Search results for: extreme temperatures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2499

Search results for: extreme temperatures

2289 Thermal Comfort and Outdoor Urban Spaces in the Hot Dry City of Damascus, Syria

Authors: Lujain Khraiba

Abstract:

Recently, there is a broad recognition that micro-climate conditions contribute to the quality of life in urban spaces outdoors, both from economical and social viewpoints. The consideration of urban micro-climate and outdoor thermal comfort in urban design and planning processes has become one of the important aspects in current related studies. However, these aspects are so far not considered in urban planning regulations in practice and these regulations are often poorly adapted to the local climate and culture. Therefore, there is a huge need to adapt the existing planning regulations to the local climate especially in cities that have extremely hot weather conditions. The overall aim of this study is to point out the complexity of the relationship between urban planning regulations, urban design, micro-climate and outdoor thermal comfort in the hot dry city of Damascus, Syria. The main aim is to investigate the temporal and spatial effects of micro-climate on urban surface temperatures and outdoor thermal comfort in different urban design patterns as a result of urban planning regulations during the extreme summer conditions. In addition, studying different alternatives of how to mitigate the surface temperature and thermal stress is also a part of the aim. The novelty of this study is to highlight the combined effect of urban surface materials and vegetation to develop the thermal environment. This study is based on micro-climate simulations using ENVI-met 3.1. The input data is calibrated according to a micro-climate fieldwork that has been conducted in different urban zones in Damascus. Different urban forms and geometries including the old and the modern parts of Damascus are thermally evaluated. The Physiological Equivalent Temperature (PET) index is used as an indicator for outdoor thermal comfort analysis. The study highlights the shortcomings of existing planning regulations in terms of solar protection especially at street levels. The results show that the surface temperatures in Old Damascus are lower than in the modern part. This is basically due to the difference in urban geometries that prevent the solar radiation in Old Damascus to reach the ground and heat up the surface whereas in modern Damascus, the streets are prescribed as wide spaces with high values of Sky View Factor (SVF is about 0.7). Moreover, the canyons in the old part are paved in cobblestones whereas the asphalt is the main material used in the streets of modern Damascus. Furthermore, Old Damascus is less stressful than the modern part (the difference in PET index is about 10 °C). The thermal situation is enhanced when different vegetation are considered (an improvement of 13 °C in the surface temperature is recorded in modern Damascus). The study recommends considering a detailed landscape code at street levels to be integrated in urban regulations of Damascus in order to achieve a better urban development in harmony with micro-climate and comfort. Such strategy will be very useful to decrease the urban warming in the city.

Keywords: micro-climate, outdoor thermal comfort, urban planning regulations, urban spaces

Procedia PDF Downloads 461
2288 Quantification of Peptides (linusorbs) in Gluten-free Flaxseed Fortified Bakery Products

Authors: Youn Young Shim, Ji Hye Kim, Jae Youl Cho, Martin JT Reaney

Abstract:

Flaxseed (Linumusitatissimum L.) is gaining popularity in the food industry as a superfood due to its health-promoting properties. Linusorbs (LOs, a.k.a. Cyclolinopeptide) are bioactive compounds present in flaxseed exhibiting potential health effects. The study focused on the effects of processing and storage on the stability of flaxseed-derived LOs added to various bakery products. The flaxseed meal fortified gluten-free (GF) bakery bread was prepared, and the changes of LOs during the bread-making process (meal, fortified flour, dough, and bread) and storage (0, 1, 2, and 4 weeks) at different temperatures (−18 °C, 4 °C, and 22−23 °C) were analyzed by high-performance liquid chromatography-diode array detection. The total oxidative LOs and LO1OB2 were almost kept stable in flaxseed meals at storage temperatures of 22−23 °C, −18 °C, and 4 °C for up to four weeks. Processing steps during GF-bread production resulted in the oxidation of LOs. Interestingly, no LOs were detected in the dough sample; however, LOs appeared when the dough was stored at −18 °C for one week, suggesting that freezing destroyed the sticky structure of the dough and resulted in the release of LOs. The final product, flaxseed meal fortified bread, could be stored for up to four weeks at −18 °C and 4 °C, and for one week at 22−23 °C. All these results suggested that LOs may change during processing and storage and that flaxseed flour-fortified bread should be stored at low temperatures to preserve effective LOs components.

Keywords: linum usitatissimum L., flaxseed, linusorb, stability, gluten-free, peptides, cyclolinopeptide

Procedia PDF Downloads 157
2287 An Investigation of Trends and Variability of Rainfall in Shillong City

Authors: Kamal Kumar Tanti, Nayan Moni Saikia, Markynti Swer

Abstract:

This study aims to investigate and analyse the trends and variability of rainfall in Shillong and its nearby areas, located in Meghalaya hills of North-East India; which is geographically a neighbouring area to the wettest places of the Earth, i.e., Cherrapunji and Mawsynram. The analysis of variability and trends to annual, seasonal, monthly and daily rainfall was carried out, using the data collected from the IMD station at Shillong; thereby attempting to highlight whether rainfall in Shillong area has been increasing or decreasing over the years. Rainfall variability coefficient is utilized to compare the current rainfall trend of the area with its past rainfall trends. The present study also aims to analyse the frequency of occurrence of extreme rainfall events over the region. These studies will help us to establish a correlation between the current rainfall trend and climate change scenario of the study area.

Keywords: trends and variability of rainfall, annual, seasonal, monthly and daily rainfall, rainfall variability coefficient, extreme rainfall events, climate change, Shillong, Cherrapunji, Mawsynram

Procedia PDF Downloads 245
2286 Preparation of Amla (Phyllanthus emblica) Powder Using Spray Drying Technique

Authors: Shubham Mandliya, Pooja Pandey, H. N. Mishra

Abstract:

Amla (Phyllanthus emblica), a plant of Euphorbiaceous is widely distributed in subtropical and tropical areas of China, India, Indonesia, and Malaysia. Amla is very high in vitamin C content. Spray drying of fruit juices represents another alternative way to improve the physicochemical stability and increase their shelf life. Samples of amla powder were produced using the spray drying method to investigate the effect of inlet temperatures and maltodextrin levels. The spray dryer model used was a laboratory scale dryer and samples were run at different temperatures and concentrations. The response surface methodology (RSM) was used to optimize the spray-drying process for the development of amla powder. The resultant powders were then analyzed for vitamin C, moisture, solubility and dispersibility. The spray dried amla powder contains higher amounts of vitamin C when compared to commercial fruit juice powders. SEM analysis revealed that lower maltodextrin levels and higher inlet air temperatures resulted in smaller but smoother particles. At lower temperature, vitamin C content is high as compared to higher temperature. Spray drying is an effective as well as an economic method which can be commercially used for making powder rather than by tray or solar drying as more fraction is retained with less cost.

Keywords: Amla powder, physiochemical properties, response surface methodology, spray drying

Procedia PDF Downloads 215
2285 Volumetric Properties of Binary Mixtures of Glycerol +1-Butanol or +2-Butanol at Several Temperatures

Authors: Y. Chabouni, F. Amireche

Abstract:

Densities of glycerol + 1-butanol or 2-butanol mixtures were measured over the temperature range 293.15 to 303.15 K at atmospheric pressure, over the entire composition range, with a vibrating tube densimeter. Excess molar volumes, apparent and partial molar volumes of glycerol and butanol, thermal isobaric expansivities of the mixture and partial molar expansivities of the components were calculated. The excess molar volumes of the mixtures are negative at all temperatures, and deviations from ideality increase with increasing temperature. Excess molar volumes were fitted to the Redlich–Kister equation. Partial molar volumes of glycerol decrease with increasing butanol concentration.

Keywords: 1-Butanol, 2-Butanol, density, excess molar volume, glycerol, partial molar property, thermal isobaric expansivities

Procedia PDF Downloads 169
2284 Finite Element Modeling of Friction Stir Welding of Dissimilar Alloys

Authors: Fadi Al-Badour, Nesar Merah, Abdelrahman Shuaib, Abdelaziz Bazoune

Abstract:

In the current work, a Coupled Eulerian Lagrangian (CEL) model is developed to simulate the friction stir welding (FSW) process of dissimilar Aluminum alloys (Al 6061-T6 with Al 5083-O). The model predicts volumetric defects, material flow, developed temperatures, and stresses in addition to tool reaction loads. Simulation of welding phase is performed by employing a control volume approach, whereas the welding speed is defined as inflow and outflow over Eulerian domain boundaries. Only material softening due to inelastic heat generation is considered and material behavior is assumed to obey Johnson-Cook’s Model. The model was validated using published experimentally measured temperatures, at similar welding conditions, and by qualitative comparison of dissimilar weld microstructure. The FE results showed that most of developed temperatures were below melting and that the bulk of the deformed material in solid state. The temperature gradient on AL6061-T6 side was found to be less than that of Al 5083-O. Changing the position Al 6061-T6 from retreating (Ret.) side to advancing (Adv.) side led to a decrease in maximum process temperature and strain rate. This could be due to the higher resistance of Al 6061-T6 to flow as compared to Al 5083-O.

Keywords: friction stir welding, dissimilar metals, finite element modeling, coupled Eulerian Lagrangian Analysis

Procedia PDF Downloads 309
2283 Field Study for Evaluating Winter Thermal Performance of Auckland School Buildings

Authors: Bin Su

Abstract:

Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only needs heating during the winter. The Auckland school building thermal design should more focus on winter thermal performance and indoor thermal comfort for energy efficiency. This field study of testing indoor and outdoor air temperatures, relative humidity and indoor surface temperatures of three classrooms with different envelopes were carried out in the Avondale College during the winter months in 2013. According to the field study data, this study is to compare and evaluate winter thermal performance and indoor thermal conditions of school buildings with different envelopes.

Keywords: building envelope, building mass effect, building thermal comfort, building thermal performance, school building

Procedia PDF Downloads 397
2282 Urban Heat Island Effects on Human Health in Birmingham and Its Mitigation

Authors: N. A. Parvin, E. B. Ferranti, L. A. Chapman, C. A. Pfrang

Abstract:

This study intends to investigate the effects of the Urban Heat Island on public health in Birmingham. Birmingham is located at the center of the West Midlands and its weather is Highly variable due to geographical factors. Residential developments, road networks and infrastructure often replace open spaces and vegetation. This transformation causes the temperature of urban areas to increase and creates an "island" of higher temperatures in the urban landscape. Extreme heat in the urban area is influencing public health in the UK as well as in the world. Birmingham is a densely built-up area with skyscrapers and congested buildings in the city center, which is a barrier to air circulation. We will investigate the city regarding heat and cold-related human mortality and other impacts. We are using primary and secondary datasets to examine the effect of population shift and land-use change on the UHI in Birmingham. We will also use freely available weather data from the Birmingham Urban Observatory and will incorporate satellite data to determine urban spatial expansion and its effect on the UHI. We have produced a temperature map based on summer datasets of 2020, which has covered 25 weather stations in Birmingham to show the differences between diurnal and nocturnal summer and annual temperature trends. Some impacts of the UHI may be beneficial, such as the lengthening of the plant growing season, but most of them are highly negative. We are looking for various effects of urban heat which is impacting human health and investigating mitigation options.

Keywords: urban heat, public health, climate change

Procedia PDF Downloads 76
2281 Variable Renewable Energy Droughts in the Power Sector – A Model-based Analysis and Implications in the European Context

Authors: Martin Kittel, Alexander Roth

Abstract:

The continuous integration of variable renewable energy sources (VRE) in the power sector is required for decarbonizing the European economy. Power sectors become increasingly exposed to weather variability, as the availability of VRE, i.e., mainly wind and solar photovoltaic, is not persistent. Extreme events, e.g., long-lasting periods of scarce VRE availability (‘VRE droughts’), challenge the reliability of supply. Properly accounting for the severity of VRE droughts is crucial for designing a resilient renewable European power sector. Energy system modeling is used to identify such a design. Our analysis reveals the sensitivity of the optimal design of the European power sector towards VRE droughts. We analyze how VRE droughts impact optimal power sector investments, especially in generation and flexibility capacity. We draw upon work that systematically identifies VRE drought patterns in Europe in terms of frequency, duration, and seasonality, as well as the cross-regional and cross-technological correlation of most extreme drought periods. Based on their analysis, the authors provide a selection of relevant historical weather years representing different grades of VRE drought severity. These weather years will serve as input for the capacity expansion model for the European power sector used in this analysis (DIETER). We additionally conduct robustness checks varying policy-relevant assumptions on capacity expansion limits, interconnections, and level of sector coupling. Preliminary results illustrate how an imprudent selection of weather years may cause underestimating the severity of VRE droughts, flawing modeling insights concerning the need for flexibility. Sub-optimal European power sector designs vulnerable to extreme weather can result. Using relevant weather years that appropriately represent extreme weather events, our analysis identifies a resilient design of the European power sector. Although the scope of this work is limited to the European power sector, we are confident that our insights apply to other regions of the world with similar weather patterns. Many energy system studies still rely on one or a limited number of sometimes arbitrarily chosen weather years. We argue that the deliberate selection of relevant weather years is imperative for robust modeling results.

Keywords: energy systems, numerical optimization, variable renewable energy sources, energy drought, flexibility

Procedia PDF Downloads 52
2280 Yields and Composition of the Gas, Liquid and Solid Fractions Obtained by Conventional Pyrolysis of Different Lignocellulosic Biomass Residues

Authors: María del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol, Tomás Cordero

Abstract:

Nowadays, fossil resources are main precursors for fuel production. Due to their contribution to the greenhouse effect and their future depletion, there is a constant search for environmentally friendly feedstock alternatives. Biomass residues constitute an interesting replacement for fossil resources because of their zero net CO₂ emissions. One of the main routes to convert biomass into energy and chemicals is pyrolysis. In this work, conventional pyrolysis of different biomass residues highly available such as almond shells, hemp hurds, olive stones, and Kraft lignin, was studied. In a typical experiment, the biomass was crushed and loaded into a fixed bed reactor under continuous nitrogen flow. The influence of temperature (400-800 ºC) and heating rate (10 and 20 ºC/min) on the pyrolysis yield and composition of the different fractions has been studied. In every case, the mass yields revealed that the solid fraction decreased with temperature, while liquid and gas fractions increased due to depolymerization and cracking reactions at high temperatures. The composition of every pyrolysis fraction was studied in detail. The results showed that the composition of the gas fraction was mainly CO, CO₂ when working at low temperatures, and mostly CH₄ and H₂at high temperatures. The solid fraction developed an incipient microporosity, with narrow micropore volume of 0.21 cm³/g. Regarding the liquid fraction, pyrolysis of almond shell, hemp hurds, and olive stones led mainly to a high content in aliphatic acids and furans, due to the high volatile matter content of these biomass (>74 %wt.), and phenols to a lesser degree, which were formed due to the degradation of lignin at higher temperatures. However, when Kraft lignin was used as bio-oil precursor, the presence of phenols was very prominent, and aliphatic compounds were also detected in a lesser extent.

Keywords: Bio-oil, biomass, conventional pyrolysis, lignocellulosic

Procedia PDF Downloads 115
2279 Adaptation Mechanisms of the Polyextremophile Natranaerobius Thermophilus to Saline-Alkaline-Hermal Environments

Authors: Qinghua Xing, Xinyi Tao, Haisheng Wang, Baisuo Zhao

Abstract:

The first true anaerobic, halophilic alkali thermophile, Natranaerobius thermophilus DSM 18059T, serves as a valuable model for studying cellular adaptations to saline, alkaline and thermal extremes. To uncover the adaptive strategies employed by N. thermophilus in coping with these challenges, we conducted a comprehensive iTRAQ-based quantitative proteomic analysis under different conditions of salinity (3.5 M vs. 2.5 M Na+), pH (pH 9.6 vs. pH 8.6), and temperature (52°C vs. 42°C). The increased intracellular accumulation of glycine betaine, through both synthesis and transport, plays a critical role in N. thermophilus' adaptation to these combined stresses. Under all three stress conditions, the up-regulation of Trk family proteins responsible for K+ transport is observed. Intracellular K+ concentration rises in response to salt and pH levels. Multiple types of Na+/H+ antiporter (NhaC family, Mrp family and CPA family) and a diverse range of FOF1-ATP synthase are identified as vital components for maintaining ionic balance under different stress conditions. Importantly, proteins involved in amino acid metabolism, carbohydrate metabolism, ABC transporters, signaling and chemotaxis, as well as biological macromolecule repair and protection, exhibited significant up-regulation in response to these extreme conditions. These metabolic pathways emerge as critical factors in N. thermophilus' adaptation mechanisms under extreme environmental stress. To validate the proteomic data, ddPCR analysis confirmed changes in mRNA expression, thereby corroborating the up-regulation and down-regulation patterns of 19 co-up-regulated and 36 key proteins under saline, alkaline and thermal stresses. This research enriches our understanding of the complex regulatory systems that enable polyextremophiles to survive in combined extreme conditions.

Keywords: polyextremophiles, natranaerobius thermophilus, saline- alkaline- thermal stresses, combined extremes

Procedia PDF Downloads 23
2278 Effect of BaO-Bi₂O₃-P₂O₅ Glass Additive on Structural and Dielectric Properties of BaTiO₃ Ceramics

Authors: El Mehdi Haily, Lahcen Bih, Mohammed Azrour, Bouchaib Manoun

Abstract:

The effects of xBi₂O₃-yBaO-zP₂O₅ (BBP) glass addition on the sintering, structural, and dielectric properties of BaTiO₃ ceramic (BT) are studied. The BT ceramic was synthesized by the conventional solid-state reaction method while the glasses BaO-Bi₂O₃-P₂O₅ (BBP) were elaborated by melting and quenching process. Different composites BT-xBBP were formed by mixing the BBP glasses with BT ceramic. For each glass composition, where the ratio (x:y:z) is maintained constant, we have developed three composites with different glass weight percentage (x = 2.5, 5, and 7.5 wt %). Addition of the glass helps in better sintering at lower temperatures with the presence of liquid phase at the respective sintering temperatures. The results showed that the sintering temperature decreased from more than 1300°C to 900°C. Density measurements of the composites are performed using the standard Archimedean method with water as medium liquid. It is found that their density and molar volume decrease and increase with glass content, respectively. Raman spectroscopy is used to characterize their structural approach. This technique has allowed the identification of different structural units of phosphate and the characteristic vibration modes of the BT. The electrical properties of the composite samples are carried out by impedance spectroscopy in the frequency range of 10 Hz to 1 MHz under various temperatures from 300 to 473 K. The obtained results show that their dielectric properties depend both on the content of the glass in the composite and the Bi/P ratio in the glasses.

Keywords: phosphate, glasses, composite, Raman spectroscopy, dielectric properties

Procedia PDF Downloads 139
2277 Possibilities of Psychodiagnostics in the Context of Highly Challenging Situations in Military Leadership

Authors: Markéta Chmelíková, David Ullrich, Iva Burešová

Abstract:

The paper maps the possibilities and limits of diagnosing selected personality and performance characteristics of military leadership and psychology students in the context of coping with challenging situations. Individuals vary greatly inter-individually in their ability to effectively manage extreme situations, yet existing diagnostic tools are often criticized mainly for their low predictive power. Nowadays, every modern army focuses primarily on the systematic minimization of potential risks, including the prediction of desirable forms of behavior and the performance of military commanders. The context of military leadership is well known for its life-threatening nature. Therefore, it is crucial to research stress load in the specific context of military leadership for the purpose of possible anticipation of human failure in managing extreme situations of military leadership. The aim of the submitted pilot study, using an experiment of 24 hours duration, is to verify the possibilities of a specific combination of psychodiagnostic to predict people who possess suitable equipment for coping with increased stress load. In our pilot study, we conducted an experiment of 24 hours duration with an experimental group (N=13) in the bomb shelter and a control group (N=11) in a classroom. Both groups were represented by military leadership students (N=11) and psychology students (N=13). Both groups were equalized in terms of study type and gender. Participants were administered the following test battery of personality characteristics: Big Five Inventory 2 (BFI-2), Short Dark Triad (SD-3), Emotion Regulation Questionnaire (ERQ), Fatigue Severity Scale (FSS), and Impulsive Behavior Scale (UPPS-P). This test battery was administered only once at the beginning of the experiment. Along with this, they were administered a test battery consisting of the Test of Attention (d2) and the Bourdon test four times overall with 6 hours ranges. To better simulate an extreme situation – we tried to induce sleep deprivation - participants were required to try not to fall asleep throughout the experiment. Despite the assumption that a stay in an underground bomb shelter will manifest in impaired cognitive performance, this expectation has been significantly confirmed in only one measurement, which can be interpreted as marginal in the context of multiple testing. This finding is a fundamental insight into the issue of stress management in extreme situations, which is crucial for effective military leadership. The results suggest that a 24-hour stay in a shelter, together with sleep deprivation, does not seem to simulate sufficient stress for an individual, which would be reflected in the level of cognitive performance. In the context of these findings, it would be interesting in future to extend the diagnostic battery with physiological indicators of stress, such as: heart rate, stress score, physical stress, mental stress ect.

Keywords: bomb shelter, extreme situation, military leadership, psychodiagnostic

Procedia PDF Downloads 74
2276 Thermochemical Study of the Degradation of the Panels of Wings in a Space Shuttle by Utilization of HSC Chemistry Software and Its Database

Authors: Ahmed Ait Hou

Abstract:

The wing leading edge and nose cone of the space shuttle are fabricated from a reinforced carbon/carbon material. This material attains its durability from a diffusion coating of silicon carbide (SiC) and a glass sealant. During re-entry into the atmosphere, this material is subject to an oxidizing high-temperature environment. The use of thermochemical calculations resulting at the HSC CHEMISTRY software and its database allows us to interpret the phenomena of oxidation and chloridation observed on the wing leading edge and nose cone of the space shuttle during its mission in space. First study is the monitoring of the oxidation reaction of SiC. It has been demonstrated that thermal oxidation of the SiC gives the two compounds SiO₂(s) and CO(g). In the extreme conditions of very low oxygen partial pressures and high temperatures, there is a reaction between SiC and SiO₂, leading to SiO(g) and CO(g). We had represented the phase stability diagram of Si-C-O system calculated by the use of the HSC Chemistry at 1300°C. The principal characteristic of this diagram of predominance is the line of SiC + SiO₂ coexistence. Second study is the monitoring of the chloridation reaction of SiC. The other problem encountered in addition to oxidation is the phenomenon of chloridation due to the presence of NaCl. Indeed, after many missions, the leading edge wing surfaces have exhibited small pinholes. We have used the HSC Chemistry database to analyze these various reactions. Our calculations concorde with the phenomena we announced in research work resulting in NASA LEWIS Research center.

Keywords: thermochchemicals calculations, HSC software, oxidation and chloridation, wings in space

Procedia PDF Downloads 95
2275 Environmental Related Mortality Rates through Artificial Intelligence Tools

Authors: Stamatis Zoras, Vasilis Evagelopoulos, Theodoros Staurakas

Abstract:

The association between elevated air pollution levels and extreme climate conditions (temperature, particulate matter, ozone levels, etc.) and mental consequences has been, recently, the focus of significant number of studies. It varies depending on the time of the year it occurs either during the hot period or cold periods but, specifically, when extreme air pollution and weather events are observed, e.g. air pollution episodes and persistent heatwaves. It also varies spatially due to different effects of air quality and climate extremes to human health when considering metropolitan or rural areas. An air pollutant concentration and a climate extreme are taking a different form of impact if the focus area is countryside or in the urban environment. In the built environment the climate extreme effects are driven through the formed microclimate which must be studied more efficiently. Variables such as biological, age groups etc may be implicated by different environmental factors such as increased air pollution/noise levels and overheating of buildings in comparison to rural areas. Gridded air quality and climate variables derived from the land surface observations network of West Macedonia in Greece will be analysed against mortality data in a spatial format in the region of West Macedonia. Artificial intelligence (AI) tools will be used for data correction and prediction of health deterioration with climatic conditions and air pollution at local scale. This would reveal the built environment implications against the countryside. The air pollution and climatic data have been collected from meteorological stations and span the period from 2000 to 2009. These will be projected against the mortality rates data in daily, monthly, seasonal and annual grids. The grids will be operated as AI-based warning models for decision makers in order to map the health conditions in rural and urban areas to ensure improved awareness of the healthcare system by taken into account the predicted changing climate conditions. Gridded data of climate conditions, air quality levels against mortality rates will be presented by AI-analysed gridded indicators of the implicated variables. An Al-based gridded warning platform at local scales is then developed for future system awareness platform for regional level.

Keywords: air quality, artificial inteligence, climatic conditions, mortality

Procedia PDF Downloads 88
2274 Thermal Fatigue Behavior of Austenitic Stainless Steels

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

Continually increasing working temperature and growing need for greater efficiency and reliability of automotive exhaust require systematic investigation into the thermal fatigue properties especially of high temperature stainless steels. In this study, thermal fatigue properties of 300 series austenitic stainless steels have been evaluated in the temperature ranges of 200-800°C and 200-900°C. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. Load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property.

Keywords: austenitic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation

Procedia PDF Downloads 353
2273 The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA

Authors: J. R. Wang, W. Y. Li, H. T. Lin, J. H. Yang, C. Shih, S. W. Chen

Abstract:

Fuel rod analysis program transient (FRAPTRAN) code was used to study the fuel rod performance during a postulated large break loss of coolant accident (LBLOCA) in Maanshan nuclear power plant (NPP). Previous transient results from thermal hydraulic code, TRACE, with the same LBLOCA scenario, were used as input boundary conditions for FRAPTRAN. The simulation results showed that the peak cladding temperatures and the fuel center line temperatures were all below the 10CFR50.46 LOCA criteria. In addition, the maximum hoop stress was 18 MPa and the oxide thickness was 0.003 mm for the present simulation cases, which are all within the safety operation ranges. The present study confirms that this analysis method, the FRAPTRAN code combined with TRACE, is an appropriate approach to predict the fuel integrity under LBLOCA with operational ECCS.

Keywords: FRAPTRAN, TRACE, LOCA, PWR

Procedia PDF Downloads 491
2272 Effect of Different Salt Concentrations and Temperatures on Seed Germination and Seedling Characters in Safflower (Carthamus tinctorius L.) Genotypes

Authors: Rahim Ada, Zamari Temory, Hasan Dalgic

Abstract:

Germination and seedling responses of seven safflower seed genotypes (Dinçer, Remzibey, Black Sun2 cultivars and A19, F4, I1, J19 lines) to different salinity concentrations (0, 5, 10, and 20 g l-1) and temperatures (10 and 20 oC) evaluated in Completely Randomized Factorial Designs in Department of Field Crops of Selcuk University, Konya, Turkey. Seeds in the control (distilled water) had at 10 and 20 oC the highest germination percentage (93.88 and 94.32 %), shoot length (4.60 and 8.72 cm), root length (4.27 and 6.54 cm), shoot dry weight (22.37 mg and 25.99 mg), and root dry weight (2.22 and 2.47 mg). As the salt concentration increased, values of all characters were decreased. In this experiment, in 20 g l-1 salt concentration found germination percentage (21.28 and 26.66 %), shoot (1.32 and 1.35 cm) and root length (1.04 and 1.10 cm), shoot (8.05 mg and 7.49 mg) and root dry weight (0.83 and 0.98 mg) at 10, and 20 oC.

Keywords: safflower, NaCl, temperature, shoot and root length, salt concentration

Procedia PDF Downloads 263
2271 Modelling and Simulation of Diffusion Effect on the Glycol Dehydration Unit of a Natural Gas Plant

Authors: M. Wigwe, J. G Akpa, E. N Wami

Abstract:

Mathematical models of the absorber of a glycol dehydration facility was developed using the principles of conservation of mass and energy. Models which predict variation of the water content of gas in mole fraction, variation of gas and liquid temperatures across the parking height were developed. These models contain contributions from bulk and diffusion flows. The effect of diffusion on the process occurring in the absorber was studied in this work. The models were validated using the initial conditions in the plant data from Company W TEG unit in Nigeria. The results obtained showed that the effect of diffusion was noticed between z=0 and z=0.004 m. A deviation from plant data of 0% was observed for the gas water content at a residence time of 20 seconds, at z=0.004 m. Similarly, deviations of 1.584% and 2.844% were observed for the gas and TEG temperatures.

Keywords: separations, absorption, simulation, dehydration, water content, triethylene glycol

Procedia PDF Downloads 472
2270 An Investigation of Foam Glass Production from Sheet Glass Waste and SiC Foaming Agent

Authors: Aylin Sahin, Recep Artir, Mustafa Kara

Abstract:

Foam glass is a remarkable material with having incomparable properties like low weight, rigidity, high thermal insulation capacity and porous structure. In this study, foam glass production was investigated with using glass powder from sheet glass waste and SiC powder as foaming agent. Effects of SiC powders and sintering temperatures on foaming process were examined. It was seen that volume expansions (%), cellular structures and pore diameters of obtained foam glass samples were highly depending on composition ratios and sintering temperature. The study showed that various foam glass samples having with homogenous closed porosity, low weight and low thermal conductivity were achieved by optimizing composition ratios and sintering temperatures.

Keywords: foam glass, foaming, waste glass, silicon carbide

Procedia PDF Downloads 350
2269 Exposure to Radio Frequency Waves of Mobile Phone and Temperature Changes of Brain Tissue

Authors: Farhad Forouharmajd, Hossein Ebrahimi, Siamak Pourabdian

Abstract:

Introduction: Prevalent use of cell phones (mobile phones) has led to increasing worries about the effect of radiofrequency waves on the physiology of human body. This study was done to determine different reactions of the temperatures in different depths of brain tissue in confronting with radiofrequency waves of cell phones. Methodology: This study was an empirical research. A cow's brain tissue was placed in a compartment and the effects of radiofrequency waves of the cell phone was analyzed during confrontation and after confrontation, in three different depths of 2, 12, and 22 mm of the tissue, in 4 mm and 4 cm distances of the tissue to a cell phone, for 15 min. Lutron thermometer was used to measure the tissue temperatures. Data analysis was done by Lutron software. Findings: The rate of increasing the temperature at the depth of 22 mm was higher than 2 mm and 12mm depths, during confrontation of the brain tissue at the distance of 4 mm with the cell phone, such that the tissue temperatures at 2, 12, and 22 mm depths increased by 0.29 ˚C, 0.31 ˚C, and 0.37 ˚C, respectively, relative to the base temperature (tissue temperature before confrontation). Moreover, the temperature of brain tissue at the distance of 4 cm by increasing the tissue depth was more than other depths. Increasing the tissue temperature also existed by increasing the brain tissue depth after the confrontation with the cell phone. The temperature of the 22 mm depth increased with higher speed at the time confrontation. Conclusion: Not only radiofrequency waves of cell phones increased the tissue temperature in all the depths of the brain tissue, but also the temperature due to radiofrequency waves of the cell phone was more at the depths higher than 22 mm of the tissue. In fact, the thermal effect of radiofrequency waves was higher in higher depths.

Keywords: mobile phone, radio frequency waves, brain tissue, temperature

Procedia PDF Downloads 175
2268 Feasibility Study on a Conductive-Type Cooling System for an Axial Flux Permanent Magnet Generator

Authors: Yang-Gyun Kim, Eun-Taek Woo, Myeong-Gon Lee, Yun-Hyun Cho, Seung-Ho Han

Abstract:

For the sustainable development of wind energy, energy industries have invested in the development of highly efficient wind turbines such as an axial flux permanent magnet (AFPM) generator. The AFPM generator, however, has a history of overheating on the surface of the stator, so that power production decreases significantly. A proper cooling system, therefore, is needed. Although a convective-type cooling system has been developed, the size of the air blower must be increased when the generator’s capacity exceeds 2.5 MW. In this paper, we proposed a newly developed conductive-type cooling system using a heat pipe wound to the stator of a 2.5 MW AFPM generator installed on an offshore wind turbine. The numerical results showed that the temperatures on the stator surface using convective-type cooling system and the proposed conductive-type cooling system at thermal saturation were 60 and 76°C, respectively, which met the requirements for power production. The temperatures of the permanent magnet cased by the radiant heating from the stator surface were 53°C and 66°C, respectively, in each case. As a result, the permanent magnet did not reach the malfunction temperature. Although the cooling temperatures in the case of the conductive-type cooling system were higher than that of the convective-type cooling system, the relatively small size of the water pump and radiators make a light-weight design of the AFPM generator possible.

Keywords: wind turbine, axial flux permanent magnet (AFPM) generator, conductive-type cooling system

Procedia PDF Downloads 303
2267 The Genetic Diversity and Conservation Status of Natural Populus Nigra Populations in Turkey

Authors: Asiye Ciftci, Zeki Kaya

Abstract:

Populus nigra is one of the most economically and ecologically important forest trees in Turkey, well known for its rapid growth, good ability to vegetative propagation and the extreme uses of its wood. Due to overexploitation, loss of natural distribution area and extreme hybridization and introgression, Populus nigra is one of the most threatened tree species in Turkey and Europe. Using 20 nuclear microsatellite loci, the genetic structure of European black poplar populations along the two largest rivers of Turkey was analyzed. All tested loci were highly polymorphic, displaying 5 to 15 alleles per locus. Observed heterozygosity (overall Ho = 0.79) has been higher than the expected (overall He = 0.58) in each population. Low level of genetic differentiation among populations (FST= 0,03) and excess of heterozygotes for each river were found. Human-mediated dispersal, phenotypic selection, high level of gene flow and extensive circulations of clonal materials may cause those situations. The genetic data obtained from this study could provide the basis for efficient in situ and ex-situ conservation and restoration of species natural populations in its natural habitat as well as having sustainable breeding and poplar plantations in the future.

Keywords: populus, clonal, loci, ex situ

Procedia PDF Downloads 273
2266 Laminar Burning Velocity NH₃/H₂+Air Mixtures at Elevated Temperatures and Pressures

Authors: Talal Hasan, Akram Mohammad

Abstract:

Carbon-free combustion has great attention in today’s research for its unlimited benefits regarding various factors, and ammonia is considered a potential carbon-free alternative gas despite its flame characteristics. The Shrestha mechanism and Chemkin-Pro software will be used for numerical data. Firstly, experimental and numerical results should show good agreement to move for studying the laminar flame speed of ammonia under various conditions. Ammonia flame speed will be investigated under normal conditions (298 K, 1 atm) as well as under the influence of a range of equivalence ratios (0.6-1.8), elevated temperatures (298,323,373,423, and 473), elevated pressures (1 atm- 70 atm) and finally at varying hydrogen content (0-100%). Therefore, this work will understand the ammonia laminar flame speed characteristics and how and to what extent hydrogen can improve ammonia combustion intensity.

Keywords: laminar burning velocity, ammonia, hydrogen, combustion

Procedia PDF Downloads 82
2265 Comparative Effects of Convective Drying on the Qualities of Some Leafy Vegetables

Authors: Iyiola Olusola Oluwaleye, Samson A. Adeleye, Omojola Awogbemi

Abstract:

This paper reports an investigation of the comparative effects of drying on the quality of some leafy vegetables at three different temperatures namely: 50ᵒC, 60ᵒC and 70ᵒC. The vegetables investigated are spinach (Amaranthus cruentus); water leaf (Talinum triangulare); lettuce (Lactuca satuva); and fluted pumpkin (Telfaria occidentalis). These vegetables are available in abundance during raining season and are commonly consumed by average Nigerians. A convective dryer was used for the drying process at the stipulated temperatures which were maintained with the aid of a thermostat. The vegetable samples after washing was cut into smaller sizes of 0.4 cm-0.5 cm and loaded into the drying cage of the convective dryer. The daily duration of the drying is six hours from 9:00 am to 3:00 pm. The dried samples were thereafter subjected to microbial and proximate analyses. The result of the tests shows that the microbial load decreases as the drying temperature increases. As temperature increases, the moisture content and carbohydrate of all the samples decreases while the crude fiber, ash and protein increases. Percentage fat content decreases as drying temperature increases with the exception of fluted pumpkin. The shelf life of the vegetable samples increase with drying temperature, Spinach has the lowest shelf life followed by Fluted Pumpkin, followed by lettuce while Water Leaf has the highest shelf life at the three drying temperatures of 50ᵒC, 60ᵒC and 70ᵒC respectively.

Keywords: convective drying, leafy vegetables, quality, shelf life

Procedia PDF Downloads 240
2264 A Multi-Scale Contact Temperature Model for Dry Sliding Rough Surfaces

Authors: Jamal Choudhry, Roland Larsson, Andreas Almqvist

Abstract:

A multi-scale flash temperature model has been developed and validated against existing work. The core strength of the proposed model is that it can be adapted to predict flash contact temperatures occurring in various types of sliding systems. In this paper, it is used to investigate how different surface roughness parameters affect the flash temperatures. The results show that for decreasing Hurst exponents as well as increasing values of the high-frequency cut-off, the maximum flash temperature increases. It was also shown that the effect of surface roughness does not influence the average interface temperature. The model predictions were validated against data from an experiment conducted in a pin-on-disc machine. This also showed the importance of including a wear model when simulating flash temperature development in a sliding system.

Keywords: multiscale, pin-on-disc, finite element method, flash temperature, surface roughness

Procedia PDF Downloads 90
2263 Phase Composition Analysis of Ternary Alloy Materials for Gas Turbine Applications

Authors: Mayandi Ramanathan

Abstract:

Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to high Turbine Entry Temperatures in the range of 1500 to 1600°C. The blades rotate at very high rotation rates and remove a significant amount of thermal power from the gas stream. At high temperatures, the major component failure mechanism is a creep. During its service over time under high thermal loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades and gas turbine components. The proposed advanced Ti alloy material needs a process that provides a strategic orientation of metallic ordering, uniformity in composition and high metallic strength. The chemical composition of the proposed Ti alloy material (25% Ta/(Al+Ta) ratio), unlike Ti-47Al-2Cr-2Nb, has less excess Al that could limit the service life of turbine blades. Properties and performance of Ti-47Al-2Cr-2Nb and Ti-6Al-4V materials will be compared with that of the proposed Ti alloy material to generalize the performance metrics of various gas turbine components. This paper will involve the summary of the effects of additive manufacturing and heat treatment process conditions on the changes in the phase composition, grain structure, lattice structure of the material, tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness at different temperatures. Based on these results, additive manufacturing and heat treatment process conditions will be optimized to fabricate turbine blade with Ti-43Al matrix alloyed with an optimized amount of refractory Ta metal. Improvement in service temperature of the turbine blades and corrosion resistance dependence on the coercivity of the alloy material will be reported. A correlation of phase composition and creep strain rate will also be discussed.

Keywords: high temperature materials, aerospace, specific strength, creep strain, phase composition

Procedia PDF Downloads 87
2262 The Composition of Biooil during Biomass Pyrolysis at Various Temperatures

Authors: Zoltan Sebestyen, Eszter Barta-Rajnai, Emma Jakab, Zsuzsanna Czegeny

Abstract:

Extraction of the energy content of lignocellulosic biomass is one of the possible pathways to reduce the greenhouse gas emission derived from the burning of the fossil fuels. The application of the bioenergy can mitigate the energy dependency of a country from the foreign natural gas and the petroleum. The diversity of the plant materials makes difficult the utilization of the raw biomass in power plants. This problem can be overcome by the application of thermochemical techniques. Pyrolysis is the thermal decomposition of the raw materials under inert atmosphere at high temperatures, which produces pyrolysis gas, biooil and charcoal. The energy content of these products can be exploited by further utilization. The differences in the chemical and physical properties of the raw biomass materials can be reduced by the use of torrefaction. Torrefaction is a promising mild thermal pretreatment method performed at temperatures between 200 and 300 °C in an inert atmosphere. The goal of the pretreatment from a chemical point of view is the removal of water and the acidic groups of hemicelluloses or the whole hemicellulose fraction with minor degradation of cellulose and lignin in the biomass. Thus, the stability of biomass against biodegradation increases, while its energy density increases. The volume of the raw materials decreases so the expenses of the transportation and the storage are reduced as well. Biooil is the major product during pyrolysis and an important by-product during torrefaction of biomass. The composition of biooil mostly depends on the quality of the raw materials and the applied temperature. In this work, thermoanalytical techniques have been used to study the qualitative and quantitative composition of the pyrolysis and torrefaction oils of a woody (black locust) and two herbaceous samples (rape straw and wheat straw). The biooil contains C5 and C6 anhydrosugar molecules, as well as aromatic compounds originating from hemicellulose, cellulose, and lignin, respectively. In this study, special emphasis was placed on the formation of the lignin monomeric products. The structure of the lignin fraction is different in the wood and in the herbaceous plants. According to the thermoanalytical studies the decomposition of lignin starts above 200 °C and ends at about 500 °C. The lignin monomers are present among the components of the torrefaction oil even at relatively low temperatures. We established that the concentration and the composition of the lignin products vary significantly with the applied temperature indicating that different decomposition mechanisms dominate at low and high temperatures. The evolutions of decomposition products as well as the thermal stability of the samples were measured by thermogravimetry/mass spectrometry (TG/MS). The differences in the structure of the lignin products of woody and herbaceous samples were characterized by the method of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). As a statistical method, principal component analysis (PCA) has been used to find correlation between the composition of lignin products of the biooil and the applied temperatures.

Keywords: pyrolysis, torrefaction, biooil, lignin

Procedia PDF Downloads 300
2261 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis

Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara

Abstract:

Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy

Procedia PDF Downloads 319
2260 Adaptive Thermal Comfort Model for Air-Conditioned Lecture Halls in Malaysia

Authors: B. T. Chew, S. N. Kazi, A. Amiri

Abstract:

This paper presents an adaptive thermal comfort model study in the tropical country of Malaysia. A number of researchers have been interested in applying the adaptive thermal comfort model to different climates throughout the world, but so far no study has been performed in Malaysia. For the use as a thermal comfort model, which better applies to hot and humid climates, the adaptive thermal comfort model was developed as part of this research by using the collected results from a large field study in six lecture halls with 178 students. The relationship between the operative temperature and behavioral adaptations was determined. In the developed adaptive model, the acceptable indoor neutral temperatures lay within the range of 23.9-26.0 oC, with outdoor temperatures ranging between 27.0–34.6oC. The most comfortable temperature for students in the lecture hall was 25.7 oC.

Keywords: hot and humid, lecture halls, neutral temperature, adaptive thermal comfort model

Procedia PDF Downloads 345