Search results for: fatty acid methyl esters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3777

Search results for: fatty acid methyl esters

3567 Cytotoxicity of a Short Chain Fatty Acid Histone Deactylase Inhibitor on HCT116 Human Colorectal Carcinoma Cell Line

Authors: N. A. Kazemi Sefat, M. M. Mohammadi, J. Hadjati, S. Talebi, M. Ajami, H. Daneshvar

Abstract:

Colorectal cancer metastases result in a significant number of cancer related deaths. Histone deacetylase (HDAC) inhibitors induce growth arrest and apoptosis in a variety of human cancer cells. Sodium butyrate (SB) is a short chain fatty acid, belongs to HDAC inhibitors which is released in the colonic lumen as a consequence of fiber fermentation. In this study, we are about to assess the effect of sodium butyrate on HCT116 human colorectal carcinoma cell line. The viability of cells was measured by microscopic morphologic study and MTT assay. After 48 hours, treatments more than 10 mM lead to cell injury in HCT116 by increasing cell granulation and decreasing cell adhesion (p>0.05). After 72 hours, treatments at 10 mM and more lead to significant cell injury (p<0.05). Our results may suggest that the gene expression which is contributed in cell proliferation and apoptosis has been changed under pressure of HDAC inhibition.

Keywords: colorectal cancer, sodium butyrate, cytotoxicity, MTT

Procedia PDF Downloads 342
3566 Production of Antimicrobial Agents against Multidrug-Resistant Staphylococcus aureus through the Biocatalysis of Vegetable Oils

Authors: Hak-Ryul Kim, Hyung-Geun Lee, Qi Long, Ching Hou

Abstract:

Structural modification of natural lipids via chemical reaction or microbial bioconversion can change their properties or even create novel functionalities. Enzymatic oxidation of lipids leading to formation of oxylipin is one of those modifications. Hydroxy fatty acids, one of those oxylipins have gained important attentions because of their structural and functional properties compared with other non-hydroxy fatty acids. Recently 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was produced with high yield from lipid-containing oleic acid by microbial conversion, and the further study confirmed that DOD contained strong antimicrobial activities against a broad range of microorganisms. In this study, we tried to modify DOD molecules by the enzymatic or physical reaction to create new functionality or to enhance the antimicrobial activity of DOD. After modification of DOD molecules by different ways, we confirmed that the antimicrobial activity of DOD was highly enhanced and presented strong antimicrobial activities against multidrug-resistant Staphylococcus aureus, suggesting that DOD and its derivatives can be used as efficient antimicrobial agents for medical and industrial applications.

Keywords: biocatalysis, antimicrobial agent, multidrug-resistant bacteria, vegetable oil

Procedia PDF Downloads 187
3565 Characterization of Extra Virgin Olive Oil from Olive Cultivars Grown in Pothwar, Pakistan

Authors: Abida Mariam, Anwaar Ahmed, Asif Ahmad, Muhammad Sheeraz Ahmad, Muhammad Akram Khan, Muhammad Mazahir

Abstract:

The plant olive (Olea europaea L.) is known for its commercial significance due to nutritional and health benefits. Pakistan is ranked 4th among countries who import olive oil whereas, 70% of edible oil is imported to fulfil the needs of the country. There exists great potential for Olea europaea cultivation in Pakistan. The popularity and cultivation of olive fruit has increased in recent past due to its high socio-economic and health significance. There exist almost negligible data on the chemical composition of extra virgin olive oil extracted from cultivars grown in Pothwar, an area with arid climate conducive for growth of olive trees. Keeping in view these factors a study has been conducted to characterize the olive oil extracted from olive cultivars collected from Pothwar regions of Pakistan for their nutritional potential and value addition. Ten olive cultivars (Gemlik, Coratina, Sevillano, Manzanilla, Leccino, Koroneiki, Frantoio, Arbiquina, Earlik and Ottobratica) were collected from Barani Agriculture Research Institute, Chakwal. Extra Virgin Olive Oil (EVOO) was extracted by cold pressing and centrifuging of olive fruits. The highest amount of oil was yielded in Coratina (23.9%) followed by Frantoio (23.7%), Koroneiki (22.8%), Sevillano (22%), Ottobratica (22%), Leccino (20.5%), Arbiquina (19.2%), Manzanilla (17.2%), Earlik (14.4%) and Gemllik (13.1%). The extracted virgin olive oil was studied for various physico- chemical properties and fatty acid profile. The Physical and chemical properties i.e., characteristic odor and taste, light yellow color with no foreign matter, insoluble impurities (≤0.08), fee fatty acid (0.1 to 0.8), acidity (0.5 to 1.6 mg/g acid), peroxide value (1.5 to 5.2 meqO2/kg), Iodine value (82 to 90), saponification value (186 to 192 mg/g) and unsaponifiable matter (4 to 8g/kg), ultraviolet spectrophotometric analysis (k232 and k270), showed values in the acceptable range, established by PSQCA and IOOC set for extra virgin olive oil. Olive oil was analyzed by Near Infra-Red spectrophotometry (NIR) for fatty acids sin olive oils which were found as: palmitic, palmitoleic, stearic, oleic, linoleic and alpha-linolenic. Major fatty acid was Oleic acid in the highest percentage ranging from (55 to 66.1%), followed by linoleic (10.4 to 20.4%), palmitic (13.8 to 19.5%), stearic (3.9 to 4.4%), palmitoleic (0.3 to 1.7%) and alpha-linolenic (0.9 to 1.7%). The results were significant with differences in parameters analyzed for all ten cultivars which confirm that genetic factors are important contributors in the physico-chemical characteristics of oil. The olive oil showed superior physical and chemical properties and recommended as one of the healthiest forms of edible oil. This study will help consumers to be more aware of and make better choices of healthy oils available locally thus contributing towards their better health.

Keywords: characterization, extra virgin olive oil, oil yield, fatty acids

Procedia PDF Downloads 75
3564 Various Sources of N-3 Polyunsaturated Fatty Acid Supplementation Modulate Mitochondria Membrane Composition and Function

Authors: Wen-Ting Wang, Wei-An Tsai, Rong-Hong Hsieh

Abstract:

Long term taking high fat diet can lead to over production of energy, result in accumulation of body fat, dyslipidemia and increased lipid metabolism in the body. Over metabolism of lipid results in excessive reactive oxygen species and oxidative stress, may also cause mitochondrial dysfunction and cell death. Krill oil, fish oil and linseed oil are good sources of n-3 polyunsaturated fatty acids (PUFA). The present study investigated the effect of high fat diet and various oil rich of n-3 fatty acids on mitochondrial function and cell membrane composition. Six-weeks old male Spraque-Dawley rats were randomly divided into 8 groups including: control group, high fat diet group, low dosage and high dosage krill oil group, low dosage and high dosage fish oil group, and low dosage and high dosage linseed oil group. After 12 weeks of experimental period, the low dosage krill oil, fish oil group and linseed oil group with different dosage prevented mitochondrial dysfunction caused by high fat diet. The supplementation of different oils increased plasma, erythrocyte and mitochondrial n-3/n-6 ratio and further increased the proportion of PUFA in erythrocyte and mitochondrial membrane. It also decreased serum triglyceride (TG) and low density lipoprotein cholesterol (LDL-C) concentration. However, there was no significant change in serum total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), biomarker of liver function, glucose, insulin, homeostasis model assessment-insulin resistance (HOMA-IR) and plasma malonadialdehyde (MDA) concentration when compared with high fat diet group. The supplementation of different sources of n-3 PUFA can maintain mitochondrial function and modulate cell membrane fatty acid composition in high fat diet conditions, and there is a positive relationship between mitochondrial function and mitochondrial membrane composition.

Keywords: fish oil, linseed oil, mitochondria, n-3 PUFA

Procedia PDF Downloads 399
3563 Synthesis and Characterization of New Polyesters Based on Diarylidene-1-Methyl-4-Piperidone

Authors: Tareg M. Elsunaki, Suleiman A. Arafa, Mohamed A. Abd-Alla

Abstract:

New interesting thermal stable polyesters containing 1-methyl-4-piperidone moiety in the main chain have been synthesized. These polyesters were synthesized by interfacial polycondensation technique of 3,5-bis(4-hydroxybenzylidene)-1-methyl-4-piperidone (I) and 3,5-bis(4-hydroxy-3-methoxy benzyli-dene)-1-methyl-4-piperidone (II) with terphthaloyl, isophthaloyl, 4,4'-diphenic, adipoyl and sebacoyl dichlorides. The yield and the values of the reduced viscosity of the produced polyesters were found to be affected by the type of an organic phase. In order to characterize these polymers, the necessary model compounds (A), (B) were prepared from (I), (II) respectively and benzoyl chloride. The structure of monomers (I), (II), model compounds and resulting polyesters were confirmed by IR, elemental analysis and 1HNMR spectroscopy. The various characteristic of the resulting polymers including solubility, thermal properties, viscosity and X-ray analysis were also studied.

Keywords: synthesis, characterization, new polyesters, chemistry

Procedia PDF Downloads 443
3562 Regulation of Desaturation of Fatty Acid and Triglyceride Synthesis by Myostatin through Swine-Specific MEF2C/miR222/SCD5 Pathway

Authors: Wei Xiao, Gangzhi Cai, Xingliang Qin, Hongyan Ren, Zaidong Hua, Zhe Zhu, Hongwei Xiao, Ximin Zheng, Jie Yao, Yanzhen Bi

Abstract:

Myostatin (MSTN) is the master regulator of double muscling phenotype with overgrown muscle and decreased fatness in animals, but its action mode to regulate fat deposition remains to be elucidated. In this study a swin-specific pathway through which MSTN acts to regulate the fat deposition was deciphered. Deep sequenincing of the mRNA and miRNA of fat tissues of MSTN knockout (KO) and wildtype (WT) pigs discovered the positive correlation of myocyte enhancer factor 2C (MEF2C) and fat-inhibiting miR222 expression, and the inverse correlation of miR222 and stearoyl-CoA desaturase 5 (SCD5) expression. SCD5 is rodent-absent and expressed only in pig, sheep and cattle. Fatty acid spectrum of fat tissues revealed a lower percentage of oleoyl-CoA (18:1) and palmitoleyl CoA (16:1) in MSTN KO pigs, which are the catalyzing products of SCD5-mediated desaturation of steroyl CoA (18:0) and palmitoyl CoA (16:0). Blood metrics demonstrated a 45% decline of triglyceride (TG) content in MSTN KO pigs. In light of these observations we hypothesized that MSTN might act through MEF2C/miR222/SCD5 pathway to regulate desaturation of fatty acid as well as triglyceride synthesis in pigs. To this end, real-time PCR and Western blotting were carried out to detect the expression of the three genes stated above. These experiments showed that MEF2C expression was up-regulated by nearly 2-fold, miR222 up-regulated by nearly 3-fold and SCD5 down-regulated by nearly 50% in MSTN KO pigs. These data were consistent with the expression change in deep sequencing analysis. Dual luciferase reporter was then used to confirm the regulation of MEF2C upon the promoter of miR222. Ecotopic expression of MEF2C in preadipocyte cells enhanced miR222 expression by 3.48-fold. CHIP-PCR identified a putative binding site of MEF2C on -2077 to -2066 region of miR222 promoter. Electrophoretic mobility shift assay (EMSA) demonstrated the interaction of MEF2C and miR222 promoter in vitro. These data indicated that MEF2C transcriptionally regulates the expression of miR222. Next, the regulation of miR222 on SCD5 mRNA as well as its physiological consequences were examined. Dual luciferase reporter testing revealed the translational inhibition of miR222 upon the 3´ UTR (untranslated region) of SCD5 in preadipocyte cells. Transfection of miR222 mimics and inhibitors resulted in the down-regulation and up-regulation of SCD5 in preadipocyte cells respectively, consistent with the results from reporter testing. RNA interference of SCD5 in preadipocyte cells caused 26.2% reduction of TG, in agreement with the results of TG content in MSTN KO pigs. In summary, the results above supported the existence of a molecular pathway that MSTN signals through MEF2C/miR222/SCD5 to regulate the fat deposition in pigs. This swine-specific pathway offers potential molecular markers for the development and breeding of a new pig line with optimised fatty acid composition. This would benefit human health by decreasing the takeup of saturated fatty acid.

Keywords: fat deposition, MEF2C, miR222, myostatin, SCD5, pig

Procedia PDF Downloads 115
3561 Evaluation of Phthalates Contents and Their Health Effects in Consumed Sachet Water Brands in Delta State, Nigeria

Authors: Edjere Oghenekohwiroro, Asibor Irabor Godwin, Uwem Bassey

Abstract:

This paper determines the presence and levels of phthalates in sachet and borehole water source in some parts of Delta State, Nigeria. Sachet and borehole water samples were collected from seven different water packaging facilities and level of phthalates determined using GC-MS instrumentation. Phthalates concentration in borehole samples varied from 0.00-0.01 (DMP), 0.06-0.20 (DEP), 0.10-0.98 (DBP), 0.21-0.36 (BEHP), 0.01-0.03 (DnOP) µg/L and (BBP) was not detectable; while sachet water varied from 0.03-0.95 (DMP), 0.16-12.45 (DEP), 0.57-3.38 (DBP), 0.00-0.03 (BBP), 0.08-0.31 (BEHP) and 0-0.03 (DnOP) µg/L. Phthalates concentration in the sachet water was higher than that of the corresponding boreholes sources and also showed significant difference (p < 0.05) between the two. Sources of these phthalate esters were the interaction between water molecules and plastic storage facilities. Although concentration of all phthalate esters analyzed were lower than the threshold limit value(TLV), over time storage of water samples in this medium can lead to substantial increase with negative effects on individuals consuming them.

Keywords: phthalate esters, borehole, sachet water, sample extraction, gas chromatography, GC-MS

Procedia PDF Downloads 230
3560 Improvement of Thermal Stability in Ethylene Methyl Acrylate Composites for Gasket Application

Authors: Pemika Ketsuwan, Pitt Supaphol, Manit Nithitanakul

Abstract:

A typical used of ethylene methyl acrylate (EMA) gasket is in the manufacture of optical lens, and often, they are deteriorated rapidly due to high temperature during the process. The objective of this project is to improve the thermal stability of the EMA copolymer gasket by preparing EMA with cellulose and silica composites. Hydroxy propyl methyl cellulose (HPMC) and Carboxy methyl cellulose (CMC) were used in preparing of EMA/cellulose composites and fumed silica (SiO2) was used in preparing EMA/silica composites with different amounts of filler (3, 5, 7, 10, 15 wt.%), using a twin screw extruder at 160 °C and the test specimens were prepared by the injection molding machine. The morphology and dispersion of fillers in the EMA matrix were investigated by field emission scanning electron microscopy (FESEM). The thermal stability of the composite was determined by thermal gravimetric analysis (TGA), and differential scanning calorimeter (DSC). Mechanical properties were evaluated by tensile testing. The developed composites were found to enhance thermal and mechanical properties when compared to that of the EMA copolymer alone.

Keywords: ethylene methyl acrylate, HPMC, Silica, Thermal stability

Procedia PDF Downloads 105
3559 Investigation of the Effect of Phosphorous on the Flame Retardant Polyacrylonitrile Nanofiber

Authors: Mustafa Yılmaz, Ahmet Akar, Nesrin Köken, Nilgün Kızılcan

Abstract:

Commercially available poly(acrylonitrile-co-vinyl acetate) P(AN-VA) or poly(acrylonitrile-co-methyl acrylate) P(AN-MA) are not satisfactory to meet the demand in flame and fire-resistance. In this work, vinylphosphonic acid is used during polymerization of acrylonitrile, vinyl acetate, methacrylic acid to produce fire-retardant polymers. These phosphorus containing polymers are successfully spun in the form of nanofibers. Properties such as water absorption of polymers are also determined and compared with commercial polymers.

Keywords: flame retardant, nanofiber, polyacrylonitrile, phosphorous compound, membrane

Procedia PDF Downloads 233
3558 Monitoring the Effect of Deep Frying and the Type of Food on the Quality of Oil

Authors: Omar Masaud Almrhag, Frage Lhadi Abookleesh

Abstract:

Different types of food like banana, potato and chicken affect the quality of oil during deep fat frying. The changes in the quality of oil were evaluated and compared. Four different types of edible oils, namely, corn oil, soybean, canola, and palm oil were used for deep fat frying at 180°C ± 5°C for 5 h/d for six consecutive days. A potato was sliced into 7-8 cm length wedges and chicken was cut into uniform pieces of 100 g each. The parameters used to assess the quality of oil were total polar compound (TPC), iodine value (IV), specific extinction E1% at 233 nm and 269 nm, fatty acid composition (FAC), free fatty acids (FFA), viscosity (cp) and changes in the thermal properties. Results showed that, TPC, IV, FAC, Viscosity (cp) and FFA composition changed significantly with time (P< 0.05) and type of food. Significant differences (P< 0.05) were noted for the used parameters during frying of the above mentioned three products.

Keywords: frying potato, chicken, frying deterioration, quality of oil

Procedia PDF Downloads 406
3557 Fish Oil and Its Methyl Ester as an Alternate Fuel in the Direct Injection Diesel Engine

Authors: Pavan Pujar

Abstract:

Mackerel Fish oil was used as the raw material to produce the biodiesel in this study. The raw oil (RO) was collected from discarded fish products. This oil was filtered and heated to 110oC and made it moisture free. The filtered and moisture free RO was transesterified to produce biodiesel. The experimental results showed that oleic acid and lauric acid were the two major components of the fish oil biodiesel (FOB). Palmitic acid and linoleic acid were found approximately same in the quantity. The fuel properties kinematic viscosity, flash point, fire point, specific gravity, calorific value, cetane number, density, acid value, saponification value, iodine value, cloud point, pour point, ash content, Cu strip corrosion, carbon residue, API gravity were determined for FOB. A comparative study of the properties was carried out with RO and Neat diesel (ND). It was found that Cetane number was 59 for FOB which was more than RO, which showed 57. Blends (B20, B40, B60, B80: example: B20: 20% FOB + 80% ND) of FOB and ND were prepared on volume basis and comparative study was carried out with ND and FOB. Performance parameters BSFE, BSEC, A:F Ratio, Break thermal efficiency were analyzed and it was found that complete replacement of neat diesel (ND) is possible without any engine modifications.

Keywords: fish oil biodiesel, raw oil, blends, performance parameters

Procedia PDF Downloads 401
3556 Ferric Sulphate Catalyzed Esterification of High Free Fatty Acids Content Used Coconut Oil for Biodiesel Synthesis

Authors: G. N. Maheshika, J. A. R. H. Wijerathna, S. H. P. Gunawardena

Abstract:

Feedstock with high free fatty acids (FFAs) content can be successfully employed for biodiesel synthesis once the high FFA content is reduced to the desired levels. In the present study, the applicability of ferric sulphate as the solid acid catalyst for esterification of FFA in used coconut oil was evaluated at varying catalyst concentration and methanol:oil molar ratios. 1.25, 2.5, 3.75 and 5.0% w/w Fe2(SO4)3 on oil basis was used at methanol:oil ratios of 3:1, 4.5:1, and 6:1 and at the reaction temperature of 60 0C. The FFA reduction increased with the increase in catalyst and methanol:oil molar ratios while the time requirement to reach the esterification equilibrium reduced. Satisfactory results for esterification could be obtained within a small reaction period in the presence of only a small amount of Fe2(SO4)3 catalyst concentration and at low reaction temperature, which then can be subjected for trans-esterification process. At the end of the considering reaction period the solid Fe2(SO4)3 catalyst could be separated from the reaction system. The economics of the Fe2(SO4)3 catalyzed esterification of high FFA content used coconut oil for biodiesel is at favorable conditions.

Keywords: biodiesel, esterification, ferric sulphate, Free fatty acids, used coconut oil

Procedia PDF Downloads 533
3555 Synthesis of Biolubricant Base Stock from Palm Methyl Ester

Authors: Nur Sulihatimarsyila Abd Wafti, Harrison Lik Nang Lau, Nabilah Kamaliah Mustaffa, Nur Azreena Idris

Abstract:

The use of biolubricant has gained its popularity over the last decade. Base stock produced using methyl ester and trimethylolethane (TME) can be potentially used for biolubricant production due to its biodegradability, non-toxicity and good thermal stability. The synthesis of biolubricant base stock e.g. triester (TE) via transesterification of palm methyl ester and TME in the presence of sodium methoxide as the catalyst was conducted. Factors influencing the reaction conditions were investigated including reaction time, temperature and pressure. The palm-based biolubricant base stock produced was analysed for its monoester (ME), diester (DE) and TE contents using gas chromatography as well as its lubricating properties such as viscosity, viscosity index, oxidation stability, and density. The resulting base stock containing 90 wt% TE was successfully synthesized.

Keywords: biolubricant, methyl ester, triester transesterification, lubricating properties

Procedia PDF Downloads 430
3554 Relationship between Conjugated Linoleic Acid Intake, Biochemical Parameters and Body Fat among Adults and Elderly

Authors: Marcela Menah de Sousa Lima, Victor Ushijima Leone, Natasha Aparecida Grande de Franca, Barbara Santarosa Emo Peters, Ligia Araujo Martini

Abstract:

Conjugated linoleic acid (CLA) intake has been constantly related to benefits to human health since having a positive effect on reducing body fat. The aim of the present study was to investigate the association between CLA intake and biochemical measurements and body composition of adults and the elderly. Subjects/Methods: 287 adults and elderly participants in an epidemiological study in Sao Paulo Brazil, were included in the present study. Participants had their dietary data obtained by two non-consecutive 24HR, a body composition assessed by dual-energy absorptiometry exam (DXA), and a blood collection. Mean differences and a correlation test was performed. For all statistical tests, a significance of 5% was considered. Results: CLA intake showed a positive correlation with HDL-c levels (r = 0.149; p = 0.011) and negative with VLDL-c levels (r = -0.134; p = 0.023), triglycerides (r = -0.135; p = 0.023) and glycemia (r = -0.171; p = 0.004), as well as negative correlation with visceral adipose tissue (VAT) (r = -0.124, p = 0.036). Evaluating individuals in two groups according to VAT values, a significant difference in CLA intake was observed (p = 0.041), being the group with the highest VAT values, the one with the lowest fatty acid intake. Conclusions: This study suggests that CLA intake is associated with a better lipid profile and lower visceral adipose tissue volume, which contributes to the investigation of the effects of CLA on obesity parameters. However, it is necessary to investigate the effects of CLA from milk and dairy products in the control adiposity.

Keywords: adiposity, dairy products, diet, fatty acids

Procedia PDF Downloads 122
3553 Neuroprotective Effects of Rosmarinic Acid in the MPTP Mouse Model of Parkinson's Disease

Authors: Huamin Xu, Wenting Jia, Hong Jiang, Junxia Xie

Abstract:

Rosmarinic acid (RA) is a natural acid that is found in a variety of herbs, such as rosemary and has multiple biological activities such as antioxidative, anti-inflammatory and antiviral activities. In this study, we investigated the neuroprotective effects of RA on dopaminergic system in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mouse model of Parkinson’s disease (PD). The mice received oral administration of RA before MPTP injection. Results showed that the tyrosine hydroxylase expression in SN reduced and the levels of dopamine and its metabolites in the striatum decreased in MPTP intoxicated PD mice. Pretreatment with RA significantly inhibited these changes. Further studies demonstrated that MPTP treatment increased the iron content, which was counteracted by pre-treatment with RA. In addition, RA could restore the decrease of superoxide dismutase (SOD) induced by MPTP. This study provides evidence that RA could suppress MPTP-induced degeneration of the nigrostriatal dopaminergic system by regulating iron content and the expression of SOD. Thus, RA might be clinically evaluated for the prevention of neurodegenerative diseases.

Keywords: rosmarinic acid, Parkinson's disease, MPTP, dopaminergic system

Procedia PDF Downloads 188
3552 The Role of Bone Marrow Fatty Acids in the Early Stage of Post-Menopausal Osteoporosis

Authors: Sizhu Wang, Cuisong Tang, Lin Zhang, Guangyu Tang

Abstract:

Objective: We aimed to detect the composition of bone marrow fatty acids early after ovariectomized (OVX) surgery and explore the potential mechanism. Methods: Thirty-two female Sprague-Dawley (SD) rats (12 weeks) were randomly divided into OVX group and Sham group (N=16/group), and received ovariectomy or sham surgery respectively. After 3 and 28 days, eight rats in each group were sacrificed to detect the composition of bone marrow fatty acids by gas chromatography–mass spectrometry (GC–MS) and evaluate the trabecular bone microarchitecture by micro-CT. Significant different fatty acids in the early stage of post-menopausal osteoporosis were selected by OPLS-DA and t test. Then selected fatty acids were further studied in the process of osteogenic differentiation through RT-PCR and Alizarin Red S staining. Results: An apparent sample clustering and group separation were observed between OVX group and sham group three days after surgery, which suggested the role of bone marrow fatty acids in the early stage of postmenopausal osteoporosis. Specifically, myristate, palmitoleate and arachidonate were found to play an important role in classification between OVX group and sham group. We further investigated the effect of palmitoleate and arachidonate on osteogenic differentiation and found that palmitoleate promoted the osteogenic differentiation of MC3T3-E1 cells while arachidonate inhibited this process. Conclusion: Profound bone marrow fatty acids changes have taken place in the early stage of post-menopausal osteoporosis. Bone marrow fatty acids may begin to affect osteogenic differentiation shortly after deficiency of estrogen.

Keywords: bone marrow fatty acids, GC-MS, osteoblast, osteoporosis, post-menopausal

Procedia PDF Downloads 85
3551 Homeostatic Analysis of the Integrated Insulin and Glucagon Signaling Network: Demonstration of Bistable Response in Catabolic and Anabolic States

Authors: Pramod Somvanshi, Manu Tomar, K. V. Venkatesh

Abstract:

Insulin and glucagon are responsible for homeostasis of key plasma metabolites like glucose, amino acids and fatty acids in the blood plasma. These hormones act antagonistically to each other during the secretion and signaling stages. In the present work, we analyze the effect of macronutrients on the response from integrated insulin and glucagon signaling pathways. The insulin and glucagon pathways are connected by DAG (a calcium signaling component which is part of the glucagon signaling module) which activates PKC and inhibits IRS (insulin signaling component) constituting a crosstalk. AKT (insulin signaling component) inhibits cAMP (glucagon signaling component) through PDE3 forming the other crosstalk between the two signaling pathways. Physiological level of anabolism and catabolism is captured through a metric quantified by the activity levels of AKT and PKA in their phosphorylated states, which represent the insulin and glucagon signaling endpoints, respectively. Under resting and starving conditions, the phosphorylation metric represents homeostasis indicating a balance between the anabolic and catabolic activities in the tissues. The steady state analysis of the integrated network demonstrates the presence of a bistable response in the phosphorylation metric with respect to input plasma glucose levels. This indicates that two steady state conditions (one in the homeostatic zone and other in the anabolic zone) are possible for a given glucose concentration depending on the ON or OFF path. When glucose levels rise above normal, during post-meal conditions, the bistability is observed in the anabolic space denoting the dominance of the glycogenesis in liver. For glucose concentrations lower than the physiological levels, while exercising, metabolic response lies in the catabolic space denoting the prevalence of glycogenolysis in liver. The non-linear positive feedback of AKT on IRS in insulin signaling module of the network is the main cause of the bistable response. The span of bistability in the phosphorylation metric increases as plasma fatty acid and amino acid levels rise and eventually the response turns monostable and catabolic representing diabetic conditions. In the case of high fat or protein diet, fatty acids and amino acids have an inhibitory effect on the insulin signaling pathway by increasing the serine phosphorylation of IRS protein via the activation of PKC and S6K, respectively. Similar analysis was also performed with respect to input amino acid and fatty acid levels. This emergent property of bistability in the integrated network helps us understand why it becomes extremely difficult to treat obesity and diabetes when blood glucose level rises beyond a certain value.

Keywords: bistability, diabetes, feedback and crosstalk, obesity

Procedia PDF Downloads 256
3550 Anti-Obesity Effects of Pteryxin in Peucedanum japonicum Thunb Leaves through Different Pathways of Adipogenesis In-Vitro

Authors: Ruwani N. Nugara, Masashi Inafuku, Kensaku Takara, Hironori Iwasaki, Hirosuke Oku

Abstract:

Pteryxin from the partially purified hexane phase (HP) of Peucedanum japonicum Thunb (PJT) was identified as the active compound related to anti-obesity. Thus, in this study we investigated the mechanisms related to anti-obesity activity in-vitro. The HP was fractionated, and effect on the triglyceride (TG) content was evaluated in 3T3-L1 and HepG2 cells. Comprehensive spectroscopic analyses were used to identify the structure of the active compound. The dose dependent effect of active constituent on the TG content, and the gene expressions related to adipogenesis, fatty acid catabolism, energy expenditure, lipolysis and lipogenesis (20 μg/mL) were examined in-vitro. Furthermore, higher dosage of pteryxin (50μg/mL) was tested against 20μg/mL in 3T3-L1 adipocytes. The mRNA were subjected to SOLiD next generation sequencer and the obtained data were analyzed by Ingenuity Pathway Analysis (IPA). The active constituent was identified as pteryxin, a known compound in PJT. However, its biological activities against obesity have not been reported previously. Pteryxin dose dependently suppressed TG content in both 3T3-L1 adipocytes and HepG2 hepatocytes (P < 0.05). Sterol regulatory element-binding protein-1 (SREBP1 c), Fatty acid synthase (FASN), and acetyl-CoA carboxylase-1 (ACC1) were downregulated in pteryxin-treated adipocytes (by 18.0, 36.1 and 38.2%; P < 0.05, respectively) and hepatocytes (by 72.3, 62.9 and 38.8%, respectively; P < 0.05) indicating its suppressive effects on fatty acid synthesis. The hormone-sensitive lipase (HSL), a lipid catabolising gene was upregulated (by 15.1%; P < 0.05) in pteryxin-treated adipocytes suggesting improved lipolysis. Concordantly, the adipocyte size marker gene, paternally expressed gene1/mesoderm specific transcript (MEST) was downregulated (by 42.8%; P < 0.05), further accelerating the lipolytic activity. The upregulated trend of uncoupling protein 2 (UCP2; by 77.5%; P < 0.05) reflected the improved energy expenditure due to pteryxin. The 50μg/mL dosage of pteryxin completely suppressed PPARγ, MEST, SREBP 1C, HSL, Adiponectin, Fatty Acid Binding Protein (FABP) 4, and UCP’s in 3T3-L1 adipocytes. The IPA suggested that pteryxin at 20μg/mL and 50μg/mL suppress obesity in two different pathways, whereas the WNT signaling pathway play a key role in the higher dose of pteryxin in preadipocyte stage. Pteryxin in PJT play the key role in regulating lipid metabolism related gene network and improving energy production in vitro. Thus, the results suggests pteryxin as a new natural compound to be used as an anti-obesity drug in pharmaceutical industry.

Keywords: obesity, peucedanum japonicum thunb, pteryxin, food science

Procedia PDF Downloads 437
3549 Corrosion Inhibition of Brass in Phosphoric Acid Solution by 2-(5-Methyl-2-Nitro-1H-Imidazol-1-Yl) Ethyl Benzoate

Authors: R. Khrifou, M. Galai, R. Touir, M. Ebn Touhami, Y. Ramli

Abstract:

A 2-(5-methyl-2-Nitro-1H-imidazol-1-yl)ethyl benzoate (IMDZ-B) was synthesized and characterized using elemental analyses, NMR, and Fourier transform infrared (FTIR) techniques. Its effect on brass corrosion in 1.0 M H₃PO₄ solution was investigated by using electrochemical measurements coupled with X-ray diffraction analysis (XRD), Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX). The polarization measurements showed that the IMDZ-B acts as a mixed-type inhibitor. Indeed, it is found that the IMDZ-B compound is a very good inhibitor, and its inhibition efficiency increases with concentration to reach a maximum of 99.5 % at 10-³ M. In addition, the obtained electrochemical parameters from impedance indicated that the IMDZ-B molecules act by adsorption on metallic surfaces. This adsorption was found to obey Langmuir’s adsorption isotherm. However, the temperature effect on the performance of IMDZ-B was also studied. It is found that the IMDZ-B takes its performance at high temperatures. In addition, the obtained kinetic and thermodynamic parameters showed that the IMDZ-B molecules act via two adsorption modes, physisorption and chemisorptions, and its process is endothermic and spontaneous. Finally, the XRD and SEM/EDX analyses confirmed the electrochemical obtained results.

Keywords: low concentration, anti-corrosion brass, IMDZ-B product, phosphoric acid solution, electrochemical, SEM\EDAX analysis

Procedia PDF Downloads 47
3548 Metabolic Engineering of Yarrowia Lipolytica for the Simultaneous Production of Succinic Acid (SA) and Polyhydroxyalkanoates (PHAs)

Authors: Qingsheng Qi, Cuijuan Gao, Carol Sze Ki Lin

Abstract:

Food waste can be defined as a by-product of food processing by industries and consumers, which has not been recycled or used for other purposes. Stringent waste regulations worldwide are pushing local companies and sectors towards higher sustainability standards. The development of novel strategies for food waste re-use is economically and environmentally sound, as it solves a waste management issue and represents an inexpensive nutrient source for biotechnological processes. For example, Yarrowia lipolytica is a yeast which can utilize hydrophobic substrates, such as fatty acids, lipids, and alkanes and simple carbon sources, such as glucose and glycerol, which can all be found in food waste. This broad substrate range makes Y. lipolytica a promising candidate for the degradation and valorisation of food waste, and for the production of organic acids, such as citric and α-ketoglutaric acids. Current research conducted in our group demonstrated that Y. lipolytica was shown to be able to produce succinic acid. In this talk, we will focus on the application of genetically modified yeast Y. lipolytica for fermentative succinic acid production with an aim to increase productivity and yield.

Keywords: food waste, succinic acid, Yarrowia lipolytica, bioplastic

Procedia PDF Downloads 267
3547 Borassus aethiopum Mart Mature Fruits Macro-Composition, Drying Temperature Effect on Its Pulp Protein, Fat, Sugars, Metabolizable Energy, and Fatty Acids Profile

Authors: Tagouelbe Tiho, Amissa Augustin Adima, Yao Casimir Brou, Nabayo Traore, Gouha Firmin Kouassi, Thierry Roland Kouame, Maryline Kouba

Abstract:

The work aimed to study Borassus aethiopum Mart (B.a) dried pulp nutritional value for its incorporation in human and poultry diets. Firstly, the mature fruit macro-composition was assessed. Secondly, the pulp was dried at 40, 50, 60, 70, and 80ᵒC. Thereafter, the analysis was performed for fat, protein, total sugars, Ca, P, Mg, and fatty acid profile monitoring. As a result, the fruits weighed 1,591.35, delivered 516.73, and 677.82 grams of pulp and seeds, respectively. Mainly, increasing heat adversely affected the outputs. Consequently, the fat results were 14.12, 12.97, 8.93, 8.89ᶜ, and 5.56%; protein contents were 11.64, 10.15, 8.97, 8.84, and 8.42%; total sugar deliveries were 6.28, 6.05, 5.26, 5.02, and 4.76% (P < 0.01). Thereafter, the metabolizable energies were 3,785.22; 3,834.28; 3,616.62; 3,667.03; and 3,608.33 kcal/kg (DM). Additionally, Calcium (Ca) contents were 0.51, 0.55, 0.69, 0.77, and 0.81%, while phosphorus (P) mean was 0.17%, and the differences were not significant (P < 0.01). So, the Ca/P ratios were 2.79, 3.04, 4.10, 4.71, and 4.95. Finally, fatty acids (FA) assessments revealed 22.33 saturated (SFA), 77.67 unsaturated (UFA), within which 67.59% were monounsaturated (MUFA). Interestingly, the rising heat depressed n-6/n-3 ratios that were 1.1, 1.1, 0.45 and 0.38, respectively at 40, 50, 70 and 80ᵒC. In short, drying did not only enhance the product shelf life but it also improved the nutritional value. Thus, B.a mature fruit pulps dried at 70ᵒC are good functional foods, with more than 66% MUFA, and energy source for human and poultry nutrition.

Keywords: Borassus aethiopum Mart, fatty acids, metabolizable energy, minerals, protein

Procedia PDF Downloads 152
3546 Studies of the Reaction Products Resulted from Glycerol Electrochemical Conversion under Galvanostatic Mode

Authors: Ching Shya Lee, Mohamed Kheireddine Aroua, Wan Mohd Ashri Wan Daud, Patrick Cognet, Yolande Peres, Mohammed Ajeel

Abstract:

In recent years, with the decreasing supply of fossil fuel, renewable energy has received a significant demand. Biodiesel which is well known as vegetable oil based fatty acid methyl ester is an alternative fuel for diesel. It can be produced from transesterification of vegetable oils, such as palm oil, sunflower oil, rapeseed oil, etc., with methanol. During the transesterification process, crude glycerol is formed as a by-product, resulting in 10% wt of the total biodiesel production. To date, due to the fast growing of biodiesel production in worldwide, the crude glycerol supply has also increased rapidly and resulted in a significant price drop for glycerol. Therefore, extensive research has been developed to use glycerol as feedstock to produce various added-value chemicals, such as tartronic acid, mesoxalic acid, glycolic acid, glyceric acid, propanediol, acrolein etc. The industrial processes that usually involved are selective oxidation, biofermentation, esterification, and hydrolysis. However, the conversion of glycerol into added-value compounds by electrochemical approach is rarely discussed. Currently, the approach is mainly focused on the electro-oxidation study of glycerol under potentiostatic mode for cogenerating energy with other chemicals. The electro-organic synthesis study from glycerol under galvanostatic mode is seldom reviewed. In this study, the glycerol was converted into various added-value compounds by electrochemical method under galvanostatic mode. This work aimed to study the possible compounds produced from glycerol by electrochemical technique in a one-pot electrolysis cell. The electro-organic synthesis study from glycerol was carried out in a single compartment reactor for 8 hours, over the platinum cathode and anode electrodes under acidic condition. Various parameters such as electric current (1.0 A to 3.0 A) and reaction temperature (27 °C to 80 °C) were evaluated. The products obtained were characterized by using gas chromatography-mass spectroscopy equipped with an aqueous-stable polyethylene glycol stationary phase column. Under the optimized reaction condition, the glycerol conversion achieved as high as 95%. The glycerol was successfully converted into various added-value chemicals such as ethylene glycol, glycolic acid, glyceric acid, acetaldehyde, formic acid, and glyceraldehyde; given the yield of 1%, 45%, 27%, 4%, 0.7% and 5%, respectively. Based on the products obtained from this study, the reaction mechanism of this process is proposed. In conclusion, this study has successfully converted glycerol into a wide variety of added-value compounds. These chemicals are found to have high market value; they can be used in the pharmaceutical, food and cosmetic industries. This study effectively opens a new approach for the electrochemical conversion of glycerol. For further enhancement on the product selectivity, electrode material is an important parameter to be considered.

Keywords: biodiesel, glycerol, electrochemical conversion, galvanostatic mode

Procedia PDF Downloads 183
3545 Oxidative Stability of an Iranian Ghee (Butter Fat) Versus Soybean Oil During Storage at Different Temperatures

Authors: Kooshan Nayebzadeh, Maryam Enteshari

Abstract:

In this study, the oxidative stability of soybean oil under different storage temperatures (4 and 25 ˚C) and during 6-month shelf-life was investigated by various analytical methods and headspace-liquid phase microextraction (HS-LPME) coupled to gas chromatography-mass spectrometry (GC-MS). Oxidation changes were monitored by analytical parameters consisted of acid value (AV), peroxide value (PV), p-Anisidine value (p-AV), thiobarbituric acid value (TBA), fatty acids profile, iodine value (IV) and oxidative stability index (OSI). In addition, concentrations of hexanal and heptanal as secondary volatile oxidation compounds were determined by HS-LPME/GC-MS technique. Rate of oxidation in soybean oil which stored at 25 ˚C was so higher. The AV, p-AV, and TBA were gradually increased during 6 months, while the amount of unsaturated fatty acids, IV, and OSI decreased. Other parameters included concentrations of both hexanal and heptanal, and PV exhibited increasing trend during primitive months of storage; then, at the end of third and fourth months a sudden decrement was understood for the concentrations of hexanal and heptanal and the amount of PV, simultaneously. The latter parameters increased again until the end of shelf-time. As a result, the temperature and time were effective factors in oxidative stability of soybean oil. Also intensive correlations were found for soybean oil at 4 ˚C between AV and TBA (r2=0.96), PV and p-AV (r2=0.9), IV and TBA (-r2=0.9), and for soybean oil stored at 4 ˚C between p-AV and TBA (r2=0.99).

Keywords: headspace-liquid phase microextraction, oxidation, shelf-life, soybean oil

Procedia PDF Downloads 380
3544 Comparative Analysis of Various Waste Oils for Biodiesel Production

Authors: Olusegun Ayodeji Olagunju, Christine Tyreesa Pillay

Abstract:

Biodiesel from waste sources is regarded as an economical and most viable fuel alternative to depleting fossil fuels. In this work, biodiesel was produced from three different sources of waste cooking oil; from cafeterias, which is vegetable-based using the transesterification method. The free fatty acids (% FFA) of the feedstocks were conducted successfully through the titration method. The results for sources 1, 2, and 3 were 0.86 %, 0.54 % and 0.20 %, respectively. The three variables considered in this process were temperature, reaction time, and catalyst concentration within the following range: 50 oC – 70 oC, 30 min – 90 min, and 0.5 % – 1.5 % catalyst. Produced biodiesel was characterized using ASTM standard methods for biodiesel property testing to determine the fuel properties, including kinematic viscosity, specific gravity, flash point, pour point, cloud point, and acid number. The results obtained indicate that the biodiesel yield from source 3 was greater than the other sources. All produced biodiesel fuel properties are within the standard biodiesel fuel specifications ASTM D6751. The optimum yield of biodiesel was obtained at 98.76%, 96.4%, and 94.53% from source 3, source 2, and source 1, respectively at optimum operating variables of 65 oC temperature, 90 minutes reaction time, and 0.5 wt% potassium hydroxide.

Keywords: waste cooking oil, biodiesel, free fatty acid content, potassium hydroxide catalyst, optimization analysis

Procedia PDF Downloads 61
3543 Synthesis and Analgesic activity of 2-(p-Substituted phenyl)-3-[4-(N-Substituted amino) methyl-2-oxo indoilin-3-ylidene]benzenesulfonyl Quinazolin-4(3H)-One Derivatives

Authors: N. Gopal, K. Jaasminerjiit, L. Z. Xiang

Abstract:

Quinazoline-4(3H)-one ring system has been consistently regarded as promising privileged structural icon owing to its pharmacodynamic versatility in many of its synthetic derivatives as well as in several naturally occurring alkaloids. The literature reveals that 2nd & 3rd positions of the quinazolin-4(3H)-one pharmacophore are the target for substitution with other moieties. On the other hand, sulphanilamide derivatives and isatin moiety also displayed valuable biological activities. Hence, it was thought worthwhile to study the effects of three pharmacophoric moieties like quinazolinone, sulphanilamide and isatin in a single molecule for the better analgesic activity with lower toxicity. Series of novel 2,3-disubstituted quinazolin-4(3H)-one derivatives have been synthesised from the intermediate Schiff base of 2-(4’-substitutedphenyl)-3-[(N-2-oxoindolin-3-ylidene)-4”-sulphonamidophenyl]-quinazolin-4(3H)-one derivatives, which was prepared from reacting 2-(substituted phenyl)-4H-benzo[d][1,3]-oxazin-4-one with sulphanilamide. The required benzoxazinone derivatives were prepared by reacting anthranilic acid with benzoyl chloride. All the compounds structure was characterised by using H1 NMR, IR and Mass spectroscopy. The intermediate Schiff base and final Mannich base compounds were evaluated for their analgesic activity by acetic acid-induced writhing method at the dose of 25mg/kg, 50 mg/kg, and 100 mg/kg (bw) and Diclofenac (25mg/kg of body weight) will be used as the reference drugs. From the results of the study, it has been observed that final Mannich base showed a better analgesic activity when compared to the parent Schiff bases, it was found that compound substituted with N-methyl piperazine at 1st position of the indole nucleus of the final quinazolinone derivatives (GA4B1) i.e. 2-(4’-methoxy phenyl)-3-[4-(N-(1-N-methyl piperazine amine) methyl-2-oxo indoilin-3-ylidene] benzenesulfonyl quinazolin-4(3H)-one increases the analgesic activity and among the synthesised compounds, GA4B1 exhibited quite superior analgesic activity. The remaining Schiff bases and Mannich base derivatives exhibited moderate analgesic activity. All the compounds showed a dose dependent activity. None of the synthesised compound showed ulcer index whereas the standard drug, diclofenac [25 mg/kg (bw)] showed significantly higher gross ulcer index values.

Keywords: analgesic activity, isatin, mannich base, quinazolin-4(3H)-one

Procedia PDF Downloads 325
3542 Benzene Sulfonamide Derivatives: Synthesis, Absorption, Distribution, Metabolism, and Excretion (ADME) Studies, Anti-proliferative Activity, and Docking Simulation with Theoretical Investigation

Authors: Asmaa M. Fahim

Abstract:

In this elucidation, we synthesized different heterocyclic compounds attached to Benzene sulfonamide moiety via (E)-N-(4-(3-(4-bromophenyl)acryloyl)phenyl)-4-methyl benzene sulfonamide which is obtained from Nucleophilic substitution reaction between 4-methylbenzene sulfonyl chloride and 1-(4-aminophenyl)ethan-1-one in pyridine to get N-(4-acetyl phenyl)-4-methyl benzenesulfonamide which reacted 4-bromobenzal dehyde undergoes aldol condensation in NaOH to afford the corresponding chalchone 4. Moreover, the reactivity of chalchone 4 showed several active methylene derivatives utilized the pressurized microwave irradiation as a green energy resource. Chalcone 4 was allowed to react with ethyl cyanoacetate and acetylacetone, respectively, at 70 °C with pressure under microwave reaction condition to afford the 5-cyano-6-oxo-1,2,5,6-tetrahydropyridin-2-yl)-4-methylbenzenesulfonamide 6 and N-(4'-acetyl-4''-bromo-5'-oxo-2',3',4',5'-tetrahydro-[1,1':3',1''-terphenyl]-4-yl)-4-methylbenzenesulfonamide 8 derivatives. Moreover, the reactivity of this sulphonamide chalchone with NH2NH2 in EtOH and acetic acid, which gave 2,5-dihydro-1H-imidazol-4-yl)-4-methyl benzenesulfonamide, 1H-pyrazol-3-yl)-4-methyl and reactivity with NH2OH.HCl gave isoxazol-3-yl)-4-methylbenzenesulfonamide derivatives. The synthesized compounds were screened for their ADME properties and directed to antitumor activity on HepG2 hepatocellular carcinoma and MCF-7 breast cancer and exhibited excellent behavior against standard drugs; these results were confirmed through molecular simulations with different proteins. Additionally, the Density Functional Theory analysis of optimized structures investigated their physical descriptors, FMO, ESP and MEP, which correlated with biological evaluation.

Keywords: synthesis, green chemistry, antitumor activity, DFT study

Procedia PDF Downloads 63
3541 An Evaluation of the Impact of Epoxidized Neem Seed Azadirachta indica Oil on the Mechanical Properties of Polystyrene

Authors: Salihu Takuma

Abstract:

Neem seed oil has high contents of unsaturated fatty acids which can be converted to epoxy fatty acids. The vegetable oil – based epoxy material are sustainable, renewable and biodegradable materials replacing petrochemical – based epoxy materials in some applications. Polystyrene is highly brittle with limited mechanical applications. Raw neem seed oil was obtained from National Research Institute for Chemical Technology (NARICT), Zaria, Nigeria. The oil was epoxidized at 60 0C for three (3) hours using formic acid generated in situ. The epoxidized oil was characterized using Fourier Transform Infrared spectroscopy (FTIR). The disappearance of C = C stretching peak around 3011.7 cm-1and formation of a new absorption peak around 943 cm-1 indicate the success of epoxidation. The epoxidized oil was blended with pure polystyrene in different weight percent compositions using solution casting in chloroform. The tensile properties of the blends demonstrated that the addition of 5 wt % ENO to PS led to an increase in elongation at break, but a decrease in tensile strength and modulus. This is in accordance with the common rule that plasticizers can decrease the tensile strength of the polymer.

Keywords: biodegradable, elongation at break, epoxidation, epoxy fatty acids, sustainable, tensile strength and modulus

Procedia PDF Downloads 215
3540 Fatty Acid Translocase (Cd36), Energy Substrate Utilization, and Insulin Signaling in Brown Adipose Tissue in Spontaneously Hypertensive Rats

Authors: Michal Pravenec, Miroslava Simakova, Jan Silhavy

Abstract:

Brown adipose tissue (BAT) plays an important role in lipid and glucose metabolism in rodents and possibly also in humans. Recently, using systems genetics approach in the BAT from BXH/HXB recombinant inbred strains, derived from the SHR (spontaneously hypertensive rat) and BN (Brown Norway) progenitors, we identified Cd36 (fatty acid translocase) as the hub gene of co-expression module associated with BAT relative weight and function. An important aspect of BAT biology is to better understand the mechanisms regulating the uptake and utilization of fatty acids and glucose. Accordingly, BAT function in the SHR that harbors mutant nonfunctional Cd36 variant (hereafter referred to as SHR-Cd36⁻/⁻) was compared with SHR transgenic line expressing wild type Cd36 under control of a universal promoter (hereafter referred to as SHR-Cd36⁺/⁺). BAT was incubated in media containing insulin and 14C-U-glucose alone or 14C-U-glucose together with palmitate. Incorporation of glucose into BAT lipids was significantly higher in SHR-Cd36⁺/⁺ versus SHR-Cd36⁻/⁻ rats when incubation media contained glucose alone (SHR-Cd36⁻/⁻ 591 ± 75 vs. SHR-Cd36⁺/⁺ 1036 ± 135 nmol/gl./2h; P < 0.005). Adding palmitate into incubation media had no effect in SHR-Cd36⁻/⁻ rats but significantly reduced glucose incorporation into BAT lipids in SHR-Cd36⁺/⁺ (SHR-Cd36⁻/⁻ 543 ± 55 vs. SHR-Cd36⁺/⁺ 766 ± 75 nmol/gl./2h; P < 0.05 denotes significant Cd36 x palmitate interaction determined by two-way ANOVA). This Cd36-dependent reduced glucose uptake in SHR-Cd36⁺/⁺ BAT was likely secondary to increased palmitate incorporation and utilization due to the presence of wild type Cd36 fatty acid translocase in transgenic rats. This possibility is supported by increased incorporation of 14C-U-palmitate into BAT lipids in the presence of both palmitate and glucose in incubation media (palmitate alone: SHR-Cd36⁻/⁻ 870 ± 21 vs. SHR-Cd36⁺/⁺ 899 ± 42; glucose+palmitate: SHR-Cd36⁻/⁻ 899 ± 47 vs. SHR-Cd36⁺/⁺ 1460 ± 111 nmol/palm./2h; P < 0.05 denotes significant Cd36 x glucose interaction determined by two-way ANOVA). It is possible that addition of glucose into the incubation media increased palmitate incorporation into BAT lipids in SHR-Cd36⁺/⁺ rats because of glucose availability for glycerol phosphate production and increased triglyceride synthesis. These changes in glucose and palmitate incorporation into BAT lipids were associated with significant differential expression of Irs1, Irs2, Slc2a4 and Foxo1 genes involved in insulin signaling and glucose metabolism only in SHR-Cd36⁺/⁺ rats which suggests Cd36-dependent effects on insulin action. In conclusion, these results provide compelling evidence that Cd36 plays an important role in BAT insulin signaling and energy substrate utilization.

Keywords: brown adipose tissue, Cd36, energy substrate utilization, insulin signaling, spontaneously hypertensive rat

Procedia PDF Downloads 122
3539 Antioxidant Activity Studies of Novel Schiff and Mannich Bases

Authors: D. J. Madhu Kumar, D. Jagadeesh Prasad, Sana Sheik, E. P. Rejeesh

Abstract:

A series of Mannich bases derived from 1,2,4-triazole(3a-k and 4a-k) are synthesized by treating a Schiff base with various substituted primary/secondary amines and formaldehyde. The Schiff base is prepared by treating 3-methyl-4-amino-5-mercapto-1,2,4-triazole with 3,4-dimethoxybenzaldehyde in the presence of acid catalyst. The triazole is prepared by treating acetic acid with thiocarbohydrazide at reflux temperature. All the synthesized samples are characterised by FT-IR, 1H-NMR, and LC-MASS spectral studies and screened for their anti-oxidant activity.

Keywords: mannich bases, anti-oxidant activity, schiff base, triazole

Procedia PDF Downloads 500
3538 Effect of Doping Ag and N on the Photo-Catalytic Activity of ZnO/CuO Nanocomposite for Degradation of Methyl Orange under UV and Visible Radiation

Authors: O. P. Yadav

Abstract:

Nano-size Ag-N co-doped ZnO/CuO composite photo-catalyst has been synthesized by chemical method and characterized using XRD, TEM, FTIR, AAS and UV-Vis spectroscopic techniques. Photo-catalytic activity of as-synthesized nanomaterial has been studied using degradation of methyl orange as a probe under UV as well as visible radiations. Ag-N co-doped ZnO/CuO composite showed higher photo-catalytic activity than Ag- or N-doped ZnO and undoped ZnO-CuO composite photo-catalysts. The observed highest activity of Ag-N co-doped ZnO-CuO among the studied photo-catalysts is attributed to the cumulative effects of lowering of band-gap energy and decrease of recombination rate of photo-generated electrons and holes owing to doped N and Ag, respectively. Effects of photo-catalyst load, pH and substrate initial concentration on degradation of methyl orange have also been studied. Photo-catalytic degradation of methyl orange follows pseudo first order kinetics.

Keywords: degradation, nanocomposite, photocatalyst, spectroscopy, XRD

Procedia PDF Downloads 480