Search results for: natural ester
5714 Modification of Aliphatic-Aromatic Copolyesters with Polyether Block for Segmented Copolymers with Elastothemoplastic Properties
Authors: I. Irska, S. Paszkiewicz, D. Pawlikowska, E. Piesowicz, A. Linares, T. A. Ezquerra
Abstract:
Due to the number of advantages such as high tensile strength, sensitivity to hydrolytic degradation, and biocompatibility poly(lactic acid) (PLA) is one of the most common polyesters for biomedical and pharmaceutical applications. However, PLA is a rigid, brittle polymer with low heat distortion temperature and slow crystallization rate. In order to broaden the range of PLA applications, it is necessary to improve these properties. In recent years a number of new strategies have been evolved to obtain PLA-based materials with improved characteristics, including manipulation of crystallinity, plasticization, blending, and incorporation into block copolymers. Among the other methods, synthesis of aliphatic-aromatic copolyesters has been attracting considerable attention as they may combine the mechanical performance of aromatic polyesters with biodegradability known from aliphatic ones. Given the need for highly flexible biodegradable polymers, in this contribution, a series of aromatic-aliphatic based on poly(butylene terephthalate) and poly(lactic acid) (PBT-b-PLA) copolyesters exhibiting superior mechanical properties were copolymerized with an additional poly(tetramethylene oxide) (PTMO) soft block. The structure and properties of both series were characterized by means of attenuated total reflectance – Fourier transform infrared spectroscopy (ATR-FTIR), nuclear magnetic resonance spectroscopy (¹H NMR), differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS) and dynamic mechanical, thermal analysis (DMTA). Moreover, the related changes in tensile properties have been evaluated and discussed. Lastly, the viscoelastic properties of synthesized poly(ester-ether) copolymers were investigated in detail by step cycle tensile tests. The block lengths decreased with the advance of treatment, and the block-random diblock terpolymers of (PBT-ran-PLA)-b-PTMO were obtained. DSC and DMTA analysis confirmed unambiguously that synthesized poly(ester-ether) copolymers are microphase-separated systems. The introduction of polyether co-units resulted in a decrease in crystallinity degree and melting temperature. X-ray diffraction patterns revealed that only PBT blocks are able to crystallize. The mechanical properties of (PBT-ran-PLA)-b-PTMO copolymers are a result of a unique arrangement of immiscible hard and soft blocks, providing both strength and elasticity.Keywords: aliphatic-aromatic copolymers, multiblock copolymers, phase behavior, thermoplastic elastomers
Procedia PDF Downloads 1405713 Characteristic Study of Polymer Sand as a Potential Substitute for Natural River Sand in Construction Industry
Authors: Abhishek Khupsare, Ajay Parmar, Ajay Agarwal, Swapnil Wanjari
Abstract:
The extreme demand for aggregate leads to the exploitation of river-bed for fine aggregates, affecting the environment adversely. Therefore, a suitable alternative to natural river sand is essentially required. This study focuses on preventing environmental impact by developing polymer sand to replace natural river sand (NRS). Development of polymer sand by mixing high volume fly ash, bottom ash, cement, natural river sand, and locally purchased high solid content polycarboxylate ether-based superplasticizer (HS-PCE). All the physical and chemical properties of polymer sand (P-Sand) were observed and satisfied the requirement of the Indian Standard code. P-Sand yields good specific gravity of 2.31 and is classified as zone-I sand with a satisfactory friction angle (37˚) compared to natural river sand (NRS) and Geopolymer fly ash sand (GFS). Though the water absorption (6.83%) and pH (12.18) are slightly more than those of GFS and NRS, the alkali silica reaction and soundness are well within the permissible limit as per Indian Standards. The chemical analysis by X-Ray fluorescence showed the presence of high amounts of SiO2 and Al2O3 with magnitudes of 58.879% 325 and 26.77%, respectively. Finally, the compressive strength of M-25 grade concrete using P-sand and Geopolymer sand (GFS) was observed to be 87.51% and 83.82% with respect to natural river sand (NRS) after 28 days, respectively. The results of this study indicate that P-sand can be a good alternative to NRS for construction work as it not only reduces the environmental effect due to sand mining but also focuses on utilising fly ash and bottom ash.Keywords: polymer sand, fly ash, bottom ash, HSPCE plasticizer, river sand mining
Procedia PDF Downloads 775712 The Performance of Natural Light by Roof Systems in Cultural Buildings
Authors: Ana Paula Esteves, Diego S. Caetano, Louise L. B. Lomardo
Abstract:
This paper presents an approach to the performance of the natural lighting, when the use of appropriated solar lighting systems on the roof is applied in cultural buildings such as museums and foundations. The roofs, as a part of contact between the building and the external environment, require special attention in projects that aim at energy efficiency, being an important element for the capture of natural light in greater quantity, but also for being the most important point of generation of photovoltaic solar energy, even semitransparent, allowing the partial passage of light. Transparent elements in roofs, as well as superior protection of the building, can also play other roles, such as: meeting the needs of natural light for the accomplishment of the internal tasks, attending to the visual comfort; to bring benefits to the human perception and about the interior experience in a building. When these resources are well dimensioned, they also contribute to the energy efficiency and consequent character of sustainability of the building. Therefore, when properly designed and executed, a roof light system can bring higher quality natural light to the interior of the building, which is related to the human health and well-being dimension. Furthermore, it can meet the technologic, economic and environmental yearnings, making possible the more efficient use of that primordial resource, which is the light of the Sun. The article presents the analysis of buildings that used zenith light systems in search of better lighting performance in museums and foundations: the Solomon R. Guggenheim Museum in the United States, the Iberê Camargo Foundation in Brazil, the Museum of Fine Arts in Castellón in Spain and the Pinacoteca of São Paulo.Keywords: natural lighting, roof lighting systems, natural lighting in museums, comfort lighting
Procedia PDF Downloads 2105711 Development of One-Pot Sequential Cyclizations and Photocatalyzed Decarboxylative Radical Cyclization: Application Towards Aspidospermatan Alkaloids
Authors: Guillaume Bélanger, Jean-Philippe Fontaine, Clémence Hauduc
Abstract:
There is an undeniable thirst from organic chemists and from the pharmaceutical industry to access complex alkaloids with short syntheses. While medicinal chemists are interested in the fascinating wide range of biological properties of alkaloids, synthetic chemists are rather interested in finding new routes to access these challenging natural products of often low availability from nature. To synthesize complex polycyclic cores of natural products, reaction cascades or sequences performed one-pot offer a neat advantage over classical methods for their rapid increase in molecular complexity in a single operation. In counterpart, reaction cascades need to be run on substrates bearing all the required functional groups necessary for the key cyclizations. Chemoselectivity is thus a major issue associated with such a strategy, in addition to diastereocontrol and regiocontrol for the overall transformation. In the pursuit of synthetic efficiency, our research group developed an innovative one-pot transformation of linear substrates into bi- and tricyclic adducts applied to the construction of Aspidospermatan-type alkaloids. The latter is a rich class of indole alkaloids bearing a unique bridged azatricyclic core. Despite many efforts toward the synthesis of members of this family, efficient and versatile synthetic routes are still coveted. Indeed, very short, non-racemic approaches are rather scarce: for example, in the cases of aspidospermidine and aspidospermine, syntheses are all fifteen steps and over. We envisaged a unified approach to access several members of the Aspidospermatan alkaloids family. The key sequence features a highly chemoselective formamide activation that triggers a Vilsmeier-Haack cyclization, followed by an azomethine ylide generation and intramolecular cycloaddition. Despite the high density and variety of functional groups on the substrates (electron-rich and electron-poor alkenes, nitrile, amide, ester, enol ether), the sequence generated three new carbon-carbon bonds and three rings in a single operation with good yield and high chemoselectivity. A detailed study of amide, nucleophile, and dipolarophile variations to finally get to the successful combination required for the key transformation will be presented. To complete the indoline fragment of the natural products, we developed an original approach. Indeed, all reported routes to Aspidospermatan alkaloids introduce the indoline or indole early in the synthesis. In our work, the indoline needs to be installed on the azatricyclic core after the key cyclization sequence. As a result, typical Fischer indolization is not suited since this reaction is known to fail on such substrates. We thus envisaged a unique photocatalyzed decarboxylative radical cyclization. The development of this reaction as well as the scope and limitations of the methodology, will also be presented. The original Vilsmeier-Haack and azomethine ylide cyclization sequence as well as the new photocatalyzed decarboxylative radical cyclization will undoubtedly open access to new routes toward polycyclic indole alkaloids and derivatives of pharmaceutical interest in general.Keywords: Aspidospermatan alkaloids, azomethine ylide cycloaddition, decarboxylative radical cyclization, indole and indoline synthesis, one-pot sequential cyclizations, photocatalysis, Vilsmeier-Haack Cyclization
Procedia PDF Downloads 815710 Natural Interaction Game-Based Learning of Elasticity with Kinect
Authors: Maryam Savari, Mohamad Nizam Ayub, Ainuddin Wahid Abdul Wahab
Abstract:
Game-based Learning (GBL) is an alternative that provides learners with an opportunity to experience a volatile environment in a safe and secure place. A volatile environment requires a different technique to facilitate learning and prevent injury and other hazards. Subjects involving elasticity are always considered hazardous and can cause injuries,for instance a bouncing ball. Elasticity is a topic that necessitates hands-on practicality for learners to experience the effects of elastic objects. In this paper the scope is to investigate the natural interaction between learners and elastic objects in a safe environment using GBL. During interaction, the potentials of natural contact in the process of learning were explored and gestures exhibited during the learning process were identified. GBL was developed using Kinect technology to teach elasticity to primary school children aged 7 to 12. The system detects body gestures and defines the meanings of motions exhibited during the learning process. The qualitative approach was deployed to constantly monitor the interaction between the student and the system. Based on the results, it was found that Natural Interaction GBL (Ni-GBL) is engaging for students to learn, making their learning experience more active and joyful.Keywords: elasticity, Game-Based Learning (GBL), kinect technology, natural interaction
Procedia PDF Downloads 4835709 Collaborative Early Warning System: An Integrated Framework for Mitigating Impacts of Natural Hazards in the UAE
Authors: Abdulla Al Hmoudi
Abstract:
The impacts and costs of natural disasters on people, properties and the environment is often severe when they occur on a large scale or when not prepared for. Factors such as impacts of climate change, urban growth, poor planning to mention a few, have continued to significantly increase the frequencies and aggravate the impacts of natural hazards across the world; the United Arab Emirates (UAE) inclusive. The lack of deployment of an early warning system, low risk and hazard knowledge and impact of natural hazard experienced in some communities in the UAE have emphasised the need for more effective early warning systems. This paper focuses on the collaborative approach taken to instituting and implementing an early warning system. Using mixed methods 888 people completed the questionnaire and eight people were interviewed in Abu Dhabi. The results indicate that the collaborative approach to early warning system is UAE is needed, but lacks essential principles of the early warning system and currently underutilised. It is recommended that the collaborative early warning system is applied at every stage of the early warning system with the specific responsibility of each stakeholder and actor.Keywords: community, early warning system, emergency management, UAE
Procedia PDF Downloads 1445708 Numerical Solution of Transient Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates
Authors: Djalal Hamed
Abstract:
The aim of this paper is to perform, by mean of the finite volume method, a numerical solution of the transient natural convection in a narrow rectangular channel between two vertical parallel Material Testing Reactor (MTR)-type fuel plates, imposed under a heat flux with a cosine shape to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not reach a specific safety limits (90 °C). For this purpose, a computer program is developed to determine the principal parameters related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor core power. Throughout the obtained results, we noticed that the core power should not reach 400 kW, to ensure a safe passive residual heat removing from the nuclear core by the upward natural convection cooling mode.Keywords: buoyancy force, friction force, finite volume method, transient natural convection
Procedia PDF Downloads 1965707 Reforming of CO₂-Containing Natural Gas by Using an AC Gliding Arc Discharge Plasma System
Authors: Krittiya Pornmai, Sumaeth Chavadej
Abstract:
The increasing in global energy demand has affected the climate change caused by the generation of greenhouse gases. Therefore, the objective of this work was to investigate a direct production of synthesis gas from a CO₂-containing natural gas by using gliding arc discharge plasma technology. In this research, the effects of steam reforming, combined steam reforming and partial oxidation, and using multistage gliding arc discharge system on the process performance have been discussed. The simulated natural gas used in this study contains 70% methane, 5% ethane, 5% propane, and 20% carbon dioxide. In comparison with different plasma reforming processes (under their optimum conditions), the steam reforming provides the highest H₂ selectivity resulting from the cracking reaction of steam. In addition, the combined steam reforming and partial oxidation process gives a very high CO production implying that the addition of both oxygen and steam can offer the acceptably highest synthesis gas production. The stage number of plasma reactor plays an important role in the improvement of CO₂ conversion. Moreover, 3 stage number of plasma reactor is considered as an optimum stage number for the reforming of CO₂-containing natural gas with steam and partial oxidation in term of providing low energy consumption as compared with other plasma reforming processes.Keywords: natural gas, reforming process, gliding arc discharge, plasma technology
Procedia PDF Downloads 1755706 Effect of Volcanic Ash and Recycled Aggregates in Concrete
Authors: Viviana Letelier, Ester Tarela, Giacomo Moriconi
Abstract:
The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residuals in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. This study analyses the variation in the mechanical properties of structural concretes with recycled aggregates and volcanic ash as cement replacement to test the effect of the simultaneous use of different residuals in the same material. Analyzed concretes are dosed for a compressive strength of 30MPa. The recycled aggregates are obtained from prefabricated pipe debris with a compressive strength of 20MPa. The volcanic ash was obtained from the Ensenada (Chile) area after the Calbuco eruption in April 2015. The percentages of natural course aggregates that are replaced by recycled aggregates are of 0% and 30% and the percentages of cement replaced by volcanic ash are of 0%, 5%, 10% and 15%. The combined effect of both residuals in the mechanical properties of the concrete is evaluated through compressive strength tests after, 28 curing days, flexural strength tests after 28 days, and the elasticity modulus after 28 curing days. Results show that increasing the amount of volcanic ash used increases the losses in compressive strength. However, the use of up to a 5% of volcanic ash allows obtaining concretes with similar compressive strength to the control concrete, whether recycled aggregates are used or not. Furthermore, the pozzolanic reaction that occurs between the amorphous silica and the calcium hydroxide (Ca(OH)2) provokes an increase of a 10% in the compressive strength when a 5% of volcanic ash is combined with a 30% of recycled aggregates. Flexural strength does not show significant changes with neither of the residues. On the other hand, decreases between a 14% and a 25% in the elasticity modulus have been found. Concretes with up to a 30% of recycled aggregates and a 5% of volcanic ash as cement replacement can be produced without significant losses in their mechanical properties, reducing considerably the environmental impact of the final material.Keywords: compressive strength of recycled concrete, mechanical properties of recycled concrete, recycled aggregates, volcanic ash as cement replacement
Procedia PDF Downloads 3025705 Dyeing of Wool and Silk with Soxhlet Water Extracted Natural Dye from Dacryodes macrophylla Fruits and Study of Antimicrobial Properties of Extract
Authors: Alvine Sandrine Ndinchout, D. P. Chattopadhyay, Moundipa Fewou Paul, Nyegue Maximilienne Ascension, Varinder Kaur, Sukhraj Kaur, B. H. Patel
Abstract:
Dacryodes macrophylla is a species of the Burseraceae family that is widespread in Cameroon, Equatorial Guinea, and Gabon. The only part of D. macrophylla known to use is the pulp contained in the fruit. This very juicy pulp is consumed directly and used in making juices. During consumption, these fruit leaves a dark blackish colour on fingers and garment. This observation means that D. macrophylla fruits must be a good source of natural dye with probably good fastness properties on textile materials. But D. macrophylla has not yet been investigated with reference as a potential source of natural dye to our best knowledge. Natural dye has been extracted using water as solvent by soxhlet extraction method. The extracted color was characterized by spectroscopic studies like UV/Visible and further tested for antimicrobial activity against gram-negative (Vibrio cholerae, Escherichia coli, Salmonella enterica serotype Typhi, Shigella flexneri) and gram-positive (Listeria monocytogenes, Staphylococcus aureus) bacteria. It was observed that the water extract of D. macrophylla showed antimicrobial activities against S. enterica. The results of fastness properties of the dyed fabrics were fair to good. Taken together, these results indicate that D. macrophylla can be used as natural dye not only in textile but also in other domains like food coloring.Keywords: antimicrobial activity, natural dye, silk, wash fastness, wool
Procedia PDF Downloads 1755704 Mechanical Properties of Class F Fly Ash Blended Concrete Incorporation with Natural Admixture
Authors: T. S. Ramesh Babu, D. Neeraja
Abstract:
This research work revealed that effect of Natural admixture (NAD) on Conventional Concrete (CC) and Class F Fly Ash(FA) blended concrete. Broiler hen egg white albumen and yellow yolk were used as Natural Admixture. Cement was replaced by Class F fly ash at various levels of 0%, 25%, 35%, 45% and 55% by its mass and NAD was added to concrete at different replacement dosages of 0%, 0.25%, 0.5%, 0.75% and 1.00% by its volume to water content and liquid to binder ratio was maintained at 0.5. For all replacement levels of FA and NAD, the mechanical properties viz unit weight, compressive strength, splitting tensile strength and modulus of elasticity of CC and Class F fly ash (FA) were studied at 7, 28, 56 and 112 days. From the results, it was concluded that 0.25% of NAD dosage was considered as optimum dosage for both CC and class F fly ash blended concrete. The studies revealed that 35% Class F fly ash blended concrete mix is concluded as optimum mix and 55% Class F fly ash blended concrete mix is concluded as economical mix with 0.25% NAD dosage.Keywords: Class F fly ash, compressive strength, modulus of elasticity, natural admixture, splitting tensile strength, unit weight
Procedia PDF Downloads 2895703 Seismic Hazard Prediction Using Seismic Bumps: Artificial Neural Network Technique
Authors: Belkacem Selma, Boumediene Selma, Tourkia Guerzou, Abbes Labdelli
Abstract:
Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. The Earthquakes prediction to prevent the loss of human lives and even property damage is an important factor; that is why it is crucial to develop techniques for predicting this natural disaster. This present study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 10^4J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines has been analyzed. The results obtained show that the ANN with high accuracy was able to predict earthquake parameters; the classification accuracy through neural networks is more than 94%, and that the models developed are efficient and robust and depend only weakly on the initial database.Keywords: earthquake prediction, ANN, seismic bumps
Procedia PDF Downloads 1275702 Functionalization of Carboxylated Single-Walled Carbon Nanotubes with 2-En 4-Hydroxy Cyclo 1-Octanon and Toxicity Investigation
Authors: D. ChobfroushKhoei, S. K. Heidari , Sh. Dariadel
Abstract:
Carbon nanotubes were used in medical sciences especially in drug delivery system and cancer therapy. In this study, we functionalized carboxylated single-wall carbon nanotubes (SWNT-COOH) with 2-en 4-hydroxy cyclo 1-octanon. Synthesized sample was characterized by FT-IR, Raman spectroscopy, SEM, TGA and cellular investigations. The results showed well formation of SWNT-Ester. Cell viability assay results and microscopic observations demonstrated that cancerous cells were killed in the sample. The synthesized sample can be used as a toxic material for cancer therapy.Keywords: MWNT-COOH, functionalization, phenylisocyanate, phenylisothiocyanate, 1, 4-phenylendiamine, toxicity investigation
Procedia PDF Downloads 4535701 Utilization of Complete Feed Based on Ammoniated Corn Waste on Bali Cattle Peformance
Authors: Elihasridas, Rusmana Wijaya Setia Ninggrat
Abstract:
This research aims to study the utilization of ammoniated corn waste complete ration for substitution basal ration of natural grass in Bali cattle. Four treatments (complete feed ration consisted of: R1=40% natural grass + 60% concentrate (control), R2= 50% natural grass+50% concentrate, R3=60% natural grass+40% concentrate and R4=40% ammoniated corn waste+60% concentrate) were employed in this experiment. This experiment was arranged in a latin square design. Observed variables included dry matter intake (DMI), average daily gain and feed conversion. Data were analyzed by using the Analysis of Variance following a 4 x 4 Latin Square Design. The DMI for R1was 7,15kg/day which was significantly (P < 0,05) higher than R2 (6,32 kg/day) and R3(6,07 kg/day), but was not significantly different (P < 0,05) from R4 (7,01 kg/day). Average daily gain for R1(0,75 kg/day) which was significantly (P < 0,05) higher than R2(0,66 kg/day) and R3 (0,61 kg/day),but was not significantly different (P > 0,05) from R4(0,74 kg/day). Feed conversion was not significantly affected (P > 0,05) by ration. It was concluded that ammoniated corn waste complete ration (40% ammoniated corn waste + 60% concentrate) could be utilized for substitution natural grass basal ration.Keywords: ammoniated corn waste, bali cattle, complete feed, daily gain
Procedia PDF Downloads 2055700 Study of Skid-Mounted Natural Gas Treatment Process
Authors: Di Han, Lingfeng Li
Abstract:
Selection of low-temperature separation dehydration and dehydrochlorination process applicable to skid design, using Hysys software to simulate the low-temperature separation dehydration and dehydrochlorination process under different refrigeration modes, focusing on comparing the refrigeration effect of different refrigeration modes, the condensation amount of hydrocarbon liquids and alcoholic wastewater, as well as the adaptability of the process, and determining the low-temperature separation process applicable to the natural gas dehydration and dehydrochlorination skid into the design of skid; and finally, to carry out the CNG recycling process calculations of the processed qualified natural gas and to determine the dehydration scheme and the key parameters of the compression process.Keywords: skidding, dehydration and dehydrochlorination, cryogenic separation process, CNG recovery process calculations
Procedia PDF Downloads 1425699 Circular Economy-Relationship of Natural Water Collection System, Afforestation and Country Park Towards Environmental Sustainability
Authors: Kwok Tak Kit
Abstract:
The government and community have raised their awareness of the benefits of water reuse. Deforestation has a significant effect to climate change as it causes the drying out of the tropical rainforest and hence increases the chance of natural hazards. The loss of forests due to natural fire or human factors would be threatening the storage and supply of clean water. In this paper, we will focus on the discussion of the relationship of the natural water collection system, afforestation and country parks towards environmental sustainability and circular economy with a case study of water conservation policy and strategy in Hong Kong and Singapore for further research. The UN General Assembly launched the Water Action Decade in 2018 to mobilize action that will help to tackle the growing challenge of water scarcity through water conservation and protect and restore water-related ecosystems, including forests, wetlands, rivers, aquifers and lakes.Keywords: afforestation, environmental sustainability, water conservation, circular economy, climate change, sustainable development goal
Procedia PDF Downloads 1295698 Study on Total Chlorine in Crude Palm Oil from Various Palm Oil Mill Operation Units
Authors: Norliza Saparin, Ahmadilfitri Noor, Mohd Suria Affandi Yusoff, Shawaluddin Tahiruddin
Abstract:
A palm oil mill produces crude palm oil (CPO) and has many operation units that comprises of sterilization, stripping, digestion and pressing, clarification, purification, drying and storage. This study investigated the total chlorine in palm fruit and CPO after each operating units. The total chlorine were determined by Mitsubishi NSX-2100 H, Trace Elemental Analyzer. The trace elemental analyzer is a furnace system with a micro-coulometric detector that was used for measuring and detecting total chlorine whether in organic or inorganic form. This determination is important as the chlorine is a direct precursor for 3-MCPD ester.Keywords: chlorine, micro-coulometric, palm oil, 3-MCPD
Procedia PDF Downloads 6755697 Steady State Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates
Authors: Djalal Hamed
Abstract:
The aim of this paper is to perform an analytic solution of steady state natural convection in a narrow rectangular channel between two vertical parallel MTR-type fuel plates, imposed under a cosine shape heat flux to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not be reach the specific safety limits (90 °C). For this purpose, a simple computer program is developed to determine the principal parameter related to the nuclear core safety such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor power. Our results are validated throughout a comparison against the results of another published work, which is considered like a reference of this study.Keywords: buoyancy force, friction force, natural convection, thermal hydraulic analysis, vertical heated rectangular channel
Procedia PDF Downloads 3165696 Dyeing Properties of Natural Dyes on Silk Treated with ß-Cyclodextrin
Authors: Samera Salimpour Abkenar
Abstract:
In this work, silk yarns were treated using ß-cyclodextrin (ß-CD) and cross-linked with citric acid (CA) via pad-dry-cure method. Elemental and FESEM analyses confirmed the presence of ß-CD on the treated silk samples even after five washing cycles. Then, the treated samples were dyed using natural dyes (carrot, orange and tomato). Results showed that the color strength (K/S) of the treated samples had been markedly enhanced compared with the control sample (after treatment with metal mordant). Finally, the color strength (K/S value) and color fastness (fading, staining and light fastness) of the treated samples with ß-CD were investigated and compared.Keywords: ß-cyclodextrin, dyeing, natural dyes, silk yarn
Procedia PDF Downloads 1235695 Capture of Co₂ From Natural Gas Using Modified Imidazolium Ionic Liquids
Authors: Alaa A. Ghanem, S. E. M. Desouky
Abstract:
Natural gas (NG) is considered one of the most essential global energy sources. NG fields are often far away from the market, and a long-distance transporting pipeline usually is required. Production of NG with high content of CO₂ leads to severe problems such as equipment corrosion along with the production line until refinery.in addition to a high level of toxicity and decreasing in calorific value of the NG. So it is recommended to remove or decrease the CO₂ percent to meet transport specifications. This can be reached using different removal techniques such as physical and chemical absorption, pressure swing adsorption, membrane separation, or low-temperature separation. Many solvents and chemicals are being used to capture carbon dioxide on a large scale; among them, Ionic liquids have great potential due to their tunable properties; low vapour pressure, low melting point, and sensible thermal stability. In this research, three modifiedimidazolium ionic liquids will be synthesized and characterized using different tools of analysis such as FT-IR, 1H NMR. Thermal stability and surface activity will be studied. The synthesized compounds will be evaluated as selective solvents for CO₂ removal from natural gas using PVT cell.Keywords: natural gas, CO₂ capture, imidazolium ionic liquid, PVT cell
Procedia PDF Downloads 1755694 CO2 Adsorption on the Activated Klaten-Indonesian Natural Zeolite in a Packed Bed Adsorber
Authors: Sang Kompiang Wirawan, Chandra Purnomo
Abstract:
Carbon dioxide (CO2) adsorption on the activated Klaten-Indonesian natural zeolite (AKINZ) in a packed bed adsorber has been studied. Experiment works consisted of acid activation and adsorption experiments. The natural zeolite sample was activated using 0.3 M HCl at the temperature of 353 K. In the adsorption experiments the feed gas concentrations were 40 and 80 % CO2 in helium within various temperatures of 303; 323 and 373 K. The experiments were conducted by using transient step change adsorption and 20 % Ar/He tracer experiment was conducted to measure dispersion and time lag effect of the packed bed system. A mathematical model of CO2 adsorption had been set up by assuming plug flow;isothermal;isobaric and no gas film mass transport resistance. Single site Langmuir physisorption and Maxwell Stefan mass transport in micropore were applied. All the data were then optimized to get the best value of modified fitted parameter. The model was in a good agreement with the experiment data. Diffusivity tended to increase by increasing temperatures.Keywords: adsorption, Langmuir, Maxwell-Stefan, natural zeolite, surface diffusion
Procedia PDF Downloads 3555693 Evaluation of Achillea millefolium L. Biochemical Changes in Iran's Natural Habitat
Authors: Ghavamaldin Asadian, Aptin Rahnavard, Mariamalsadat Taghavi
Abstract:
Achillea millefolium L. is one of the most important medicinal plants with antioxidant compounds. The use of compounds derived from plants reduces the incidence of many chronic diseases. The purpose of this investigation is study of total phenolic content and antioxidant activity some of ecotypes yarrow grown in natural habitats in Iran. This experimental study was conducted in 2013 at the Islamic Azad University, Tonekabon Branch. After identifying the natural sites, we have attempted to harvest of aerial part and after drying in lab temperature, essential oil was extracted by steam distillation. In this research for evaluate the antioxidant properties was used of three method, DPPH, Antioxidant capacity ferro revival and phosphomolybdenum, that all mechanism is based on the electron donating. All ecotypes had antioxidant activity and ecotypes grown in Kandovan region were measured with the most total phenolic (89.5 mg GA/g dew) and flavonoid (20.4 µg/g dew) and the lowest in Saveh (71.3 mg GA/g dew, 17.4 µg/g dew). Variation of the antioxidant properties were significant (P≤0.01) in areas and were accounted Kandovan with highest value and the lowest in Save. As a result, yarrow essential oil grown in Kandovan in terms of amount of total phenolic, flavonoid and antioxidant property, it was determined the best natural habitat.Keywords: achillea millefolium L., antioxidant compounds, DPPH, total phenolic, flavonoid natural habitats
Procedia PDF Downloads 4565692 Predicting of Hydrate Deposition in Loading and Offloading Flowlines of Marine CNG Systems
Authors: Esam I. Jassim
Abstract:
The main aim of this paper is to demonstrate the prediction of the model capability of predicting the nucleation process, the growth rate, and the deposition potential of second phase particles in gas flowlines. The primary objective of the research is to predict the risk hazards involved in the marine transportation of compressed natural gas. However, the proposed model can be equally used for other applications including production and transportation of natural gas in any high-pressure flow-line. The proposed model employs the following three main components to approach the problem: computational fluid dynamics (CFD) technique is used to configure the flow field; the nucleation model is developed and incorporated in the simulation to predict the incipient hydrate particles size and growth rate; and the deposition of the gas/particle flow is proposed using the concept of the particle deposition velocity. These components are integrated in a comprehended model to locate the hydrate deposition in natural gas flowlines. The present research is prepared to foresee the deposition location of solid particles that could occur in a real application in Compressed Natural Gas loading and offloading. A pipeline with 120 m length and different sizes carried a natural gas is taken in the study. The location of particle deposition formed as a result of restriction is determined based on the procedure mentioned earlier and the effect of water content and downstream pressure is studied. The critical flow speed that prevents such particle to accumulate in the certain pipe length is also addressed.Keywords: hydrate deposition, compressed natural gas, marine transportation, oceanography
Procedia PDF Downloads 4875691 Researches on Attractive Flowered Natural Woody Plants of Bursa Flora in Terms of Landscape Design
Authors: Elvan Ender, Murat Zencirkıran
Abstract:
One of the most important criteria that increase the success of design in landscape architecture is the visual effect. The characteristics that affect visual appearance in plant design vary depending on the phenological periods of the plants. In plants, although different effects are observed in different periods of the year, this effect is felt most prominently in flowering periods. For this reason, knowing the flowering time, duration and flower characteristics should be considered as a factor increasing the success of plant design. In this study, flower characteristics of natural woody plants with attractive flowers have been examined. Because of the variability of these characteristics of plants in the region, consideration of these criteria in the planting design processes in the region may increase the success of the design. At the same time, when species selection is made considering the obtained data, visuality and sustainability of natural species can be possible in Bursa city with planting design.Keywords: Bursa, flower characteristics, natural plants, planting design
Procedia PDF Downloads 2665690 Effect of Mineral Additives on Improving the Geotechnical Properties of Soils in Chlef
Authors: Messaoudi Mohammed Amin
Abstract:
The reduction of available land resources and the increased cout associated with the use of hight quality materials have led to the need for local soils to be used in geotecgnical construction however, poor engineering properties of these soils pose difficulties for constructions project and need to be stabilized to improve their properties in oyher works unsuitable soils with low bearing capacity, high plasticity coupled with high insatbility are frequently encountered hense, there is a need to improve the physical and mechanical charateristics of these soils to make theme more suitable for construction this can be done by using different mechanical and chemical methods clayey soil stabilization has been practiced for quite sometime bu mixing additives, such us cement, lime and fly ash to the soil to increase its strength. The aim of this project is to study the effect of using lime, natural pozzolana or combination of both on the geotecgnical cherateristics of clayey soil. Test specimen were subjected to atterberg limits test, compaction test, box shear test and uncomfined compression test Lime or natural pozzolana was added to clayey soil at rangs of 0-8% and 0-20% respectively. In addition combinations of lime –natural pozzolana were added to clayey soil at the same ranges specimen were cured for 1-7, and 28 days after which they were tested for uncofined compression tests. Based on the experimental results, it was concluded that an important decrease of plasticity index was observed for thr samples stabilized with the combinition lime-natural pozzolana in addition, the use of the combination lime-natural pozzolana modifies the clayey soil classification according to casagrand plasiticity chart. Moreover, based on the favourable results of shear and compression strength obtained, it can be concluded that clayey soil can be successfuly stabilized by combined action of lime and natural pozzolana also this combination showed an appreciable improvement of the shear parameters. Finally, since natural pozzolana is much cheaper than lime ,the addition of natural pozzolana in lime soil mix may particulary become attractive and can result in cost reduction of construction.Keywords: clay, soil stabilization, natural pozzolana, atterberg limits, compaction, compressive strength shear strength, curing
Procedia PDF Downloads 3015689 Determination of Natural Gamma Radioactivity in Sand along the Black Sea Coastal Region of Giresun, North Turkey
Authors: A. Karadeniz, Belgin Kucukomeroglu
Abstract:
In this study natural gamma radioactivity levels are determined on sands along the coastal regions of Giresun/Turkey. The coast of Giresun about 290 km long in investigated to collect 101 sand samples. Natural and artificial radioactivity concentrations of sand samples were measured by using HPGe gamma spectrometry. The average activity concentrations of 238U, 232Th, 40K and 137Cs on sand samples of Giresun were found to be 10.83±2.92 Bq/kg, 21.28±3.22 Bq/kg, 6.42±1.06 Bq/kg, 230.94±10.67 Bq/kg respectively. The average activity concentrations for these radionuclides were compared with the reported data of other parts of Turkey and other countries. The average absorbed dose rate for Giresun was calculated to be 38.68 nGy/h respectively. This value is significantly lower than the World averaged value of 60 nGy/h. The external annual effective dose rate concentration in Giresun was found to be 0.047 mSv/y respectively. This result is much lower than the recommeded limit of 5 mSv/y. The external hazard dose rate for Giresun weas calculated to be 0.21 respectively. This result is much lower than the recommended limit of 1.0.Keywords: concentration, radioactivity, Giresun, natural gamma radioactivity
Procedia PDF Downloads 3915688 Concrete Performance Evaluation of Coarse Aggregate Replacement by Civil Construction Waste
Authors: Juliane P. De Oliveira, Carlos H. Dos Santos, Marcia Shoji, Maria E. C. Ferreira, Natalia U. Yamaguchi
Abstract:
The construction sector is considered a major generator of environmental impacts due to the high consumption of natural resources and waste generation. Thus, this article aims to evaluate the performance of a concrete produced by the partial and total replacement of natural coarse aggregate by recycled coarse aggregate, derived from the concrete residue of buildings and demolitions. The study was made by comparing the compressive strength and absorption of three different concrete traces, keeping the water/cement factor of 0.60 and changing only the proportions of recycled coarse aggregate between 0%, 50% and 100%. Traces 50% and 100% obtained good results by comparing the actual specific mass, because the material used is lighter to the natural coarse aggregate. It was concluded that the concrete produced with recycled aggregates, even with inferior results, can be used where it is not needed a structural function, giving an adequate destination to the construction and demolition waste and consequently reducing the extraction and consumption of natural resources.Keywords: green concrete, recycled aggregate, recycling, sustainable development
Procedia PDF Downloads 1525687 Bis-Azlactone Based Biodegradable Poly(Ester Amide)s: Design, Synthesis and Study
Authors: Kobauri Sophio, Kantaria Tengiz, Tugushi David, Puiggali Jordi, Katsarava Ramaz
Abstract:
Biodegradable biomaterials (BB) are of high interest for numerous applications in modern medicine as resorbable surgical materials and drug delivery systems. This kind of materials can be cleared from the body after the fulfillment of their function that excludes a surgical intervention for their removal. One of the most promising BBare amino acids based biodegradable poly(ester amide)s (PEAs) which are composed of naturally occurring (α-amino acids) and non-toxic building blocks such as fatty diols and dicarboxylic acids. Key bis-nucleophilic monomers for synthesizing the PEAs are diamine-diesters-di-p-toluenesulfonic acid salts of bis-(α-amino acid)-alkylenediesters (TAADs) which form the PEAs after step-growth polymerization (polycondensation) with bis-electrophilic counter-partners - activated diesters of dicarboxylic acids. The PEAs combine all advantages of the 'parent polymers' – polyesters (PEs) and polyamides (PAs): Ability of biodegradation (PEs), a high affinity with tissues and a wide range of desired mechanical properties (PAs). The scopes of applications of thePEAs can substantially be expanded by their functionalization, e.g. through the incorporation of hydrophobic fragments into the polymeric backbones. Hydrophobically modified PEAs can form non-covalent adducts with various compounds that make them attractive as drug carriers. For hydrophobic modification of the PEAs, we selected so-called 'Azlactone Method' based on the application of p-phenylene-bis-oxazolinons (bis-azlactones, BALs) as active bis-electrophilic monomers in step-growth polymerization with TAADs. Interaction of BALs with TAADs resulted in the PEAs with low MWs (Mw2,800-19,600 Da) and poor material properties. The high-molecular-weight PEAs (Mw up to 100,000) with desirable material properties were synthesized after replacement of a part of BALs with activated diester - di-p-nitrophenylsebacate, or a part of TAAD with alkylenediamine – 1,6-hexamethylenediamine. The new hydrophobically modified PEAs were characterized by FTIR, NMR, GPC, and DSC. It was shown that after the hydrophobic modification the PEAs retain the biodegradability (in vitro study catalyzed by α-chymptrypsin and lipase), and are of interest for constructing resorbable surgical and pharmaceutical devices including drug delivering containers such as microspheres. The new PEAs are insoluble in hydrophobic organic solvents such as chloroform or dichloromethane (swell only) that allowed elaborating a new technology of fabricating microspheres.Keywords: amino acids, biodegradable polymers, bis-azlactones, microspheres
Procedia PDF Downloads 1755686 Optimization of Human Hair Concentration for a Natural Rubber Based Composite
Authors: Richu J. Babu, Sony Mathew, Sharon Rony Jacob, Soney C. George, Jibin C. Jacob
Abstract:
Human hair is a non-biodegradable waste available in plenty throughout the world but is rarely explored for applications in engineering fields. Tensile strength of human hair ranges from 170 to 220 MPa. This property of human hair can be made use in the field of making bio-composites[1]. The composite is prepared by commixing the human hair and natural rubber in a two roll mill along with additives followed by vulcanization. Here the concentration of the human hair is varied by fine-tuning the fiber length as 20 mm and sundry tests like tensile, abrasion, tear and hardness were conducted. While incrementing the fiber length up to a certain range the mechanical properties shows superior amendments.Keywords: human hair, natural rubber, composite, vulcanization, fiber loading
Procedia PDF Downloads 3825685 Synthesis and Characterization of Nanocellulose Based Bio-Composites
Authors: Krishnakant Bhole, Neerakallu D. Shivakumar, Shakti Singh Chauhan, Sanketh Tonannavar, Rajath S
Abstract:
Synthesis of natural-based composite materials is state of the art. This work discusses the preparation and characterization of cellulose nanofibers (CNF) extracted from the bamboo pulp using TEMPO-oxidization and high-pressure homogenization methods. Bio-composites are prepared using synthesized CNF and bamboo particles. Nanocellulose prepared is characterized using SEM and XRD for morphological and crystallinity analysis, and the formation of fibers at the nano level is ensured. Composite specimens are fabricated using these natural sources and subjected to tensile and flexural tests to characterize the mechanical properties such as modulus of elasticity (MOE), modulus of rupture (MOR), and interfacial strength. Further, synthesized nanocellulose is used as a binding agent to prepare particleboards using various natural sources like bamboo, areca nut, and banana in the form of fibers. From the results, it can be inferred that nanocellulose prepared from bamboo pulp acts as a binding agent for making bio-composites. Hence, the concept of using matrix and reinforcement derived from natural sources can be used to prepare green composites that are highly degradable.Keywords: nanocellulose, biocomposite, CNF, bamboo
Procedia PDF Downloads 87