implemented using perturb and observe algorithm so that the fluctuation in the voltage can be reduce and can attain maximum power point. Finally, some simulation and experimental results are also presented to demonstrate the effectiveness of the proposed converter.

Keywords: DC-DC converter, MPPT, quadrupler, PV panel

Procedia PDF Downloads 840
9228 Problem Based Learning and Teaching by Example in Dimensioning of Mechanisms: Feedback

Authors: Nicolas Peyret, Sylvain Courtois, Gaël Chevallier

Abstract:

This article outlines the development of the Project Based Learning (PBL) at the level of a last year’s Bachelor’s Degree. This form of pedagogy has for objective to allow a better involving of the students from the beginning of the module. The theoretical contributions are introduced during the project to solving a technological problem. The module in question is the module of mechanical dimensioning method of Supméca a French engineering school. This school issues a Master’s Degree. While the teaching methods used in primary and secondary education are frequently renewed in France at the instigation of teachers and inspectors, higher education remains relatively traditional in its practices. Recently, some colleagues have felt the need to put the application back at the heart of their theoretical teaching. This need is induced by the difficulty of covering all the knowledge deductively before its application. It is therefore tempting to make the students 'learn by doing', even if it doesn’t cover some parts of the theoretical knowledge. The other argument that supports this type of learning is the lack of motivation the students have for the magisterial courses. The role-play allowed scenarios favoring interaction between students and teachers… However, this pedagogical form known as 'pedagogy by project' is difficult to apply in the first years of university studies because of the low level of autonomy and individual responsibility that the students have. The question of what the student actually learns from the initial program as well as the evaluation of the competences acquired by the students in this type of pedagogy also remains an open problem. Thus we propose to add to the pedagogy by project format a regressive part of interventionism by the teacher based on pedagogy by example. This pedagogical scenario is based on the cognitive load theory and Bruner's constructivist theory. It has been built by relying on the six points of the encouragement process defined by Bruner, with a concrete objective, to allow the students to go beyond the basic skills of dimensioning and allow them to acquire the more global skills of engineering. The implementation of project-based teaching coupled with pedagogy by example makes it possible to compensate for the lack of experience and autonomy of first-year students, while at the same time involving them strongly in the first few minutes of the module. In this project, students have been confronted with the real dimensioning problems and are able to understand the links and influences between parameter variations and dimensioning, an objective that we did not reach in classical teaching. It is this form of pedagogy which allows to accelerate the mastery of basic skills and so spend more time on the engineer skills namely the convergence of each dimensioning in order to obtain a validated mechanism. A self-evaluation of the project skills acquired by the students will also be presented.

Keywords: Bruner's constructivist theory, mechanisms dimensioning, pedagogy by example, problem based learning

Procedia PDF Downloads 189
9227 Smart Irrigation System

Authors: Levent Seyfi, Ertan Akman, Tuğrul C. Topak

Abstract:

In this study, irrigation automation with electronic sensors and its control with smartphones were aimed. In this context, temperature and soil humidity measurements of the area irrigated were obtained by temperature and humidity sensors. A micro controller (Arduino) was utilized for accessing values of these parameters and controlling the proposed irrigation system. The irrigation system could automatically be worked according to obtained measurement values. Besides, a GSM module used together with Arduino provided that the irrigation system was in connection to smartphones. Thus, the irrigation system can be remotely controlled. Not only can we observe whether the irrigation system is working or not via developed special android application but also we can see temperature and humidity measurement values. In addition to this, if desired, the irrigation system can be remotely and manually started or stopped regardless of measured sensor vales thanks to the developed android application. In addition to smartphones, the irrigation system can be alternatively controlled via the designed website (www.sulamadenetim.com).

Keywords: smartphone, Android Operating System, sensors, irrigation System, arduino

Procedia PDF Downloads 612
9226 Comparative Study of IC and Perturb and Observe Method of MPPT Algorithm for Grid Connected PV Module

Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati

Abstract:

The purpose of this paper is to study and compare two maximum power point tracking (MPPT) algorithms in a photovoltaic simulation system and also show a simulation study of maximum power point tracking (MPPT) for photovoltaic systems using perturb and observe algorithm and Incremental conductance algorithm. Maximum power point tracking (MPPT) plays an important role in photovoltaic systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency and minimize the overall system cost. Since the maximum power point (MPP) varies, based on the irradiation and cell temperature, appropriate algorithms must be utilized to track the (MPP) and maintain the operation of the system in it. MATLAB/Simulink is used to establish a model of photovoltaic system with (MPPT) function. This system is developed by combining the models established of solar PV module and DC-DC Boost converter. The system is simulated under different climate conditions. Simulation results show that the photovoltaic simulation system can track the maximum power point accurately.

Keywords: incremental conductance algorithm, perturb and observe algorithm, photovoltaic system, simulation results

Procedia PDF Downloads 554
9225 Voxel Models as Input for Heat Transfer Simulations with Siemens NX Based on X-Ray Microtomography Images of Random Fibre Reinforced Composites

Authors: Steven Latré, Frederik Desplentere, Ilya Straumit, Stepan V. Lomov

Abstract:

A method is proposed in order to create a three-dimensional finite element model representing fibre reinforced insulation materials for the simulation software Siemens NX. VoxTex software, a tool for quantification of µCT images of fibrous materials, is used for the transformation of microtomography images of random fibre reinforced composites into finite element models. An automatic tool was developed to execute the import of the models to the thermal solver module of Siemens NX. The paper describes the numerical tools used for the image quantification and the transformation and illustrates them on several thermal simulations of fibre reinforced insulation blankets filled with low thermal conductive fillers. The calculation of thermal conductivity is validated by comparison with the experimental data.

Keywords: analysis, modelling, thermal, voxel

Procedia PDF Downloads 286
9224 Control Performance Simulation and Analysis for Microgravity Vibration Isolation System Onboard Chinese Space Station

Authors: Wei Liu, Shuquan Wang, Yang Gao

Abstract:

Microgravity Science Experiment Rack (MSER) will be onboard TianHe (TH) spacecraft planned to be launched in 2018. TH is one module of Chinese Space Station. Microgravity Vibration Isolation System (MVIS), which is MSER’s core part, is used to isolate disturbance from TH and provide high-level microgravity for science experiment payload. MVIS is two stage vibration isolation system, consisting of Follow Unit (FU) and Experiment Support Unit (ESU). FU is linked to MSER by umbilical cables, and ESU suspends within FU and without physical connection. The FU’s position and attitude relative to TH is measured by binocular vision measuring system, and the acceleration and angular velocity is measured by accelerometers and gyroscopes. Air-jet thrusters are used to generate force and moment to control FU’s motion. Measurement module on ESU contains a set of Position-Sense-Detectors (PSD) sensing the ESU’s position and attitude relative to FU, accelerometers and gyroscopes sensing ESU’s acceleration and angular velocity. Electro-magnetic actuators are used to control ESU’s motion. Firstly, the linearized equations of FU’s motion relative to TH and ESU’s motion relative to FU are derived, laying the foundation for control system design and simulation analysis. Subsequently, two control schemes are proposed. One control scheme is that ESU tracks FU and FU tracks TH, shorten as E-F-T. The other one is that FU tracks ESU and ESU tracks TH, shorten as F-E-T. In addition, motion spaces are constrained within ±15 mm、±2° between FU and ESU, and within ±300 mm between FU and TH or between ESU and TH. A Proportional-Integrate-Differentiate (PID) controller is designed to control FU’s position and attitude. ESU’s controller includes an acceleration feedback loop and a relative position feedback loop. A Proportional-Integrate (PI) controller is designed in the acceleration feedback loop to reduce the ESU’s acceleration level, and a PID controller in the relative position feedback loop is used to avoid collision. Finally, simulations of E-F-T and F-E-T are performed considering variety uncertainties, disturbances and motion space constrains. The simulation results of E-T-H showed that control performance was from 0 to -20 dB for vibration frequency from 0.01 to 0.1 Hz, and vibration was attenuated 40 dB per ten octave above 0.1Hz. The simulation results of T-E-H showed that vibration was attenuated 20 dB per ten octave at the beginning of 0.01Hz.

Keywords: microgravity science experiment rack, microgravity vibration isolation system, PID control, vibration isolation performance

Procedia PDF Downloads 159
9223 A Smart Visitors’ Notification System with Automatic Secure Door Lock Using Mobile Communication Technology

Authors: Rabail Shafique Satti, Sidra Ejaz, Madiha Arshad, Marwa Khalid, Sadia Majeed

Abstract:

The paper presents the development of an automated security system to automate the entry of visitors, providing more flexibility of managing their record and securing homes or workplaces. Face recognition is part of this system to authenticate the visitors. A cost effective and SMS based door security module has been developed and integrated with the GSM network and made part of this system to allow communication between system and owner. This system functions in real time as when the visitor’s arrived it will detect and recognizes his face and on the result of face recognition process it will open the door for authorized visitors or notifies and allows the owner’s to take further action in case of unauthorized visitor. The proposed system is developed and it is successfully ensuring security, managing records and operating gate without physical interaction of owner.

Keywords: SMS, e-mail, GSM modem, authenticate, face recognition, authorized

Procedia PDF Downloads 787
9222 Soil Moisture Control System: A Product Development Approach

Authors: Swapneel U. Naphade, Dushyant A. Patil, Satyabodh M. Kulkarni

Abstract:

In this work, we propose the concept and geometrical design of a soil moisture control system (SMCS) module by following the product development approach to develop an inexpensive, easy to use and quick to install product targeted towards agriculture practitioners. The module delivers water to the agricultural land efficiently by sensing the soil moisture and activating the delivery valve. We start with identifying the general needs of the potential customer. Then, based on customer needs we establish product specifications and identify important measuring quantities to evaluate our product. Keeping in mind the specifications, we develop various conceptual solutions of the product and select the best solution through concept screening and selection matrices. Then, we develop the product architecture by integrating the systems into the final product. In the end, the geometric design is done using human factors engineering concepts like heuristic analysis, task analysis, and human error reduction analysis. The result of human factors analysis reveals the remedies which should be applied while designing the geometry and software components of the product. We find that to design the best grip in terms of comfort and applied force, for a power-type grip, a grip-diameter of 35 mm is the most ideal.

Keywords: agriculture, human factors, product design, soil moisture control

Procedia PDF Downloads 171
9221 Learning and Teaching Strategies in Association with EXE Program for Master Course Students of Yerevan Brusov State University of Languages and Social Sciences

Authors: Susanna Asatryan

Abstract:

The author will introduce a single module related to English teaching methodology for master course students getting specialization “A Foreign Language Teacher of High Schools And Professional Educational Institutions” of Yerevan Brusov State University of Languages and Social Sciences. The overall aim of the presentation is to introduce learning and teaching strategies within EXE Computer program for Mastery student-teachers of the University. The author will display the advantages of the use of this program. The learners interact with the teacher in the classroom as well as they are provided an opportunity for virtual domain to carry out their learning procedures in association with assessment and self-assessment. So they get integrated into blended learning. As this strategy is in its piloting stage, the author has elaborated a single module, embracing 3 main sections: -Teaching English vocabulary at high school, -Teaching English grammar at high school, and -Teaching English pronunciation at high school. The author will present the above mentioned topics with corresponding sections and subsections. The strong point is that preparing this module we have planned to display it on the blended learning landscape. So for this account working with EXE program is highly effective. As it allows the users to operate several tools for self-learning and self-testing/assessment. The author elaborated 3 single EXE files for each topic. Each file starts with the section’s subject-specific description: - Objectives and Pre-knowledge, followed by the theoretical part. The author associated and flavored her observations with appropriate samples of charts, drawings, diagrams, recordings, video-clips, photos, pictures, etc. to make learning process more effective and enjoyable. Before or after the article the author has downloaded a video clip, related to the current topic. EXE offers a wide range of tools to work out or prepare different activities and exercises for the learners: 'Interactive/non-interactive' and 'Textual/non-textual'. So with the use of these tools Multi-Select, Multi-Choice, Cloze, Drop-Down, Case Study, Gap-Filling, Matching and different other types of activities have been elaborated and submitted to the appropriate sections. The learners task is to prepare themselves for the coming module or seminar, related to teaching methodology of English vocabulary, grammar, and pronunciation. The point is that the teacher has an opportunity for face to face communication, as well as to connect with the learners through the Moodle, or as a single EXE file offer it to the learners for their self-study and self-assessment. As for the students’ feedback –EXE environment also makes it available.

Keywords: blended learning, EXE program, learning/teaching strategies, self-study/assessment, virtual domain,

Procedia PDF Downloads 467
9220 High Thrust Upper Stage Solar Hydrogen Rocket Design

Authors: Maged Assem Soliman Mossallam

Abstract:

The conversion of solar thruster model to an upper stage hydrogen rocket is considered. Solar thruster categorization limits its capabilities to low and moderate thrust system with high specific impulse. The current study proposes a different concept for such systems by increasing the thrust which enables using as an upper stage rocket and for future launching purposes. A computational model for the thruster is discussed for solar thruster subsystems. The first module depends on ray tracing technique to determine the intercepted solar power by the hydrogen combustion chamber. The cavity receiver is modeled using finite volume technique. The final module imports the heated hydrogen properties to the nozzle using quasi one dimensional simulation. The probability of shock waves formulation inside the nozzle is almost diminished as the outlet pressure in space environment tends to zero. The computational model relates the high thrust hydrogen rocket conversion to the design parameters and operating conditions of the thruster. Three different designs for solar thruster systems are discussed. The first design is a low thrust high specific impulse design that produces about 10 Newton of thrust .The second one output thrust is about 250 Newton and the third design produces about 1000 Newton.

Keywords: space propulsion, hydrogen rocket, thrust, specific impulse

Procedia PDF Downloads 164
9219 Infographics to Identify, Diagnose, and Review Medically Important Microbes and Microbial Diseases: A Tool to Ignite Minds of Undergraduate Medical Students

Authors: Mohan Bilikallahalli Sannathimmappa, Vinod Nambiar, Rajeev Aravindakshan

Abstract:

Background: Image-based teaching-learning module is innovative student-centered andragogy. The objective of our study was to explore medical students’ perception of effectiveness of image-based learning strategy in promoting their lifelong learning skills and evaluate its impact on improving students’ exam grades. Methods: A prospective single-cohort study was conducted on undergraduate medical students of the academic year 2021-22. The image-based teaching-learning module was assessed through pretest, posttest, and exam grades. Students’ feedback was collected through a predesigned questionnaire on a 3-point Likert Scale. The reliability of the questionnaire was assessed using Cronbach’s alpha coefficient test. In-Course Exam-4 results were compared with In-Course Exams 1, 2, and 3. Correlation coefficients were worked out wherever relevant to find the impact of the exercise on grades. Data were collected, entered into Microsoft Excel, and statistically analyzed using SPSS version 22. Results: In total, 127 students were included in the study. The posttest scores of the students were significantly high (24.75±) as compared to pretest scores (8.25±). Students’ opinion towards the effectiveness of image-based learning in promoting their lifelong learning skills was overwhelmingly positive (Cronbach’s alpha for all items was 0.756). More than 80% of the students indicated image-based learning was interesting, encouraged peer discussion, and helped them to identify, explore, and revise key information and knowledge improvement. Nearly 70% expressed image-based learning enhanced their critical thinking and problem-solving skills. Nine out of ten students recommended image-based learning module for future topics. Conclusion: Overall, Image-based learning was found to be effective in achieving undergraduate medical students learning outcomes. The results of the study are in favor of the implementation of Image-based learning in Microbiology courses. However, multicentric studies are required to authenticate our study findings.

Keywords: active learning, knowledge, medical education, microbes, problem solving

Procedia PDF Downloads 69