Search results for: max heap tree
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 915

Search results for: max heap tree

705 Unveiling Vegetation Composition and Dynamics Along Urbanization Gradient in Ranchi, Eastern India

Authors: Purabi Saikia

Abstract:

The present study was carried out across 84 vegetated grids (>10% vegetation cover) along an urbanization gradient, ranging from the urban core to peri-urban and natural vegetation in and around Ranchi, Eastern India, aiming to examine the phytosociological attributes by belt transect (167 transects each of 0.5 ha) method. Overall, plant species richness was highest in natural vegetation (242 spp.), followed by peri-urban (198 spp.) and urban (182 spp.). Similarly, H’, CD, E, Dmg, Dmn, and ENS showed significant differences in the tree layer (H’: 0.45-3.36; CD: 0.04-1.00; E: 0.25-0.96; Dmg: 0.18-7.15; Dmn: 0.03-4.24, and ENS: 1-29) in the entire urbanization gradient. Various α-diversity indices of the adult trees (H’: 3.98, Dmg: 14.32, Dmn: 2.38, ENS: 54) were comparatively better in urban vegetation compared to peri-urban (H’: 2.49, Dmg: 10.37, Dmn: 0.81, ENS: 12) and natural vegetation (H’: 2.89, Dmg: 13.46, Dmn: 0.85, ENS: 18). Tree communities have shown better response and adaptability in urban vegetation than shrubs and herbs. The prevalence of rare (41%), very rare (29%), and exotic species (39%) in urban vegetation may be due to the intentional introduction of a number of fast-growing exotic tree species in different social forestry plantations that have created a diverse and heterogeneous habitat. Despite contagious distribution, the majority of trees (36.14%) have shown no regeneration in the entire urbanization gradient. Additionally, a quite high percentage of IUCN red-listed plant species (51% and 178 spp.), including endangered (01 sp.), vulnerable (03 spp.), near threatened (04 spp.), least concern (163 spp.), and data deficient (07 spp.), warrant immediate policy interventions. Overall, the study witnessed subsequent transformations in floristic composition and structure from urban to natural vegetation in Eastern India. The outcomes are crucial for fostering resilient ecosystems, biodiversity conservation, and sustainable development in the region that supports diverse plant communities.

Keywords: floristic communities, urbanization gradients, exotic species, regeneration

Procedia PDF Downloads 19
704 The Role of Agroforestry Practices in Climate Change Mitigation in Western Kenya

Authors: Humphrey Agevi, Harrison Tsingalia, Richard Onwonga, Shem Kuyah

Abstract:

Most of the world ecosystems have been affected by the effects of climate change. Efforts have been made to mitigate against climate change effects. While most studies have been done in forest ecosystems and pure plant plantations, trees on farms including agroforestry have only received attention recently. Agroforestry systems and tree cover on agricultural lands make an important contribution to climate change mitigation but are not systematically accounted for in the global carbon budgets. This study sought to: (i) determine tree diversity in different agroforestry practices; (ii) determine tree biomass in different agroforestry practices. Study area was determined according to the Land degradation surveillance framework (LSDF). Two study sites were established. At each of the site, a 5km x 10km block was established on a map using Google maps and satellite images. Way points were then uploaded in a GPS helped locate the blocks on the ground. In each of the blocks, Nine (8) sentinel clusters measuring 1km x 1km were randomized. Randomization was done in a common spreadsheet program and later be downloaded to a Global Positioning System (GPS) so that during surveys the researchers were able to navigate to the sampling points. In each of the sentinel cluster, two farm boundaries were randomly identified for convenience and to avoid bias. This led to 16 farms in Kakamega South and 16 farms in Kakamega North totalling to 32 farms in Kakamega Site. Species diversity was determined using Shannon wiener index. Tree biomass was determined using allometric equation. Two agroforestry practices were found; homegarden and hedgerow. Species diversity ranged from 0.25-2.7 with a mean of 1.8 ± 0.10. Species diversity in homegarden ranged from 1-2.7 with a mean of 1.98± 0.14. Hedgerow species diversity ranged from 0.25-2.52 with a mean of 1.74± 0.11. Total Aboveground Biomass (AGB) determined was 13.96±0.37 Mgha-1. Homegarden with the highest abundance of trees had higher above ground biomass (AGB) compared to hedgerow agroforestry. This study is timely as carbon budgets in the agroforestry can be incorporated in the global carbon budgets and improve the accuracy of national reporting of greenhouse gases.

Keywords: agroforestry, allometric equations, biomass, climate change

Procedia PDF Downloads 363
703 Distribution of Epiphytic Lichen Biodiversity and Comparision with Their Preferred Tree Species around the Şeker Canyon, Karabük, Turkey

Authors: Hatice Esra Akgül, Celaleddin Öztürk

Abstract:

Lichen biodiversity in forests is controlled by environmental conditions. Epiphytic lichens have some degree of substrate specificity. Diversity and distribution of epiphytic lichens are affected by humidity, light, altitude, temperature, bark pH of the trees.This study describes the epiphytic lichen communities with comparing their preferred tree species. 34 epiphytic lichen taxa are reported on Pinus sp. L., Quercus sp. L., Fagus sp. L., Carpinus sp. L., Abies sp. Mill., Fraxinus sp. Tourn. ex L. from different altitudes around the Şeker Canyon (Karabük, Turkey). 11 of these taxa are growing on Quercus sp., 10 of them are growing on Fagus sp., 7 of them are growing on Pinus sp., 4 of them are on Carpinus sp., 2 of them are on Abies sp. and one of them is on Fraxinus sp. Evernia prunastri (L.) Ach. is growing on both of Fagus sp. and Quercus sp. Lecanora pulicaris (Pers.) Ach. is growing on both of Abies sp. and Quercus sp.

Keywords: biodiversity, epiphytic lichen, forest, Turkey

Procedia PDF Downloads 338
702 Predicting Resistance of Commonly Used Antimicrobials in Urinary Tract Infections: A Decision Tree Analysis

Authors: Meera Tandan, Mohan Timilsina, Martin Cormican, Akke Vellinga

Abstract:

Background: In general practice, many infections are treated empirically without microbiological confirmation. Understanding susceptibility of antimicrobials during empirical prescribing can be helpful to reduce inappropriate prescribing. This study aims to apply a prediction model using a decision tree approach to predict the antimicrobial resistance (AMR) of urinary tract infections (UTI) based on non-clinical features of patients over 65 years. Decision tree models are a novel idea to predict the outcome of AMR at an initial stage. Method: Data was extracted from the database of the microbiological laboratory of the University Hospitals Galway on all antimicrobial susceptibility testing (AST) of urine specimens from patients over the age of 65 from January 2011 to December 2014. The primary endpoint was resistance to common antimicrobials (Nitrofurantoin, trimethoprim, ciprofloxacin, co-amoxiclav and amoxicillin) used to treat UTI. A classification and regression tree (CART) model was generated with the outcome ‘resistant infection’. The importance of each predictor (the number of previous samples, age, gender, location (nursing home, hospital, community) and causative agent) on antimicrobial resistance was estimated. Sensitivity, specificity, negative predictive (NPV) and positive predictive (PPV) values were used to evaluate the performance of the model. Seventy-five percent (75%) of the data were used as a training set and validation of the model was performed with the remaining 25% of the dataset. Results: A total of 9805 UTI patients over 65 years had their urine sample submitted for AST at least once over the four years. E.coli, Klebsiella, Proteus species were the most commonly identified pathogens among the UTI patients without catheter whereas Sertia, Staphylococcus aureus; Enterobacter was common with the catheter. The validated CART model shows slight differences in the sensitivity, specificity, PPV and NPV in between the models with and without the causative organisms. The sensitivity, specificity, PPV and NPV for the model with non-clinical predictors was between 74% and 88% depending on the antimicrobial. Conclusion: The CART models developed using non-clinical predictors have good performance when predicting antimicrobial resistance. These models predict which antimicrobial may be the most appropriate based on non-clinical factors. Other CART models, prospective data collection and validation and an increasing number of non-clinical factors will improve model performance. The presented model provides an alternative approach to decision making on antimicrobial prescribing for UTIs in older patients.

Keywords: antimicrobial resistance, urinary tract infection, prediction, decision tree

Procedia PDF Downloads 255
701 Forecasting Stock Indexes Using Bayesian Additive Regression Tree

Authors: Darren Zou

Abstract:

Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.

Keywords: BART, Bayesian, predict, stock

Procedia PDF Downloads 130
700 Mosquito Repellent Finishing of Cotton Using Pepper Tree (Schinus molle) Seed Oil Extract

Authors: Granch Berhe Tseghai, Tekalgn Gebremedhin Belay, Abrehaley Hagos Gebremariam

Abstract:

Mosquito repellent textiles are one of the most growing ways to advance the textile field by providing the needed characteristics of protecting against mosquitoes, especially in the tropical areas. These types of textiles ensure the protection of human beings from the mosquitoes and the mosquito-borne disease includes malaria, filariasis and dengue fever. In this work Schinus Molle oil (pepper tree oil) was used for mosquito repellent finish as a preformatted thing. This study focused on the penetration of mosquito repellent finish in textile applications as well as nature based alternatives to commercial chemical mosquito repellents in the market. Suitable techniques and materials to achieve mosquito repellency are discussed and pointed out according to our project. In this study textile, sample was treated with binder and schinus oil. The different property has been studied for effective mosquito repellency.

Keywords: cotton, Schinus molle seed oil, mosquito repellent, mosquito-borne diseases

Procedia PDF Downloads 284
699 Identification of Healthy and BSR-Infected Oil Palm Trees Using Color Indices

Authors: Siti Khairunniza-Bejo, Yusnida Yusoff, Nik Salwani Nik Yusoff, Idris Abu Seman, Mohamad Izzuddin Anuar

Abstract:

Most of the oil palm plantations have been threatened by Basal Stem Rot (BSR) disease which causes serious economic impact. This study was conducted to identify the healthy and BSR-infected oil palm tree using thirteen color indices. Multispectral and thermal camera was used to capture 216 images of the leaves taken from frond number 1, 9 and 17. Indices of normalized difference vegetation index (NDVI), red (R), green (G), blue (B), near infrared (NIR), green – blue (GB), green/blue (G/B), green – red (GR), green/red (G/R), hue (H), saturation (S), intensity (I) and thermal index (T) were used. From this study, it can be concluded that G index taken from frond number 9 is the best index to differentiate between the healthy and BSR-infected oil palm trees. It not only gave high value of correlation coefficient (R=-0.962), but also high value of separation between healthy and BSR-infected oil palm tree. Furthermore, power and S model developed using G index gave the highest R2 value which is 0.985.

Keywords: oil palm, image processing, disease, leaves

Procedia PDF Downloads 498
698 Mycorrhizal Autochthonous Consortium Induced Defense-Related Mechanisms of Olive Trees against Verticillium dahliae

Authors: Hanane Boutaj, Abdelilah Meddich, Said Wahbi, Zainab El Alaoui-Talibi, Allal Douira, Abdelkarim Filali-Maltouf, Cherkaoui El Modafar

Abstract:

The present work aims to investigate the effect of arbuscular mycorrhizal fungi (AMF) in improving the olive tree resistance to Verticillium wilt caused by Verticillium dahliae. Inoculated plants with a mycorrhizal autochthonous consortium 'Rhizolive consortium' and pure strain 'Glomus irregulare' were infected after three months with V. dahliae. The improving of olive tree resistance was determined through disease severity, incidence, and defoliation. On the other hand, the defense mechanisms of olive plants were evaluated through lignin content, phenylalanine ammonia lyase (PAL) activity, and polyphenol content. The results revealed that both AMF significantly (p < 0.05) reduced disease development and the rate of defoliation in infected olive plants. Moreover, the contents of lignin were boosted after mycorrhizal inoculation in both the roots and the stems of olive plants, which remained significantly (p < 0.001) higher after the 90th days of V. dahliae inoculation. PAL activity was increased after V. dahliae inoculation in the stems of 'Rhizolive consortium' treatment that were 17 times higher than those in the roots of olive plants. The polyphenol content in the stems was about twice higher than those in the roots. The reduction of disease severity was accompanied by increased levels of lignin content, PAL activity, and polyphenol content, particularly in the stems of olive plants, indicating the strengthening of the olive plant immune system against V. dahliae.

Keywords: olive tree, Mycorrhizal autochthonous consortium, Glomus irregulare, Verticillium dahliae, defense mechanisms

Procedia PDF Downloads 117
697 Composite Kernels for Public Emotion Recognition from Twitter

Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang

Abstract:

The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.

Keywords: emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining

Procedia PDF Downloads 218
696 Warfare Ships at Ancient Egypt: Since Pre-Historic Era (3700 B.C.) Uptill the End of the 2nd Intermediate Period (1550 B.C.)

Authors: Mohsen Negmeddin

Abstract:

Throughout their history, ancient Egyptians had known several kinds and types of boats, which were made from two main kinds of materials, the local one, as the dried papyrus reeds and the local tree trunks, the imported one, as the boats which were made from Lebanon cedar tree trunks. A varied using of these boats, as the fish hunting small boats, the transportation and trade boats "Cargo Boats", as well as the ceremonial boats, and the warfare boats. The research is intending for the last one, the warfare boats and the river/maritime battles since the beginning of ancient Egyptian civilization at the pre-historic era up till the end of the second intermediate period, to reveal the kinds and types of those fighting ships before establishing the Egyptian navy at the beginning of the New Kingdome (1550-1770 B.C). Two methods will follow at this research, the mention of names and titles of these ships through the texts (ancient Egyptian language) resources, and the depiction of it at the scenes.

Keywords: the warfare boats, the maritime battles, the pre-historic era, the second intermediate period

Procedia PDF Downloads 278
695 Assessing Effective Parameters on the Extraction of Copper from Pregnant Leach Solution Using Chemorex CP-150

Authors: Kimia Kiaei, Mohammad Hasan Golpayegani

Abstract:

The extraction of copper from a pregnant leach solution obtained through leaching was investigated in this study. Chemorex CP-150 was utilized as an organic extractant, while kerosene served as a diluent. The study focused on determining the optimal ratios of extractant to diluent, as well as the pH of the aqueous phase. Isotherm curves of extraction were generated, and Mc. Cabe-Thiele diagrams were constructed separately for an optimized experimental pH of 3.17 and a typical industrial pH of 2. Additionally, the sulfuric acid-to-PLS ratio and concentrations of interfering ions comprising Mn²⁺ and Fe³⁺ in the strip solution were evaluated during the stripping stage. The results indicated that the optimized values for the extractant-to-diluent ratio and pH were 5% and 3.17, respectively. The Mc. Cabe-Thiele diagrams revealed that at an aqueous-to-organic ratio of 1, the theoretical stages of solvent extraction at pH levels of 3.17 and 2 were one and two, respectively. Moreover, a sulfuric acid-to-PLS ratio of 20% was employed in the stripping stage, and it was observed that the concentrations of interfering ions fell within the acceptable range.

Keywords: copper, solvent extraction, heap leaching, Chemorex CP-150, pregnant leach solution

Procedia PDF Downloads 69
694 Heart Ailment Prediction Using Machine Learning Methods

Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula

Abstract:

The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.

Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting

Procedia PDF Downloads 50
693 Characteristics of Tremella fuciformis and Annulohypoxylon stygium for Optimal Cultivation Conditions

Authors: Eun-Ji Lee, Hye-Sung Park, Chan-Jung Lee, Won-Sik Kong

Abstract:

We analyzed the DNA sequence of the ITS (Internal Transcribed Spacer) region of the 18S ribosomal gene and compared it with the gene sequence of T. fuciformis and Hypoxylon sp. in the BLAST database. The sequences of collected T. fuciformis and Hypoxylon sp. have over 99% homology in the T. fuciformis and Hypoxylon sp. sequence BLAST database. In order to select the optimal medium for T. fuciformis, five kinds of a medium such as Potato Dextrose Agar (PDA), Mushroom Complete Medium (MCM), Malt Extract Agar (MEA), Yeast extract (YM), and Compost Extract Dextrose Agar (CDA) were used. T. fuciformis showed the best growth on PDA medium, and Hypoxylon sp. showed the best growth on MCM. So as to investigate the optimum pH and temperature, the pH range was set to pH4 to pH8 and the temperature range was set to 15℃ to 35℃ (5℃ degree intervals). Optimum culture conditions for the T. fuciformis growth were pH5 at 25℃. Hypoxylon sp. were pH6 at 25°C. In order to confirm the most suitable carbon source, we used fructose, galactose, saccharose, soluble starch, inositol, glycerol, xylose, dextrose, lactose, dextrin, Na-CMC, adonitol. Mannitol, mannose, maltose, raffinose, cellobiose, ethanol, salicine, glucose, arabinose. In the optimum carbon source, T. fuciformis is xylose and Hypoxylon sp. is arabinose. Using the column test, we confirmed sawdust a suitable for T. fuciformis, since the composition of sawdust affects the growth of fruiting bodies of T. fuciformis. The sawdust we used is oak tree, pine tree, poplar, birch, cottonseed meal, cottonseed hull. In artificial cultivation of T. fuciformis with sawdust medium, T. fuciformis and Hypoxylon sp. showed fast mycelial growth on mixture of oak tree sawdust, cottonseed hull, and wheat bran.

Keywords: cultivation, optimal condition, tremella fuciformis, nutritional source

Procedia PDF Downloads 210
692 Expert Supporting System for Diagnosing Lymphoid Neoplasms Using Probabilistic Decision Tree Algorithm and Immunohistochemistry Profile Database

Authors: Yosep Chong, Yejin Kim, Jingyun Choi, Hwanjo Yu, Eun Jung Lee, Chang Suk Kang

Abstract:

For the past decades, immunohistochemistry (IHC) has been playing an important role in the diagnosis of human neoplasms, by helping pathologists to make a clearer decision on differential diagnosis, subtyping, personalized treatment plan, and finally prognosis prediction. However, the IHC performed in various tumors of daily practice often shows conflicting and very challenging results to interpret. Even comprehensive diagnosis synthesizing clinical, histologic and immunohistochemical findings can be helpless in some twisted cases. Another important issue is that the IHC data is increasing exponentially and more and more information have to be taken into account. For this reason, we reached an idea to develop an expert supporting system to help pathologists to make a better decision in diagnosing human neoplasms with IHC results. We gave probabilistic decision tree algorithm and tested the algorithm with real case data of lymphoid neoplasms, in which the IHC profile is more important to make a proper diagnosis than other human neoplasms. We designed probabilistic decision tree based on Bayesian theorem, program computational process using MATLAB (The MathWorks, Inc., USA) and prepared IHC profile database (about 104 disease category and 88 IHC antibodies) based on WHO classification by reviewing the literature. The initial probability of each neoplasm was set with the epidemiologic data of lymphoid neoplasm in Korea. With the IHC results of 131 patients sequentially selected, top three presumptive diagnoses for each case were made and compared with the original diagnoses. After the review of the data, 124 out of 131 were used for final analysis. As a result, the presumptive diagnoses were concordant with the original diagnoses in 118 cases (93.7%). The major reason of discordant cases was that the similarity of the IHC profile between two or three different neoplasms. The expert supporting system algorithm presented in this study is in its elementary stage and need more optimization using more advanced technology such as deep-learning with data of real cases, especially in differentiating T-cell lymphomas. Although it needs more refinement, it may be used to aid pathological decision making in future. A further application to determine IHC antibodies for a certain subset of differential diagnoses might be possible in near future.

Keywords: database, expert supporting system, immunohistochemistry, probabilistic decision tree

Procedia PDF Downloads 224
691 Using Data Mining Techniques to Evaluate the Different Factors Affecting the Academic Performance of Students at the Faculty of Information Technology in Hashemite University in Jordan

Authors: Feras Hanandeh, Majdi Shannag

Abstract:

This research studies the different factors that could affect the Faculty of Information Technology in Hashemite University students’ accumulative average. The research paper verifies the student information, background, their academic records, and how this information will affect the student to get high grades. The student information used in the study is extracted from the student’s academic records. The data mining tools and techniques are used to decide which attribute(s) will affect the student’s accumulative average. The results show that the most important factor which affects the students’ accumulative average is the student Acceptance Type. And we built a decision tree model and rules to determine how the student can get high grades in their courses. The overall accuracy of the model is 44% which is accepted rate.

Keywords: data mining, classification, extracting rules, decision tree

Procedia PDF Downloads 416
690 Antifeedant Activity of Plant Extracts on the Spongy Moth (Lymantria dispar) Larvae

Authors: Jovana M. Ćirković, Aleksandar M. Radojković, Sanja Z. Perać, Jelena N. Jovanović, Zorica M. Branković, Slobodan D. Milanović, Ivan Lj. Milenković, Jovan N. Dobrosavljević, Nemanja V. Simović, Vanja M. Tadić, Ana R. Žugić, Goran O. Branković

Abstract:

The protection of forests is a national interest and of strategic importance in every country. The spongy moth (Lymantria dispar) is a damaging invasive pest that can weaken and destroy trees by defoliating them. Chemical pesticides commonly used to protect forests against spongy moths not only have a negative impact on terrestrial and aquatic organisms/ecosystems but also often fail to provide significant protection. Therefore, many eco-friendly alternatives have been considered. Within this research, a new biopesticide was developed based on the method of nanoencapsulation of plant extracts in a biopolymer matrix, which provides a slow release of the active components during a substantial time period. The antifeedant activity of plant extracts of common (Fraxinus excelsior L.), manna (F. ornus L.) ash tree, and the tree of heaven Ailanthus altissima (Mill.) was tested on the spongy moth (Lymantria dispar L, 1758) larvae. To test the antifeedant activity of these compounds, the choice and non-choice tests in laboratory conditions for different plant extract concentrations (0.01, 0.1, 0.5, and 1 % v/v) were carried out. In both cases, the best results showed formulations based on the tree of heaven and common ash for the concentration of 1%, with deterioration indices of 163 and 132, respectively. The main benefit of these formulations is their versatility, effectiveness, prolonged effect, and because they are completely environmentally acceptable. Therefore, they can be considered for suppression of the spongy moth in forest ecosystems.

Keywords: Ailanthus altissima (Mill.), Fraxinus excelsior L., encapsulation, Lymantria dispar

Procedia PDF Downloads 77
689 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel

Abstract:

Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.

Keywords: classification, data mining, spam filtering, naive bayes, decision tree

Procedia PDF Downloads 411
688 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: decision tree, water quality, water pollution, machine learning

Procedia PDF Downloads 82
687 A Reliable Multi-Type Vehicle Classification System

Authors: Ghada S. Moussa

Abstract:

Vehicle classification is an important task in traffic surveillance and intelligent transportation systems. Classification of vehicle images is facing several problems such as: high intra-class vehicle variations, occlusion, shadow, illumination. These problems and others must be considered to develop a reliable vehicle classification system. In this study, a reliable multi-type vehicle classification system based on Bag-of-Words (BoW) paradigm is developed. Our proposed system used and compared four well-known classifiers; Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Decision Tree to classify vehicles into four categories: motorcycles, small, medium and large. Experiments on a large dataset show that our approach is efficient and reliable in classifying vehicles with accuracy of 95.7%. The SVM outperforms other classification algorithms in terms of both accuracy and robustness alongside considerable reduction in execution time. The innovativeness of developed system is it can serve as a framework for many vehicle classification systems.

Keywords: vehicle classification, bag-of-words technique, SVM classifier, LDA classifier, KNN classifier, decision tree classifier, SIFT algorithm

Procedia PDF Downloads 358
686 Bayesian System and Copula for Event Detection and Summarization of Soccer Videos

Authors: Dhanuja S. Patil, Sanjay B. Waykar

Abstract:

Event detection is a standout amongst the most key parts for distinctive sorts of area applications of video data framework. Recently, it has picked up an extensive interest of experts and in scholastics from different zones. While detecting video event has been the subject of broad study efforts recently, impressively less existing methodology has considered multi-model data and issues related efficiency. Start of soccer matches different doubtful circumstances rise that can't be effectively judged by the referee committee. A framework that checks objectively image arrangements would prevent not right interpretations because of some errors, or high velocity of the events. Bayesian networks give a structure for dealing with this vulnerability using an essential graphical structure likewise the probability analytics. We propose an efficient structure for analysing and summarization of soccer videos utilizing object-based features. The proposed work utilizes the t-cherry junction tree, an exceptionally recent advancement in probabilistic graphical models, to create a compact representation and great approximation intractable model for client’s relationships in an interpersonal organization. There are various advantages in this approach firstly; the t-cherry gives best approximation by means of junction trees class. Secondly, to construct a t-cherry junction tree can be to a great extent parallelized; and at last inference can be performed utilizing distributed computation. Examination results demonstrates the effectiveness, adequacy, and the strength of the proposed work which is shown over a far reaching information set, comprising more soccer feature, caught at better places.

Keywords: summarization, detection, Bayesian network, t-cherry tree

Procedia PDF Downloads 324
685 Fungi Associated with Decline of Kikar (Acacia nilotica) and Red River Gum (Eucalyptus camaldulensis) in Faisalabad

Authors: I. Ahmad, A. Hannan, S. Ahmad, M. Asif, M. F. Nawaz, M. A. Tanvir, M. F. Azhar

Abstract:

During this research, a comprehensive survey of tree growing areas of Faisalabad district of Pakistan was conducted to observe the symptoms, spectrum, occurrence and severity of A. nilotica and E. camaldulensis decline. Objective of current research was to investigate specific fungal pathogens involved in decline of A. nilotica and E. camaldulensis. For this purpose, infected roots, bark, neck portion, stem, branches, leaves and infected soils were collected to identify associated fungi. Potato dextrose agar (PDA) and Czepak dox agar media were used for isolations. Identification of isolated fungi was done microscopically and different fungi were identified. During survey of urban locations of Faisalabad, disease incidence on Kikar and Eucalyptus was recorded as 3.9-7.9% and 2.6-7.1% respectively. Survey of Agroforest zones of Faisalabad revealed decline incidence on kikar 7.5% from Sargodha road while on Satiana and Jhang road it was not planted. In eucalyptus trees, 4%, 8% and 0% disease incidence was observed on Jhang road, Sargodha road and Satiana road respectively. The maximum fungus isolated from the kikar tree was Drechslera australiensis (5.00%) from the stem part. Aspergillus flavus also gave the maximum value of (3.05%) from the bark. Alternaria alternata gave the maximum value of (2.05%) from leaves. Rhizopus and Mucor spp. were recorded minimum as compared to the Drechslera, Alternaria and Aspergillus. The maximum fungus isolated from the Eucalyptus tree was Armillaria luteobubalina (5.00%) from the stem part. The other fungi isolated were Macrophamina phaseolina and A. niger.

Keywords: decline, frequency of mycoflora, A. nilotica and E. camaldulensis, Drechslera australiensis, Armillaria luteobubalina

Procedia PDF Downloads 369
684 Chemical Composition and Nutritional Value of Leaves and Pods of Leucaena Leucocephala, Prosopis Laevigata and Acacia Farnesiana in a Xerophyllous Shrubland

Authors: Miguel Mellado, Cecilia Zapata

Abstract:

Goats can be exploited in harsh environments due to their capacity to adjust to limited quantity and quality forage sources. In these environments, leguminous trees can be used as supplementary feeds as foliage and fruits of these trees can contribute to maintain or improve production efficiency in ruminants. The objective of this study was to determine the nutritional value of three leguminous trees heavily selected by goats in a xerophyllous shrubland. Chemical composition and in vitro dry matter disappearance (IVDMD) of leaves and pods from leucaena (Leucaena leucocephala), mesquite (Prosopis laevigata) and huisache (Acacia farnesiana) is presented. Crude protein (CP) ranged from 17.3% for leaves of huisache to 21.9% for leucaena. The neutral detergent fiber (NDF) content ranged from 39.0 to 40.3 with no difference among fodder threes. Across tree species, mean IVDMD was 61.6% for pods and 52.2% for leaves. IVDMD for leaves was highest (P < 0.01) for leucaena (54.9%) and lowest for huisache (47.3%). Condensed tannins in an acetonic extract were highest for leaves of huisache (45.3 mg CE/g DM) and lowest for mesquite (25.9 mg CE/g DM). Pods and leaves of huisache presented the highest number of secondary metabolites, mainly related to hydrobenzoic acid and flavonols; leucaena and mesquite presented mainly flavonols and anthocyanins. It was concluded that leaves and pods of leucaena, mesquite and huisache constitute valuable forages for ruminant livestock due to its low fiber, high CP levels, moderate in vitro fermentation characteristics and high mineral content. Keywords: Fodder tree; ruminants; secondary metabolites; minerals; tannins

Keywords: fodder tree, ruminants, secondary metabolites, minerals, tannins

Procedia PDF Downloads 144
683 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet

Authors: Azene Zenebe

Abstract:

Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.

Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science

Procedia PDF Downloads 153
682 Decision-Tree-Based Foot Disorders Classification Using Demographic Variable

Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi

Abstract:

Background:-Due to the essential role of the foot in movement, foot disorders (FDs) have significant impacts on activity and quality of life. Many studies confirmed the association between FDs and demographic characteristics. On the other hand, recent advances in data collection and statistical analysis led to an increase in the volume of databases. Analysis of patient’s data through the decision tree can be used to explore the relationship between demographic characteristics and FDs. Significance of the study: This study aimed to investigate the relationship between demographic characteristics with common FDs. The second purpose is to better inform foot intervention, we classify FDs based on demographic variables. Methodologies: We analyzed 2323 subjects with pes-planus (PP), pes-cavus (PC), hallux-valgus (HV) and plantar-fasciitis (PF) who were referred to a foot therapy clinic between 2015 and 2021. Subjects had to fulfill the following inclusion criteria: (1) weight between 14 to 150 kilogram, (2) height between 30 to 220, (3) age between 3 to 100 years old, and (4) BMI between 12 to 35. Medical archives of 2323 subjects were recorded retrospectively and all the subjects examined by an experienced physician. Age and BMI were classified into five and four groups, respectively. 80% of the data were randomly selected as training data and 20% tested. We build a decision tree model to classify FDs using demographic characteristics. Findings: Results demonstrated 981 subjects from 2323 (41.9%) of people who were referred to the clinic with FDs were diagnosed as PP, 657 (28.2%) PC, 628 (27%) HV and 213 (9%) identified with PF. The results revealed that the prevalence of PP decreased in people over 18 years of age and in children over 7 years. In adults, the prevalence depends first on BMI and then on gender. About 10% of adults and 81% of children with low BMI have PP. There is no relationship between gender and PP. PC is more dependent on age and gender. In children under 7 years, the prevalence was twice in girls (10%) than boys (5%) and in adults over 18 years slightly higher in men (62% vs 57%). HV increased with age in women and decreased in men. Aging and obesity have increased the prevalence of PF. We conclude that the accuracy of our approach is sufficient for most research applications in FDs. Conclusion:-The increased prevalence of PP in children is probably due to the formation of the arch of the foot at this age. Increasing BMI by applying high pressure on the foot can increase the prevalence of this disorder in the foot. In PC, the Increasing prevalence of PC from women to men with age may be due to genetics and innate susceptibility of men to this disorder. HV is more common in adult women, which may be due to environmental reasons such as shoes, and the prevalence of PF in obese adult women may also be due to higher foot pressure and housekeeping activities.

Keywords: decision tree, demographic characteristics, foot disorders, machine learning

Procedia PDF Downloads 262
681 Structured Access Control Mechanism for Mesh-based P2P Live Streaming Systems

Authors: Chuan-Ching Sue, Kai-Chun Chuang

Abstract:

Peer-to-Peer (P2P) live streaming systems still suffer a challenge when thousands of new peers want to join into the system in a short time, called flash crowd, and most of new peers suffer long start-up delay. Recent studies have proposed a slot-based user access control mechanism, which periodically determines a certain number of new peers to enter the system, and a user batch join mechanism, which divides new peers into several tree structures with fixed tree size. However, the slot-based user access control mechanism is difficult for accurately determining the optimal time slot length, and the user batch join mechanism is hard for determining the optimal tree size. In this paper, we propose a structured access control (SAC) mechanism, which constructs new peers to a multi-layer mesh structure. The SAC mechanism constructs new peer connections layer by layer to replace periodical access control, and determines the number of peers in each layer according to the system’s remaining upload bandwidth and average video rate. Furthermore, we propose an analytical model to represent the behavior of the system growth if the system can utilize the upload bandwidth efficiently. The analytical result has shown the similar trend in system growth as the SAC mechanism. Additionally, the extensive simulation is conducted to show the SAC mechanism outperforms two previously proposed methods in terms of system growth and start-up delay.

Keywords: peer-to-peer, live video streaming system, flash crowd, start-up delay, access control

Procedia PDF Downloads 317
680 Immature Palm Tree Detection Using Morphological Filter for Palm Counting with High Resolution Satellite Image

Authors: Nur Nadhirah Rusyda Rosnan, Nursuhaili Najwa Masrol, Nurul Fatiha MD Nor, Mohammad Zafrullah Mohammad Salim, Sim Choon Cheak

Abstract:

Accurate inventories of oil palm planted areas are crucial for plantation management as this would impact the overall economy and production of oil. One of the technological advancements in the oil palm industry is semi-automated palm counting, which is replacing conventional manual palm counting via digitizing aerial imagery. Most of the semi-automated palm counting method that has been developed was limited to mature palms due to their ideal canopy size represented by satellite image. Therefore, immature palms were often left out since the size of the canopy is barely visible from satellite images. In this paper, an approach using a morphological filter and high-resolution satellite image is proposed to detect immature palm trees. This approach makes it possible to count the number of immature oil palm trees. The method begins with an erosion filter with an appropriate window size of 3m onto the high-resolution satellite image. The eroded image was further segmented using watershed segmentation to delineate immature palm tree regions. Then, local minimum detection was used because it is hypothesized that immature oil palm trees are located at the local minimum within an oil palm field setting in a grayscale image. The detection points generated from the local minimum are displaced to the center of the immature oil palm region and thinned. Only one detection point is left that represents a tree. The performance of the proposed method was evaluated on three subsets with slopes ranging from 0 to 20° and different planting designs, i.e., straight and terrace. The proposed method was able to achieve up to more than 90% accuracy when compared with the ground truth, with an overall F-measure score of up to 0.91.

Keywords: immature palm count, oil palm, precision agriculture, remote sensing

Procedia PDF Downloads 76
679 The Assessment Groundwater Geochemistry of Some Wells in Rafsanjan Plain, Southeast of Iran

Authors: Milad Mirzaei Aminiyan, Abdolreza Akhgar, Farzad Mirzaei Aminiyan

Abstract:

Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Pistachio is a main crop that accounts for a considerable portion of Iranian agricultural exports. Give that pistachio tree is a tolerant type of tree to saline and alkaline soil and water conditions, but groundwater and irrigation water quality play important roles in main production this crop. For this purpose, 94 well water samples were taken from 25 wells and samples were analyzed. The results showed give that region’s geological, climatic characteristics, statistical analysis, and based on dominant cations and anions in well water samples (piper diagram); four main types of water were found: Na-Cl, K-Cl, Na-SO4, and K-SO4. It seems that most wells in terms of water quality (salinity and alkalinity) and based on Wilcox diagram have critical status. The analysis suggested that more than eighty-seven percentage of the well water samples have high values of EC that these values are higher than into critical limit EC value for irrigation water, which may be due to the sandy soils in this area. Most groundwater were relatively unsuitable for irrigation but it could be used by application of correct management such as removing and reducing the ion concentrations of Cl‾, SO42‾, Na+ and total hardness in groundwater and also the concentrated deep groundwater was required treatment to reduce the salinity and sodium hazard. Given that irrigation water quality in this area was relatively unsuitable for most agriculture production but pistachio tree was adapted to this area conditions. The integrated management of groundwater for irrigation is the way to solve water quality issues not only in Rafsanjan area, but also in other arid and semi-arid areas.

Keywords: groundwater quality, irrigation water quality, salinity, alkalinity, Rafsanjan plain, pistachio

Procedia PDF Downloads 417
678 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa

Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam

Abstract:

Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.

Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines

Procedia PDF Downloads 515
677 Study of Irritant and Anti-inflammatory Activity of Snuhi/Zaqqum (Euphorbia nerifolia) with Special Reference to Holy Quran and Ayurveda

Authors: Mohammed Khalil Ur Rahman, Pradnya Chigle, Bushra Farhen

Abstract:

Indian mythology believes that Vedas are eternal treatises. Vedas are categorized into four divisions viz., Rigveda, Yajurveda, Samveda, Atharveda. All these spiritual classics not only deal with rituals and customs but also consist of inclusion of many references related to health. Out of these four, Atharveda deals with maximum principles pertaining to health sciences. Therefore, it is said that the science and the art of Ayurveda has developed from Atharveda. Ayurveda deals with many medicinal plants either as a single therapeutic use or in combination. One such medicinal plant is Snuhi (Euphorbia neriifolia Linn.) which finds its extensive importance along with Haridra and Apamargakshar, in the preparation of Ksharsutra which in turn is used for the treatment of Fistula in Ano. It is interesting to note that this plant Snuhi is also referred in Holy Quran as the Tree of Zaqqum advocated as the food for the sinners as a part of torment. The reference in Surat Ad-Dukhan is as follows: - 44:43-46. “Verily, the tree of Zaqqum will be the food of the sinners, Like boiling oil, it will boil in the bellies, like the boiling of scalding water.” The above verse implies that plant Snuhi/Zaqqum due to irritant property acts as a drastic purgative but at the same time it also possesses anti inflammatory properties in order to relieve the irritation. These properties of Zaqqum has been unfolded in the modern research which states that, Diterpene polycyclic esters are responsible for its toxic and irritant nature whereas; triterpenes are responsible for its anti inflammatory property. Present work will be an effort to review the concept of Quran about latex of the Tree of Zaqqum in terms of its phytochemistry and its therapeutic use in Ksharsutra pertaining to irritant and anti inflammatory property.

Keywords: ayurveda, Quran, zaqqum, ksharsutra, latex piles, inflammation

Procedia PDF Downloads 353
676 Influence of Species and Harvesting Height on Chemical Composition, Buffer Nitrogen Solubility and in vitro Ruminal Fermentation of Browse Tree Leaves

Authors: Thabiso M. Sebolai, Victor Mlambo, Solomon Tefera, Othusitse R. Madibela

Abstract:

In some tree species, sustained herbivory can induce changes in biosynthetic pathways resulting in overproduction of anti-nutritional secondary plant compounds. This inductive mechanism, which has not been demonstrated in semi-arid rangelands of South Africa, may result in browse leaves of lower nutritive value. In this study we investigate the interactive effect of browsing pressure and tree species on chemical composition, buffer nitrogen solubility index (NSI), in vitro ruminal dry matter degradability (IVDMD) and in vitro ruminal N degradability (IVND) of leaves. Leaves from Maytenus capitata, Olea africana, Coddia rudis, Carissa macrocarpa, Rhus refracta, Ziziphus mucronata, Boscia oliedes, Grewia robusta, Phyllanthus vessucosus and Ehretia rigida trees growing in a communal grazing area were harvested at two heights: browsable ( < 1.5 m) and non-browsable ( > 1.5 m), representing high and low browsing pressure, respectively. The type of animals utilizing the communal rangeland includes cattle at 1 livestock unit (450kg)/12 to 15 hectors and goats at 1 livestock unit/4 ha. Harvested leaves were dried, milled and analysed for proximate components, soluble phenolics, condensed tannins, minerals and in vitro ruminal fermentation. A significant plant species and harvesting height interaction effect (P < 0.05) was observed for total nitrogen (N) and soluble phenolics concentration. Tree species and harvesting height affected (P < 0.05) condensed tannin (CTs) content where samples harvested from the non-browsable height had higher (0.61 AU550 nm/200 mg) levels than those harvested at browsable height (0.55 AU550 nm/200 mg) while their interaction had no effects. Macro and micro-minerals were only influenced (P < 0.05) by browse species but not harvesting height. Species and harvesting height interacted (P < 0.05) to influence IVDMD and IVND of leaves at 12, 24 and 36 hours of incubation. The different browse leaves contained moderate to high protein, moderate level of phenolics and minerals, suggesting that they have the potential to provide supplementary nutrients for ruminants during the dry seasons.

Keywords: browse plants, chemical composition, harvesting heights, phenolics

Procedia PDF Downloads 143