Search results for: legal judgment prediction
3813 Protection of Television Programme Formats in Comparative Law
Authors: Mustafa Arikan, Ibrahim Ercan
Abstract:
In this paper, protection of program formats was investigated in terms of program formats. Protection of program formats was studied in the French Law in the sense of competition law and CPI. Since the English Judicial system exhibits differences from the legal system of Continental Europe, its investigation bears a special significance. The subject was also handled in German Law at length. Indeed, German Law was investigated in detail within the overall framework of the study. Here, the court decisions in the German Law and the views in the doctrine were expressed in general. There are many court decisions in the American legal system concerning the subject. These decisions also present alternatives in terms of a solution to the problem.Keywords: comparative law, protection of television programme formats, intellectual property, american legal system
Procedia PDF Downloads 3313812 Early Prediction of Disposable Addresses in Ethereum Blockchain
Authors: Ahmad Saleem
Abstract:
Ethereum is the second largest crypto currency in blockchain ecosystem. Along with standard transactions, it supports smart contracts and NFT’s. Current research trends are focused on analyzing the overall structure of the network its growth and behavior. Ethereum addresses are anonymous and can be created on fly. The nature of Ethereum network and addresses make it hard to predict their behavior. The activity period of an ethereum address is not much analyzed. Using machine learning we can make early prediction about the disposability of the address. In this paper we analyzed the lifetime of the addresses. We also identified and predicted the disposable addresses using machine learning models and compared the results.Keywords: blockchain, Ethereum, cryptocurrency, prediction
Procedia PDF Downloads 983811 The Role of Law Corruption and Culture in Investment Fund Manager Fees
Authors: Samir Assal
Abstract:
This paper considers an international sample of venture capital and private equity funds to assess the role of law, corruption and culture in setting fund manager fees in terms of their fixed management fees, carried interest performance fees, clawbacks of fees and cash versus share distributions of fees. The data highlight a role of legal conditions in shaping fees paid to fund managers. In countries with better legal conditions, fixed fees are lower, carried interest fees are higher, clawbacks are less likely, and share distributions are more likely. These findings suggest legal conditions help to align the interests of managers and shareholders. More specifically, we examine which element of legal conditions matter most, and discover that corruption levels play a pronounced role in shaping fund manager fee contracts. We also show that cultural forces such as Hofstede’s measures of power distance and uncertainty avoidance likewise play a role in influencing fees.Keywords: managerial compensation, incentive contracts, private equity, law and finance
Procedia PDF Downloads 3103810 Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images
Authors: Shenlun Chen, Leonard Wee
Abstract:
Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment.Keywords: colorectal cancer, differentiation, survival analysis, tumor grading
Procedia PDF Downloads 1343809 Development of the Structure of the Knowledgebase for Countermeasures in the Knowledge Acquisition Process for Trouble Prediction in Healthcare Processes
Authors: Shogo Kato, Daisuke Okamoto, Satoko Tsuru, Yoshinori Iizuka, Ryoko Shimono
Abstract:
Healthcare safety has been perceived important. It is essential to prevent troubles in healthcare processes for healthcare safety. Trouble prevention is based on trouble prediction using accumulated knowledge on processes, troubles, and countermeasures. However, information on troubles has not been accumulated in hospitals in the appropriate structure, and it has not been utilized effectively to prevent troubles. In the previous study, though a detailed knowledge acquisition process for trouble prediction was proposed, the knowledgebase for countermeasures was not involved. In this paper, we aim to propose the structure of the knowledgebase for countermeasures in the knowledge acquisition process for trouble prediction in healthcare process. We first design the structure of countermeasures and propose the knowledge representation form on countermeasures. Then, we evaluate the validity of the proposal, by applying it into an actual hospital.Keywords: trouble prevention, knowledge structure, structured knowledge, reusable knowledge
Procedia PDF Downloads 3673808 Intelligent Prediction System for Diagnosis of Heart Attack
Authors: Oluwaponmile David Alao
Abstract:
Due to an increase in the death rate as a result of heart attack. There is need to develop a system that can be useful in the diagnosis of the disease at the medical centre. This system will help in preventing misdiagnosis that may occur from the medical practitioner or the physicians. In this research work, heart disease dataset obtained from UCI repository has been used to develop an intelligent prediction diagnosis system. The system is modeled on a feedforwad neural network and trained with back propagation neural network. A recognition rate of 86% is obtained from the testing of the network.Keywords: heart disease, artificial neural network, diagnosis, prediction system
Procedia PDF Downloads 4503807 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux
Authors: Hao Mi, Ming Yang, Tian-yue Yang
Abstract:
Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.Keywords: remote monitoring, non-destructive testing, embedded Linux system, image processing
Procedia PDF Downloads 2253806 Recognition and Enforcement of International Commercial Arbitral Awards in Sri Lanka, A Lesson from Singapore
Authors: Kahandawala Arachchige Thani Chathurika Kahandawala
Abstract:
This research is attempted to analyse, Sri Lanka’s current situation regarding the recognition and enforcement of international commercial arbitration awards. Sri Lanka has been involved with commercial arbitration for a long time period. But there are good and bad legal practices in place in proceedings in Sri Lanka legal system. The common perception and reality of Sri Lanka’s arbitration law and practices regarding recognition and enforcement of international arbitral awards is far behind the international standards. Therefore arbitration as a dispute resolution method has become a time-consuming and costly method in Sri Lanka. This research is employed with the qualitative method based on both primary and secondary resources. This carried out the comparative analysis of recognition and enforcement in international arbitration laws established jurisdiction in Singapore and the United Kingdom, which are known as best counties as a seat of arbitration in Asia and Europe. International conventions, act and all the legal proceedings regarding recognition and enforcement of an international arbitral award in Sri Lanka are going to be discussed in the research. In the Jurisdiction of Sri Lanka, critically need to value an international arbitral award in the domestic legal system. Therefore an award has to be recognised in Sri Lanka. Otherwise, it doesn’t have any value. After recognizing it, court can enforce it. This research intends to provide a comparative analysis to overcome the drawbacks.Keywords: arbitration, alternative dispute method, recognition and enforcement, foreign arbitral awards, Sri Lankan legal system, arbitral award in Singapore
Procedia PDF Downloads 1713805 Research on Air pollution Spatiotemporal Forecast Model Based on LSTM
Authors: JingWei Yu, Hong Yang Yu
Abstract:
At present, the increasingly serious air pollution in various cities of China has made people pay more attention to the air quality index(hereinafter referred to as AQI) of their living areas. To face this situation, it is of great significance to predict air pollution in heavily polluted areas. In this paper, based on the time series model of LSTM, a spatiotemporal prediction model of PM2.5 concentration in Mianyang, Sichuan Province, is established. The model fully considers the temporal variability and spatial distribution characteristics of PM2.5 concentration. The spatial correlation of air quality at different locations is based on the Air quality status of other nearby monitoring stations, including AQI and meteorological data to predict the air quality of a monitoring station. The experimental results show that the method has good prediction accuracy that the fitting degree with the actual measured data reaches more than 0.7, which can be applied to the modeling and prediction of the spatial and temporal distribution of regional PM2.5 concentration.Keywords: LSTM, PM2.5, neural networks, spatio-temporal prediction
Procedia PDF Downloads 1363804 Evaluating Problems Arose Due to Adoption of Dual Legal Framework in Regulating the Transactions under Islamic Capital Market with Special Reference to Malaysia
Authors: Rafikoddin Kazi
Abstract:
Almost all the major religions of the world condemn the transactions based on interest which promotes self-centered and materialistic thinking. Still, it is amazing to note that it has become the tradition of transaction at world level hence it is called traditional financial system. The main feature of this system is that it considers economic aspects of the transaction only. This system supports the economic development and not the welfare of humankind. However, it is worth mentioning the fact that, except Islamic financial system no other financial system stood in front of it as a viable alternative system. Although many countries have tried to create financial infrastructure and system, still the Malaysian Islamic financial system has got its own peculiarity. It has made tremendous progress in creating sound Islamic Financial system. However, the historical aspect of this country which has passed through Islamic and traditional financial system has got its own advantages and disadvantages. The advantageous factor is that, despite having mix and heterogeneous culture, it has succeeded in creating Islamic Financial System based on the dual legal system to satisfy the needs of multi-cultural factors. This fact has proved that Islamic Financial System does not need purely Muslim population. However, due to adoption of the dual legal system, several legal issues have been taken place. According to this system, the application of Islamic Law has been limited only up to some family and religious matters. The rest of the matters are being dealt with under the traditional laws, the principles and practices of which are different from that of the Islamic Legal System. The matter becomes all the more complicated when the cases are partially or simultaneously concerned with traditional vis-à-vis Islamic Laws as it requires expertise in both the legal systems. However, the educational principles and systems are different in respect of both the systems. To face this problem, Shariah Advisory Council has been established. But the Multiplicity of Shariah authorities without judicial power has created confusion at various levels. Therefore, some experts have stressed the need for improving, empowering the Islamic financial, legal system to make it more integrated and holistic. In view of the above, an endeavor has been made in this paper to throw some light on the matters related to the adoption of the dual legal system. The paper is conceptual in nature and the method adopted is the intensive survey of literature thereby all the information has been gathered from the secondary sources.Keywords: Islamic financial system, Islamic legal system, Islamic capital market (ICM) , traditional financial system
Procedia PDF Downloads 2013803 Multilayer Neural Network and Fuzzy Logic Based Software Quality Prediction
Authors: Sadaf Sahar, Usman Qamar, Sadaf Ayaz
Abstract:
In the software development lifecycle, the quality prediction techniques hold a prime importance in order to minimize future design errors and expensive maintenance. There are many techniques proposed by various researchers, but with the increasing complexity of the software lifecycle model, it is crucial to develop a flexible system which can cater for the factors which in result have an impact on the quality of the end product. These factors include properties of the software development process and the product along with its operation conditions. In this paper, a neural network (perceptron) based software quality prediction technique is proposed. Using this technique, the stakeholders can predict the quality of the resulting software during the early phases of the lifecycle saving time and resources on future elimination of design errors and costly maintenance. This technique can be brought into practical use using successful training.Keywords: software quality, fuzzy logic, perception, prediction
Procedia PDF Downloads 3193802 The Application of International Law in Terms of Earthlife Africa Johannesburg and Another v Minister of Energy and Others 65662/16 (2017) Case
Authors: M. van der Bank
Abstract:
This study involves a legal analysis of the case Earthlife Africa Johannesburg v Minister of Environmental Affairs and Others. The case considered the impact of the Thabametsi Power Project if it operated to the expected year 2060 on the global climate and ever-changing climate, in South Africa. This judgment highlights the significance, place and principles of climate change and where climate change impacts the South African environmental law which has its founding principles in the Constitution of the Republic of South Africa, 1996. This paper seeks to examine the advances for climate change regulation and application in terms of international law, in South Africa, through a qualitative study involving comparative national and international case law. A literature review study was conducted to compare and contrast the various aspects of law in order to support the argument undertaken. The paper presents a detailed discussion of the current legislation and the position as it currently stands with reference to international law and interpretation. The relevant protections as outlined in the National Environmental Management Act will be discussed. It then proceeds to outline the potential liability of the Minister in the interpretation and application of international law.Keywords: climate change; environment, environmental review, international law; and principles
Procedia PDF Downloads 1253801 Regional Adjustment to the Analytical Attenuation Coefficient in the GMPM BSSA 14 for the Region of Spain
Authors: Gonzalez Carlos, Martinez Fransisco
Abstract:
There are various types of analysis that allow us to involve seismic phenomena that cause strong requirements for structures that are designed by society; one of them is a probabilistic analysis which works from prediction equations that have been created based on metadata seismic compiled in different regions. These equations form models that are used to describe the 5% damped pseudo spectra response for the various zones considering some easily known input parameters. The biggest problem for the creation of these models requires data with great robust statistics that support the results, and there are several places where this type of information is not available, for which the use of alternative methodologies helps to achieve adjustments to different models of seismic prediction.Keywords: GMPM, 5% damped pseudo-response spectra, models of seismic prediction, PSHA
Procedia PDF Downloads 763800 Market Index Trend Prediction using Deep Learning and Risk Analysis
Authors: Shervin Alaei, Reza Moradi
Abstract:
Trading in financial markets is subject to risks due to their high volatilities. Here, using an LSTM neural network, and by doing some risk-based feature engineering tasks, we developed a method that can accurately predict trends of the Tehran stock exchange market index from a few days ago. Our test results have shown that the proposed method with an average prediction accuracy of more than 94% is superior to the other common machine learning algorithms. To the best of our knowledge, this is the first work incorporating deep learning and risk factors to accurately predict market trends.Keywords: deep learning, LSTM, trend prediction, risk management, artificial neural networks
Procedia PDF Downloads 1573799 Data Monetisation by E-commerce Companies: A Need for a Regulatory Framework in India
Authors: Anushtha Saxena
Abstract:
This paper examines the process of data monetisation bye-commerce companies operating in India. Data monetisation is collecting, storing, and analysing consumers’ data to use further the data that is generated for profits, revenue, etc. Data monetisation enables e-commerce companies to get better businesses opportunities, innovative products and services, a competitive edge over others to the consumers, and generate millions of revenues. This paper analyses the issues and challenges that are faced due to the process of data monetisation. Some of the issues highlighted in the paper pertain to the right to privacy, protection of data of e-commerce consumers. At the same time, data monetisation cannot be prohibited, but it can be regulated and monitored by stringent laws and regulations. The right to privacy isa fundamental right guaranteed to the citizens of India through Article 21 of The Constitution of India. The Supreme Court of India recognized the Right to Privacy as a fundamental right in the landmark judgment of Justice K.S. Puttaswamy (Retd) and Another v. Union of India . This paper highlights the legal issue of how e-commerce businesses violate individuals’ right to privacy by using the data collected, stored by them for economic gains and monetisation and protection of data. The researcher has mainly focused on e-commerce companies like online shopping websitesto analyse the legal issue of data monetisation. In the Internet of Things and the digital age, people have shifted to online shopping as it is convenient, easy, flexible, comfortable, time-consuming, etc. But at the same time, the e-commerce companies store the data of their consumers and use it by selling to the third party or generating more data from the data stored with them. This violatesindividuals’ right to privacy because the consumers do not know anything while giving their data online. Many times, data is collected without the consent of individuals also. Data can be structured, unstructured, etc., that is used by analytics to monetise. The Indian legislation like The Information Technology Act, 2000, etc., does not effectively protect the e-consumers concerning their data and how it is used by e-commerce businesses to monetise and generate revenues from that data. The paper also examines the draft Data Protection Bill, 2021, pending in the Parliament of India, and how this Bill can make a huge impact on data monetisation. This paper also aims to study the European Union General Data Protection Regulation and how this legislation can be helpful in the Indian scenarioconcerning e-commerce businesses with respect to data monetisation.Keywords: data monetization, e-commerce companies, regulatory framework, GDPR
Procedia PDF Downloads 1203798 The Reform of Chinese Migration Law and Its Actual Implementation
Authors: Wang Jie
Abstract:
This article advances the reform of Chinese migration law through an analysis of the updated and former versions of the Chinese migration law, specifically for the Exit-Entry Administration Law of the People’s Republic of China and Regulations on Foreigners’ Permanent Residence in the People’s Republic of China(Exposure Draft), which was most recently issued in 2012 and 2020 respectively. After a fundamental reform of China’s migration law, China’s immigration legal framework has become relatively well developed compared with the previous one. Immigration procedures are available online and these procedures have become relatively simple. Comparative research for the Chinese migration laws has been done during the past several years for its legislation, legal reference for western countries and its preliminary implementation. Some results show that the reform is a superficial one and may not have a practical effect on China’s current immigration legal framework. However, complete results cannot be obtained only through the comparative research of legal definitions. Some practical case studies will also be required to analyze in detail to demonstrate the reasons that some reforms still remain at the superficial level and what further progress is required in China's immigration legal framework. This is a perspective that has been overlooked in most comparative law studies. In the first part, this article will conduct a simple comparative study of the reform of Chinese migration law and use cases studies to illustrate the reform of Chinese migration law. In the second part, this article will point out another perspective that is easily overlooked, that is, how do the Chinese nationals treat the reform: whether it is a legislative advance or a failure, and whether it deepens social tensions between nationals and immigrants. In the third part, the article will discuss Chinese migration law through China’s international law perspective with international organizations, such as International Organization for Migration and International Labour Organization will also be discussed to dialectically judge the reform of Chinese migration law. This article will adopt case and comparative studies to conduct overall research based on the reform of Chinese migration law and try to put forward more constructive advice for China’s immigration legal framework.Keywords: Chinese migration law, reform, foreigners, immigration legal framework
Procedia PDF Downloads 1203797 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks
Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.
Abstract:
In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means
Procedia PDF Downloads 5603796 Legal Responsibility of the External Auditor Qualitative Case Study of Libyan Environment
Authors: Bubaker F. Shareia
Abstract:
The aim of this paper is to determine a general frame of the auditor's legal responsibilities in Libya which were implied in professional codes and rules, these codes and rules were concerned with the auditor's rights and duties in conducting his professional duties. This will provide a background for the Libyan accounting profession, and the challenges in tailoring Auditors to meet third party's needs. Being informed of the kinds of legal responsibilities which the external auditors could face during conducting their duties. The study is based on a literature review and archival research, reinforced by a qualitative case study comprised of interviews, questionnaire and a study of internal documents. To reach such an understanding, the researcher designed two questionnaires for collecting the data. One questionnaire was distributed among the certified public accountant firms in Libya and the second was distributed among a group of randomly selected lawyers and judges in the same country. Most auditors agreed upon the determination of their responsibilities toward the state and they emphasized that their responsibilities toward their clients were limited to the accepted standards of auditing. Moreover, all auditors who were surveyed emphasized that there has never been any juridical claims against them, and as a consequence they have never paid any legal fines. This study focuses on one country, which does limit its generalisability. However, it also suggests fruitful research areas in considering the impact and challenge of the historic factors in the accounting profession in emerging economies.Keywords: accounting, external auditor, legal responsibilities, libyan accounting profession
Procedia PDF Downloads 1483795 Settlements of Disputes in the Context of Islamic (Sharia) Economics in Indonesia and Egypt: A Comparative Analysis
Authors: Gemala Dewi, Wirdyaningsih, Farida Prihatini
Abstract:
The development of sharia business activities at present has solidified its societal mark and has crossed influence between several nations. In the practice, there may be disputes, breaches and other forms of conflict that occurred along the way. In the meantime, alternative settlements of disputes are utilized differently between nations in the context of their political, social, economic, legal and infrastructural (technology and transportation) scope. Besides the various conditions, there is a common driving factor, which is a consequence of the need for businesses to settle conflicts in an efficient and cost-efficient manner. This factor is paired symbiotically with the limitations of the court and legal processes. Knowing this, Indonesia and Egypt represent countries that have similar social, political, economic and legal conditions. This academic research establishes a normative analysis that looks and compares the rules that regulate the prospects and challenges in the regards of dispute settlements in reference to sharia economics in Indonesia and Egypt. This work recommends that sharia economics dispute settlement is significant to be incorporated in both Indonesian and Egyptian legal systems.Keywords: sharia economics, dispute resolution, Indonesia, Egypt
Procedia PDF Downloads 3393794 Your First Step to Understanding Research Ethics: Psychoneurolinguistic Approach
Authors: Sadeq Al Yaari, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari
Abstract:
Objective: This research aims at investigating the research ethics in the field of science. Method: It is an exploratory research wherein the researchers attempted to cover the phenomenon at hand from all specialists’ viewpoints. Results Discussion is based upon the findings resulted from the analysis the researcher undertook. Concerning the results’ prediction, the researcher needs first to seek highly qualified people in the field of research as well as in the field of statistics who share the philosophy of the research. Then s/he should make sure that s/he is adequately trained in the specific techniques, methods and statically programs that are used at the study. S/he should also believe in continually analysis for the data in the most current methods.Keywords: research ethics, legal, rights, psychoneurolinguistics
Procedia PDF Downloads 453793 Developing and Evaluating Clinical Risk Prediction Models for Coronary Artery Bypass Graft Surgery
Authors: Mohammadreza Mohebbi, Masoumeh Sanagou
Abstract:
The ability to predict clinical outcomes is of great importance to physicians and clinicians. A number of different methods have been used in an effort to accurately predict these outcomes. These methods include the development of scoring systems based on multivariate statistical modelling, and models involving the use of classification and regression trees. The process usually consists of two consecutive phases, namely model development and external validation. The model development phase consists of building a multivariate model and evaluating its predictive performance by examining calibration and discrimination, and internal validation. External validation tests the predictive performance of a model by assessing its calibration and discrimination in different but plausibly related patients. A motivate example focuses on prediction modeling using a sample of patients undergone coronary artery bypass graft (CABG) has been used for illustrative purpose and a set of primary considerations for evaluating prediction model studies using specific quality indicators as criteria to help stakeholders evaluate the quality of a prediction model study has been proposed.Keywords: clinical prediction models, clinical decision rule, prognosis, external validation, model calibration, biostatistics
Procedia PDF Downloads 2983792 A-Score, Distress Prediction Model with Earning Response during the Financial Crisis: Evidence from Emerging Market
Authors: Sumaira Ashraf, Elisabete G.S. Félix, Zélia Serrasqueiro
Abstract:
Traditional financial distress prediction models performed well to predict bankrupt and insolvent firms of the developed markets. Previous studies particularly focused on the predictability of financial distress, financial failure, and bankruptcy of firms. This paper contributes to the literature by extending the definition of financial distress with the inclusion of early warning signs related to quotation of face value, dividend/bonus declaration, annual general meeting, and listing fee. The study used five well-known distress prediction models to see if they have the ability to predict early warning signs of financial distress. Results showed that the predictive ability of the models varies over time and decreases specifically for the sample with early warning signs of financial distress. Furthermore, the study checked the differences in the predictive ability of the models with respect to the financial crisis. The results conclude that the predictive ability of the traditional financial distress prediction models decreases for the firms with early warning signs of financial distress and during the time of financial crisis. The study developed a new model comprising significant variables from the five models and one new variable earning response. This new model outperforms the old distress prediction models before, during and after the financial crisis. Thus, it can be used by researchers, organizations and all other concerned parties to indicate early warning signs for the emerging markets.Keywords: financial distress, emerging market, prediction models, Z-Score, logit analysis, probit model
Procedia PDF Downloads 2443791 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network
Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing
Abstract:
Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.Keywords: convolutional neural network, lithology, prediction of reservoir, seismic attributes
Procedia PDF Downloads 1783790 Meeting the Challanges of Regulating Artificial Intelligence
Authors: Abdulrahman S. Shryan Aldossary
Abstract:
Globally, artificial intelligence (AI) is already performing legitimate tasks on behalf of humans. In Saudi Arabia, large-scale national projects, primarily based on AI technologies and receiving billions of dollars of funding, are projected for completion by 2030. However, the legal aspect of these projects is seriously vulnerable, given AI’s unprecedented ability to self-learn and act independently. This paper, therefore, identifies the critical legal aspects of AI that authorities and policymakers should be aware of, specifically whether AI can possess identity and be liable for the risk of public harm. The article begins by identifying the problematic characteristics of AI and what should be considered by legal experts when dealing with it. Also discussed are the possible competent institutions that could regulate AI in Saudi Arabia. Finally, a procedural proposal is presented for controlling AI, focused on Saudi Arabia but potentially of interest to other jurisdictions facing similar concerns about AI safety.Keywords: regulation, artificial intelligence, tech law, automated systems
Procedia PDF Downloads 1763789 EDM for Prediction of Academic Trends and Patterns
Authors: Trupti Diwan
Abstract:
Predicting student failure at school has changed into a difficult challenge due to both the large number of factors that can affect the reduced performance of students and the imbalanced nature of these kinds of data sets. This paper surveys the two elements needed to make prediction on Students’ Academic Performances which are parameters and methods. This paper also proposes a framework for predicting the performance of engineering students. Genetic programming can be used to predict student failure/success. Ranking algorithm is used to rank students according to their credit points. The framework can be used as a basis for the system implementation & prediction of students’ Academic Performance in Higher Learning Institute.Keywords: classification, educational data mining, student failure, grammar-based genetic programming
Procedia PDF Downloads 4233788 Discrete State Prediction Algorithm Design with Self Performance Enhancement Capacity
Authors: Smail Tigani, Mohamed Ouzzif
Abstract:
This work presents a discrete quantitative state prediction algorithm with intelligent behavior making it able to self-improve some performance aspects. The specificity of this algorithm is the capacity of self-rectification of the prediction strategy before the final decision. The auto-rectification mechanism is based on two parallel mathematical models. In one hand, the algorithm predicts the next state based on event transition matrix updated after each observation. In the other hand, the algorithm extracts its residues trend with a linear regression representing historical residues data-points in order to rectify the first decision if needs. For a normal distribution, the interactivity between the two models allows the algorithm to self-optimize its performance and then make better prediction. Designed key performance indicator, computed during a Monte Carlo simulation, shows the advantages of the proposed approach compared with traditional one.Keywords: discrete state, Markov Chains, linear regression, auto-adaptive systems, decision making, Monte Carlo Simulation
Procedia PDF Downloads 4983787 Psychological and Ethical Factors in African American Custody Litigation
Authors: Brian Carey Sims
Abstract:
The current study examines psychological factors relevant to child custody litigation among African American fathers. Thirty-seven fathers engaged in various stages of custody litigation involving their children were surveyed about their perceptions of racial stereotypes, parental motivations, and racialized dynamics of the court/ legal process. Data were analyzed using a Critical Race Theory model designed to statistically isolate fathers’ perceptions of the existence and maintenance of structural racism through the legal process. Results indicate significant correlations between fathers’ psychological measures and structural outcomes of their cases. Findings are discussed in terms of ethical implications for family court judicial systems and attorney practice.Keywords: ethics, family, legal psychology, policy, race
Procedia PDF Downloads 3533786 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study
Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari
Abstract:
In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO
Procedia PDF Downloads 4213785 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction
Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé
Abstract:
One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.Keywords: input variable disposition, machine learning, optimization, performance, time series prediction
Procedia PDF Downloads 1113784 Seismic Hazard Prediction Using Seismic Bumps: Artificial Neural Network Technique
Authors: Belkacem Selma, Boumediene Selma, Tourkia Guerzou, Abbes Labdelli
Abstract:
Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. The Earthquakes prediction to prevent the loss of human lives and even property damage is an important factor; that is why it is crucial to develop techniques for predicting this natural disaster. This present study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 10^4J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines has been analyzed. The results obtained show that the ANN with high accuracy was able to predict earthquake parameters; the classification accuracy through neural networks is more than 94%, and that the models developed are efficient and robust and depend only weakly on the initial database.Keywords: earthquake prediction, ANN, seismic bumps
Procedia PDF Downloads 128