Search results for: dual phase lag model
20674 Effect of Radiation on Magnetohydrodynamic Two Phase Stenosed Arterial Blood Flow with Heat and Mass Transfer
Authors: Bhavya Tripathi, Bhupendra Kumar Sharma
Abstract:
In blood, the concentration of red blood cell varies with the arterial diameter. In the case of narrow arteries, red blood cells concentrate around the center of the artery and there exists a cell-free plasma layer near the arterial wall due to Fahraeus-Lindqvist effect. Due to non- uniformity of the fluid in the narrow arteries, it is preferable to consider the two-phase model of the blood flow. In the present article, coupled nonlinear differential equations have been developed for momentum, energy and concentration of two phase model of the blood flow assuming the Newtonian fluid in both central core and cell free plasma layer and the exact solutions have been found for the problem. For having an adequate insight into the stenosed arterial two-phase blood flow, major components of the flow as flow resistance, total flow rate, and wall shear stress have been estimated for different values of magnetic and radiation parameter. Results show that the increase in the effects of magnetic field decreases the velocity of both cores as well as plasma regions. This result can be helpful to control the blood flow in narrow arteries during surgical process. Temperature of core as well plasma regions decrease as value of radiation parameter increases. The present result is implemented in the form of radiation therapy which is very helpful for cancer patients.Keywords: two phase blood flow, radiation, magnetohydrodynamics (MHD), stenosis
Procedia PDF Downloads 20520673 A Low Insertion Loss Variation 10-35 GHz Phase Shifter
Authors: Soroush Rasti Boroujeni, S. Hassan Mousavi, Javad Ebrahimizadeh, Ardeshir Palizban, Mohammad-Reza Nezhad-Ahmadi, Safieddin Safavi-Naeini
Abstract:
This paper presents a wideband True Time Delay (TTD) phase shifter with low insertion loss variation. The circuit benefits from a controllable resistive load shunt with transmission line segments to optimize return loss variations, addressing the unbalanced capacitive nature of the varactor. The phase shifter reduces the complexity of the calibration process because the dependency of insertion loss on voltage controls is improved up to 3 dB. The TTD phase shifter provides a continuous changing delay time of 6.4 ps with low insertion loss (IL) in the 10-35 GHz frequency range. The proposed circuit benefits from lowloss phase shifters with a small footprint. Fabricated using a 65 nm CMOC process, the TTD phase shifter occupies only 388 × 615 μm² of chip area, achieving a 20% improvements compared to conventional TTD phase shifters.Keywords: millimeter-wave phased-array, true time delay phase shifter, insertion loss variation, compact size
Procedia PDF Downloads 2120672 Study of Cahn-Hilliard Equation to Simulate Phase Separation
Authors: Nara Guimarães, Marcelo Aquino Martorano, Douglas Gouvêa
Abstract:
An investigation into Cahn-Hilliard equation was carried out through numerical simulation to identify a possible phase separation for one and two dimensional domains. It was observed that this equation can reproduce important mass fluxes necessary for phase separation within the miscibility gap and for coalescence of particles.Keywords: Cahn-Hilliard equation, miscibility gap, phase separation, dimensional domains
Procedia PDF Downloads 51720671 Numerical Simulation of Three-Dimensional Cavitating Turbulent Flow in Francis Turbines with ANSYS
Authors: Raza Abdulla Saeed
Abstract:
In this study, the three-dimensional cavitating turbulent flow in a complete Francis turbine is simulated using mixture model for cavity/liquid two-phase flows. Numerical analysis is carried out using ANSYS CFX software release 12, and standard k-ε turbulence model is adopted for this analysis. The computational fluid domain consist of spiral casing, stay vanes, guide vanes, runner and draft tube. The computational domain is discretized with a three-dimensional mesh system of unstructured tetrahedron mesh. The finite volume method (FVM) is used to solve the governing equations of the mixture model. Results of cavitation on the runner’s blades under three different boundary conditions are presented and discussed. From the numerical results it has been found that the numerical method was successfully applied to simulate the cavitating two-phase turbulent flow through a Francis turbine, and also cavitation is clearly predicted in the form of water vapor formation inside the turbine. By comparison the numerical prediction results with a real runner; it’s shown that the region of higher volume fraction obtained by simulation is consistent with the region of runner cavitation damage.Keywords: computational fluid dynamics, hydraulic francis turbine, numerical simulation, two-phase mixture cavitation model
Procedia PDF Downloads 56220670 Dual-use UAVs in Armed Conflicts: Opportunities and Risks for Cyber and Electronic Warfare
Authors: Piret Pernik
Abstract:
Based on strategic, operational, and technical analysis of the ongoing armed conflict in Ukraine, this paper will examine the opportunities and risks of using small commercial drones (dual-use unmanned aerial vehicles, UAV) for military purposes. The paper discusses the opportunities and risks in the information domain, encompassing both cyber and electromagnetic interference and attacks. The paper will draw conclusions on a possible strategic impact to the battlefield outcomes in the modern armed conflicts by the widespread use of dual-use UAVs. This article will contribute to filling the gap in the literature by examining based on empirical data cyberattacks and electromagnetic interference. Today, more than one hundred states and non-state actors possess UAVs ranging from low cost commodity models, widely are dual-use, available and affordable to anyone, to high-cost combat UAVs (UCAV) with lethal kinetic strike capabilities, which can be enhanced with Artificial Intelligence (AI) and Machine Learning (ML). Dual-use UAVs have been used by various actors for intelligence, reconnaissance, surveillance, situational awareness, geolocation, and kinetic targeting. Thus they function as force multipliers enabling kinetic and electronic warfare attacks and provide comparative and asymmetric operational and tactical advances. Some go as far as argue that automated (or semi-automated) systems can change the character of warfare, while others observe that the use of small drones has not changed the balance of power or battlefield outcomes. UAVs give considerable opportunities for commanders, for example, because they can be operated without GPS navigation, makes them less vulnerable and dependent on satellite communications. They can and have been used to conduct cyberattacks, electromagnetic interference, and kinetic attacks. However, they are highly vulnerable to those attacks themselves. So far, strategic studies, literature, and expert commentary have overlooked cybersecurity and electronic interference dimension of the use of dual use UAVs. The studies that link technical analysis of opportunities and risks with strategic battlefield outcomes is missing. It is expected that dual use commercial UAV proliferation in armed and hybrid conflicts will continue and accelerate in the future. Therefore, it is important to understand specific opportunities and risks related to the crowdsourced use of dual-use UAVs, which can have kinetic effects. Technical countermeasures to protect UAVs differ depending on a type of UAV (small, midsize, large, stealth combat), and this paper will offer a unique analysis of small UAVs both from the view of opportunities and risks for commanders and other actors in armed conflict.Keywords: dual-use technology, cyber attacks, electromagnetic warfare, case studies of cyberattacks in armed conflicts
Procedia PDF Downloads 10220669 A Coupled Model for Two-Phase Simulation of a Heavy Water Pressure Vessel Reactor
Authors: D. Ramajo, S. Corzo, M. Nigro
Abstract:
A Multi-dimensional computational fluid dynamics (CFD) two-phase model was developed with the aim to simulate the in-core coolant circuit of a pressurized heavy water reactor (PHWR) of a commercial nuclear power plant (NPP). Due to the fact that this PHWR is a Reactor Pressure Vessel type (RPV), three-dimensional (3D) detailed modelling of the large reservoirs of the RPV (the upper and lower plenums and the downcomer) were coupled with an in-house finite volume one-dimensional (1D) code in order to model the 451 coolant channels housing the nuclear fuel. Regarding the 1D code, suitable empirical correlations for taking into account the in-channel distributed (friction losses) and concentrated (spacer grids, inlet and outlet throttles) pressure losses were used. A local power distribution at each one of the coolant channels was also taken into account. The heat transfer between the coolant and the surrounding moderator was accurately calculated using a two-dimensional theoretical model. The implementation of subcooled boiling and condensation models in the 1D code along with the use of functions for representing the thermal and dynamic properties of the coolant and moderator (heavy water) allow to have estimations of the in-core steam generation under nominal flow conditions for a generic fission power distribution. The in-core mass flow distribution results for steady state nominal conditions are in agreement with the expected from design, thus getting a first assessment of the coupled 1/3D model. Results for nominal condition were compared with those obtained with a previous 1/3D single-phase model getting more realistic temperature patterns, also allowing visualize low values of void fraction inside the upper plenum. It must be mentioned that the current results were obtained by imposing prescribed fission power functions from literature. Therefore, results are showed with the aim of point out the potentiality of the developed model.Keywords: PHWR, CFD, thermo-hydraulic, two-phase flow
Procedia PDF Downloads 46920668 Stagnation-Point Flow towards a Stretching/Shrinking Sheet in a Nanofluid: A Stability Analysis
Authors: Anuar Ishak
Abstract:
The characteristics of stagnation point flow of a nanofluid towards a stretching/shrinking sheet are investigated. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. The numerical results show that dual (upper and lower branch) solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. It is found that the skin friction decreases when the sheet is stretched, but increases when the suction effect is increased. It is also found that increasing the thermophoresis parameter reduces the heat transfer rate at the surface, while increasing the Brownian motion parameter increases the mass transfer rate at the surface.Keywords: dual solutions, heat transfer, forced convection, nanofluid, stability analysis
Procedia PDF Downloads 41820667 An Improved Prediction Model of Ozone Concentration Time Series Based on Chaotic Approach
Authors: Nor Zila Abd Hamid, Mohd Salmi M. Noorani
Abstract:
This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.Keywords: chaotic approach, phase space, Cao method, local linear approximation method
Procedia PDF Downloads 33220666 Reliability Modeling on Drivers’ Decision during Yellow Phase
Authors: Sabyasachi Biswas, Indrajit Ghosh
Abstract:
The random and heterogeneous behavior of vehicles in India puts up a greater challenge for researchers. Stop-and-go modeling at signalized intersections under heterogeneous traffic conditions has remained one of the most sought-after fields. Vehicles are often caught up in the dilemma zone and are unable to take quick decisions whether to stop or cross the intersection. This hampers the traffic movement and may lead to accidents. The purpose of this work is to develop a stop and go prediction model that depicts the drivers’ decision during the yellow time at signalised intersections. To accomplish this, certain traffic parameters were taken into account to develop surrogate model. This research investigated the Stop and Go behavior of the drivers by collecting data from 4-signalized intersections located in two major Indian cities. Model was developed to predict the drivers’ decision making during the yellow phase of the traffic signal. The parameters used for modeling included distance to stop line, time to stop line, speed, and length of the vehicle. A Kriging base surrogate model has been developed to investigate the drivers’ decision-making behavior in amber phase. It is observed that the proposed approach yields a highly accurate result (97.4 percent) by Gaussian function. It was observed that the accuracy for the crossing probability was 95.45, 90.9 and 86.36.11 percent respectively as predicted by the Kriging models with Gaussian, Exponential and Linear functions.Keywords: decision-making decision, dilemma zone, surrogate model, Kriging
Procedia PDF Downloads 30920665 Adaptive Kaman Filter for Fault Diagnosis of Linear Parameter-Varying Systems
Authors: Rajamani Doraiswami, Lahouari Cheded
Abstract:
Fault diagnosis of Linear Parameter-Varying (LPV) system using an adaptive Kalman filter is proposed. The LPV model is comprised of scheduling parameters, and the emulator parameters. The scheduling parameters are chosen such that they are capable of tracking variations in the system model as a result of changes in the operating regimes. The emulator parameters, on the other hand, simulate variations in the subsystems during the identification phase and have negligible effect during the operational phase. The nominal model and the influence vectors, which are the gradient of the feature vector respect to the emulator parameters, are identified off-line from a number of emulator parameter perturbed experiments. A Kalman filter is designed using the identified nominal model. As the system varies, the Kalman filter model is adapted using the scheduling variables. The residual is employed for fault diagnosis. The proposed scheme is successfully evaluated on simulated system as well as on a physical process control system.Keywords: identification, linear parameter-varying systems, least-squares estimation, fault diagnosis, Kalman filter, emulators
Procedia PDF Downloads 50020664 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning
Authors: Shayla He
Abstract:
Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.Keywords: homeless, prediction, model, RNN
Procedia PDF Downloads 12120663 Physical Theory for One-Dimensional Correlated Electron Systems
Authors: Nelson Nenuwe
Abstract:
The behavior of interacting electrons in one dimension was studied by calculating correlation functions and critical exponents at zero and external magnetic fields for arbitrary band filling. The technique employed in this study is based on the conformal field theory (CFT). The charge and spin degrees of freedom are separated, and described by two independent conformal theories. A detailed comparison of the t-J model with the repulsive Hubbard model was then undertaken with emphasis on their Tomonaga-Luttinger (TL) liquid properties. Near half-filling the exponents of the t-J model take the values of the strong-correlation limit of the Hubbard model, and in the low-density limit the exponents are those of a non-interacting system. The critical exponents obtained in this study belong to the repulsive TL liquid (conducting phase) and attractive TL liquid (superconducting phase). The theoretical results from this study find applications in one-dimensional organic conductors (TTF-TCNQ), organic superconductors (Bechgaard salts) and carbon nanotubes (SWCNTs, DWCNTs and MWCNTs). For instance, the critical exponent at from this study is consistent with the experimental result from optical and photoemission evidence of TL liquid in one-dimensional metallic Bechgaard salt- (TMTSF)2PF6.Keywords: critical exponents, conformal field theory, Hubbard model, t-J model
Procedia PDF Downloads 34420662 Impact of Tuberculosis Co-infection on Cytokine Expression in HIV-Infected Individuals
Authors: M. Nosik, I. Rymanova, N. Adamovich, S. Sevostyanihin, K. Ryzhov, Y. Kuimova, A. Kravtchenko, N. Sergeeva, A. Sobkin
Abstract:
HIV and Tuberculosis (TB) infections each speed the other's progress. HIV-infection increases the risk of TB disease. At the same time, TB infection is associated with clinical progression of HIV-infection. HIV+TB co-infected patients are also at higher risk of acquiring new opportunistic infections. An important feature of disease progression and clinical outcome is the innate and acquired immune responses. HIV and TB, however, have a spectrum of dysfunctions of the immune response. As cytokines play a crucial role in the immunopathology of both infections, it is important to study immune interactions in patients with dual infection HIV+TB. Plasma levels of proinflammatory cytokines IL-2, IFN-γ and immunoregulating cytokines IL-4, IL-10 were evaluated in 75 patients with dual infection HIV+TB, 58 patients with HIV monoinfection and 50 patients with TB monoinfection who were previously naïve for HAART. The decreased levels of IL-2, IFN-γ, IL-4 and IL-10 were observed in patients with dual infection HIV+TB in comparison with patients who had only HIV or TB which means the profound suppression of Th1 and Th2 cytokine secretion. Thus, those cytokines could possibly serve as immunological markers of progression of HIV-infection in patients with TB.Keywords: HIV, tuberculosis (TB), HIV associated with TB, Th1/ Th2 cytokine expression
Procedia PDF Downloads 36520661 Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System
Authors: Y. Kourd, D. Lefebvre
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults.Keywords: decision tree, residuals analysis, ANFIS, fault diagnosis
Procedia PDF Downloads 62720660 Investigation of Droplet Size Produced in Two-Phase Gravity Separators
Authors: Kul Pun, F. A. Hamad, T. Ahmed, J. O. Ugwu, J. Eyers, G. Lawson, P. A. Russell
Abstract:
Determining droplet size and distribution is essential when determining the separation efficiency of a two/three-phase separator. This paper investigates the effect of liquid flow and oil pad thickness on the droplet size at the lab scale. The findings show that increasing the inlet flow rates of the oil and water results in size reduction of the droplets and increasing the thickness of the oil pad increases the size of the droplets. The data were fitted with a simple Gaussian model, and the parameters of mean, standard deviation, and amplitude were determined. Trends have been obtained for the fitted parameters as a function of the Reynolds number, which suggest a way forward to better predict the starting parameters for population models when simulating separation using CFD packages. The key parameter to predict to fix the position of the Gaussian distribution was found to be the mean droplet size.Keywords: two-phase separator, average bubble droplet, bubble size distribution, liquid-liquid phase
Procedia PDF Downloads 20520659 Effect of Velocity Slip on Two Phase Flow in an Eccentric Annular Region
Authors: Umadevi B., Dinesh P. A., Indira. R., Vinay C. V.
Abstract:
A mathematical model is developed to study the simultaneous effects of particle drag and slip parameter on the velocity as well as rate of flow in an annular cross sectional region bounded by two eccentric cylinders. In physiological flows this phenomena can be observed in an eccentric catheterized artery with inner cylinder wall is impermeable and outer cylinder wall is permeable. Blood is a heterogeneous fluid having liquid phase consisting of plasma in which a solid phase of suspended cells and proteins. Arterial wall gets damaged due to aging and lipid molecules get deposited between damaged tissue cells. Blood flow increases towards the damaged tissues in the artery. In this investigation blood is modeled as two phase fluid as one is a fluid phase and the other is particulate phase. The velocity of the fluid phase and rate of flow are obtained by transforming eccentric annulus to concentric annulus with the conformal mapping. The formulated governing equations are analytically solved for the velocity and rate of flow. The numerical investigations are carried out by varying eccentricity parameter, slip parameter and drag parameter. Enhancement of slip parameter signifies loss of fluid then the velocity and rate of flow will be decreased. As particulate drag parameter increases then the velocity as well as rate flow decreases. Eccentricity facilitates transport of more fluid then the velocity and rate of flow increases.Keywords: catheter, slip parameter, drag parameter, eccentricity
Procedia PDF Downloads 52520658 Study the Effect of Rubbery Phase on Morphology Development of PP/PA6/(EPDM:EPDM-g-MA) Ternary Blends
Authors: B. Afsari, M. Hassanpour, M. Shabani
Abstract:
This study aimed to investigate the phase morphology of ternary blends comprising PP, PA6, and a blend of EPDM and EPDM-g-MA in a 70/15/15 ratio. Varying ratios of EPDM to EPDM-g-MA were examined. As the proportion of EPDM-g-MA increased, an interlayer phase formed between the dispersed PA6 domains and the PP matrix. This resulted in the development of a core-shell encapsulation morphology within the blends. The concentration of the EPDM-g-MA component is inversely correlated with the average size of PA6 particles. Additionally, blends containing higher proportions of the EPDM-g-MA rubbery phase exhibited an aggregated structure of the modifier particles. Notably, as the concentration of EPDM-g-MA increased from 0% to 15% in the blend, there was a consistent monotonic reduction in the size of PA6 particles.Keywords: phase morphology, rubbery phase, rubber functionality, ternary blends
Procedia PDF Downloads 9120657 Five-Phase Induction Motor Drive System Driven by Five-Phase Packed U Cell Inverter: Its Modeling and Performance Evaluation
Authors: Mohd Tariq
Abstract:
The three phase system drives produce the problem of more torque pulsations and harmonics. This issue prevents the smooth operation of the drives and it also induces the amount of heat generated thus resulting in an increase in power loss. Higher phase system offers smooth operation of the machines with greater power capacity. Five phase variable-speed induction motor drives are commonly used in various industrial and commercial applications like tractions, electrical vehicles, ship propulsions and conveyor belt drive system. In this work, a comparative analysis of the different modulation schemes applied on the five-level five-phase Packed U Cell (PUC) inverter fed induction motor drives is presented. The performance of the inverter is greatly affected with the modulation schemes applied. The system is modeled, designed, and implemented in MATLAB®/Simulink environment. Experimental validation is done for the prototype of single phase, whereas five phase experimental validation is proposed in the future works.Keywords: Packed U-Cell (PUC) inverter, five-phase system, pulse width modulation (PWM), induction motor (IM)
Procedia PDF Downloads 18320656 Modelling the Growth of σ-Phase in AISI 347H FG Steel
Authors: Yohanes Chekol Malede
Abstract:
σ-phase has negative effects on the corrosion responses and the mechanical properties of steels. The growth of σ-phase in the austenite matrix of AISI 347H FG steel was simulated using DICTRA software using CALPHAD method. The simulation work included the influence of both volume diffusion and grain boundary diffusion. The simulation results showed a good agreement with the experimental findings. The simulation results revealed a Cr-depleted and a Ni-enriched σ-phase/austenite interface. Effects of temperature, grain size, and composition of alloying elements on the growth kinetics of σ-phase were assessed. The simulated results were fitted to the JMAK equation and a good correlation was obtained.Keywords: AISI 347H FG austenitic steel, CALPHAD, sigma phase, microstructure evolution
Procedia PDF Downloads 14820655 Investigation of a Novel Dual Band Microstrip/Waveguide Hybrid Antenna Element
Authors: Raoudane Bouziyan, Kawser Mohammad Tawhid
Abstract:
Microstrip antennas are low in profile, light in weight, conformable in structure and are now developed for many applications. The main difficulty of the microstrip antenna is its narrow bandwidth. Several modern applications like satellite communications, remote sensing, and multi-function radar systems will find it useful if there is dual-band antenna operating from a single aperture. Some applications require covering both transmitting and receiving frequency bands which are spaced apart. Providing multiple antennas to handle multiple frequencies and polarizations becomes especially difficult if the available space is limited as with airborne platforms and submarine periscopes. Dual band operation can be realized from a single feed using slot loaded or stacked microstrip antenna or two separately fed antennas sharing a common aperture. The former design, when used in arrays, has certain limitations like complicated beam forming or diplexing network and difficulty to realize good radiation patterns at both the bands. The second technique provides more flexibility with separate feed system as beams in each frequency band can be controlled independently. Another desirable feature of a dual band antenna is easy adjustability of upper and lower frequency bands. This thesis presents investigation of a new dual-band antenna, which is a hybrid of microstrip and waveguide radiating elements. The low band radiator is a Shorted Annular Ring (SAR) microstrip antenna and the high band radiator is an aperture antenna. The hybrid antenna is realized by forming a waveguide radiator in the shorted region of the SAR microstrip antenna. It is shown that the upper to lower frequency ratio can be controlled by the proper choice of various dimensions and dielectric material. Operation in both linear and circular polarization is possible in either band. Moreover, both broadside and conical beams can be generated in either band from this antenna element. Finite Element Method based software, HFSS and Method of Moments based software, FEKO were employed to perform parametric studies of the proposed dual-band antenna. The antenna was not tested physically. Therefore, in most cases, both HFSS and FEKO were employed to corroborate the simulation results.Keywords: FEKO, HFSS, dual band, shorted annular ring patch
Procedia PDF Downloads 40220654 Flow and Heat Transfer over a Shrinking Sheet: A Stability Analysis
Authors: Anuar Ishak
Abstract:
The characteristics of fluid flow and heat transfer over a permeable shrinking sheet is studied. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the suction parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.Keywords: dual solutions, heat transfer, shrinking sheet, stability analysis
Procedia PDF Downloads 42120653 Assessing the Threat of Dual Citizenship to State Interests: A Case Study of Sri Lanka
Authors: Kasuri Kaushalya Pathirana Pahamunu Pathirannehelage
Abstract:
Recent changes in the international system challenged the traditional idea of citizenship, prompting a need for a clearer definition. With the rapid globalization and shifting geopolitical dynamics, the concept of dual citizenship has emerged as a focal point of debate regarding its implications for state interests. As borders become less rigid and people identify with multiple nationalities, the traditional idea of citizenship is changing. This change is especially important given the increased connections between countries and the challenges that sovereign states face. While many countries accept dual citizenship, others are hesitant, seeing it as a potential threat to their national goals. This difference underscores the complicated relationship between national interests and the evolving concept of citizenship in the modern world. This study seeks to critically assess whether dual citizenship represents a significant threat to sovereign states by examining its effects across economic, social, and political sectors. Employing qualitative methodologies, including the analysis of published articles, reports, government acts, and a mix of primary and secondary sources, this research delves into the complexities surrounding dual citizenship. The findings reveal a nuanced landscape, showcasing both positive and negative impacts on state sovereignty and international cooperation. By exploring the tension between multinationalism and state interests, particularly through the lens of Sri Lanka’s evolving policies, this study aims to contribute valuable insights to the fields of political science and international relations, ultimately addressing the question of dual citizenship's implications for state interests. The evolving framework of dual citizenship in Sri Lanka provides a unique opportunity to examine its implications for various aspects of the nation. Specifically, this study will analyse the impact of dual citizenship on the country's economy, international cooperation, and social development. By exploring these dimensions, the research aims to provide a comprehensive understanding of how dual citizenship influences not only individual rights but also broader state interests and development goals within the context of globalization. It’s crucial to assess the potential threats posed by dual citizenship, as it can impact national security, economic stability, social unity, and political issues within countries. Understanding these effects is important for policymakers and researchers as they work to balance globalization with the need to protect state sovereignty. Dual citizenship presents a complex interplay of challenges and benefits to state interests, influencing critical areas such as international cooperation and state sovereignty. On the one hand, it can foster stronger ties between nations, enhance economic collaboration, and encourage cultural exchange, ultimately contributing to more robust international relationships. On the other hand, it may create tensions related to national identity, complicate governance, and raise concerns about loyalty and allegiance, which can challenge the notion of state sovereignty. As countries navigate these dual realities, it becomes essential to carefully assess and manage the implications of dual citizenship. By doing so, states can harness the potential advantages while addressing the associated risks, ultimately striving for a balance that promotes both national interests and international relations.Keywords: dual citizenship, globalization, sustainable development, nationalism
Procedia PDF Downloads 2020652 The Effect of Water Droplets Size in Fire Fighting Systems
Authors: Tassadit Tabouche
Abstract:
Water sprays pattern, and water droplets size (different droplets diameter) are a key factors in the success of the suppression by water spray. The effects of the two important factors are investigated in this study. However, the fire extinguishing mechanism in such devices is not well understood due to the complexity of the physical and chemical interactions between water spray and fire plume. in this study, 3D, unsteady, two phase flow CFD simulation approach is introduced to provide a quantitative analysis of the complex interactions occurring between water spray and fire plume. Lagrangian Discrete Phase Model (DPM) was used for water droplets and a global one-step reaction mechanism in combustion model was used for fire plume.Keywords: droplets, water spray, water droplets size, 3D
Procedia PDF Downloads 53620651 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology
Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon
Abstract:
There is not much effective guideline on development of design parameters selection on springback for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for springback in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in U-channel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on springback of flange angle (β2) and wall opening angle (β1), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the springback behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for springback was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental valuesKeywords: advance high strength steel, u-channel process, springback, design of experiment, optimization, response surface methodology (rsm)
Procedia PDF Downloads 54220650 A Low Phase Noise CMOS LC Oscillator with Tail Current-Shaping
Authors: Amir Mahdavi
Abstract:
In this paper, a circuit topology of voltage-controlled oscillators (VCO) which is suitable for ultra-low-phase noise operations is introduced. To do so, a new low phase noise cross-coupled oscillator by using the general topology of cross-coupled oscillator and adding a differential stage for tail current shaping is designed. In addition, a tail current shaping technique to improve phase noise in differential LC VCOs is presented. The tail current becomes large when the oscillator output voltage arrives at the maximum or minimum value and when the sensitivity of the output phase to the noise is the smallest. Also, the tail current becomes small when the phase noise sensitivity is large. The proposed circuit does not use extra power and extra noisy active devices. Furthermore, this topology occupies small area. Simulation results show the improvement in phase noise by 2.5dB under the same conditions and at the carrier frequency of 1 GHz for GSM applications. The power consumption of the proposed circuit is 2.44 mW and the figure of merit (FOM) with -192.2 dBc/Hz is achieved for the new oscillator.Keywords: LC oscillator, low phase noise, current shaping, diff mode
Procedia PDF Downloads 60120649 Bubble Growth in a Two Phase Upward Flow in a Miniature Tube
Authors: R. S. Hassani, S. Chikh, L. Tadrist, S. Radev
Abstract:
A bubbly flow in a vertical miniature tube is analyzed theoretically. The liquid and gas phase are co-current flowing upward. The gas phase is injected via a nozzle whose inner diameter is 0.11mm and it is placed on the axis of the tube. A force balance is applied on the bubble at its detachment. The set of governing equations are solved by use of Mathematica software. The bubble diameter and the bubble generation frequency are determined for various inlet phase velocities represented by the inlet mass quality. The results show different behavior of bubble growth and detachment depending on the tube size.Keywords: two phase flow, bubble growth, mini-channel, generation frequency
Procedia PDF Downloads 43420648 Two-Phase Flow Study of Airborne Transmission Control in Dental Practices
Authors: Mojtaba Zabihi, Stephen Munro, Jonathan Little, Ri Li, Joshua Brinkerhoff, Sina Kheirkhah
Abstract:
Occupational Safety and Health Administration (OSHA) identified dental workers at the highest risk of contracting COVID-19. This is because aerosol-generating procedures (AGP) during dental practices generate aerosols ( < 5µm) and droplets. These particles travel at varying speeds, in varying directions, and for varying durations. If these particles bear infectious viruses, their spreading causes airborne transmission of the virus in the dental room, exposing dentists, hygienists, dental assistants, and even other dental clinic clients to the infection risk. Computational fluid dynamics (CFD) simulation of two-phase flows based on a discrete phase model (DPM) is carried out to study the spreading of aerosol and droplets in a dental room. The simulation includes momentum, heat, and mass transfers between the particles and the airflow. Two simulations are conducted and compared. One simulation focuses on the effects of room ventilation in winter and summer on the particles' travel. The other simulation focuses on the control of aerosol and droplets' spreading. A suction collector is added near the source of aerosol and droplets, creating a flow sink in order to remove the particles. The effects of the suction flow on the aerosol and droplet travel are studied. The suction flow can remove aerosols and also reduce the spreading of droplets.Keywords: aerosols, computational fluid dynamics, COVID-19, dental, discrete phase model, droplets, two-phase flow
Procedia PDF Downloads 26620647 JREM: An Approach for Formalising Models in the Requirements Phase with JSON and NoSQL Databases
Authors: Aitana Alonso-Nogueira, Helia Estévez-Fernández, Isaías García
Abstract:
This paper presents an approach to reduce some of its current flaws in the requirements phase inside the software development process. It takes the software requirements of an application, makes a conceptual modeling about it and formalizes it within JSON documents. This formal model is lodged in a NoSQL database which is document-oriented, that is, MongoDB, because of its advantages in flexibility and efficiency. In addition, this paper underlines the contributions of the detailed approach and shows some applications and benefits for the future work in the field of automatic code generation using model-driven engineering tools.Keywords: conceptual modelling, JSON, NoSQL databases, requirements engineering, software development
Procedia PDF Downloads 37920646 Influence of Annealing on the Mechanical αc-Relaxation of Isotactic-Polypropylene: A Study from the Intermediate Phase Perspective
Authors: Baobao Chang, Konrad Schneider, Vogel Roland, Gert Heinrich
Abstract:
In this work, the influence of annealing on the mechanical αc-relaxation behavior of isotactic polypropylene (iPP) was investigated. The results suggest that the mechanical αc-relaxation behavior depends strongly on the confinement force on the polymer chains in the intermediate phase and the thickness of the intermediate phase. After quenching at 10°C, abundant crystallites with a wide size distribution are formed. The polymer chains in the intermediate phase are constrained by the crystallites, giving rise to one broad αc-relaxation peak. With an annealing temperature between 60°C~105°C, imperfect lamellae melting releases part of the constraint force, which reduces the conformational ordering of the polymer chains neighboring the amorphous phase. Consequently, two separate αc-relaxation peaks could be observed which are labeled as αc1-relaxation and αc2-relaxation. αc1-relaxation and αc2-relaxation describe the relaxation behavior of polymer chains in the region close to the amorphous phase and the crystalline phase, respectively. Both relaxation peaks shift to a higher temperature as annealing temperature increases. With an annealing temperature higher than 105°C, the new crystalline phase is formed in the intermediate phase, which enhances the constraint force on the polymer chains. αc1-relaxation peak is broadened obviously and its position shifts to a higher temperature as annealing temperature increases. Moreover, αc2-relaxation is undetectable because that the polymer chains in the region between the initial crystalline phase and the newly formed crystalline phase are strongly confined.Keywords: annealing, αc-relaxation, isotactic-polypropylene, intermediate phase
Procedia PDF Downloads 34920645 Methods of Variance Estimation in Two-Phase Sampling
Authors: Raghunath Arnab
Abstract:
The two-phase sampling which is also known as double sampling was introduced in 1938. In two-phase sampling, samples are selected in phases. In the first phase, a relatively large sample of size is selected by some suitable sampling design and only information on the auxiliary variable is collected. During the second phase, a sample of size is selected either from, the sample selected in the first phase or from the entire population by using a suitable sampling design and information regarding the study and auxiliary variable is collected. Evidently, two phase sampling is useful if the auxiliary information is relatively easy and cheaper to collect than the study variable as well as if the strength of the relationship between the variables and is high. If the sample is selected in more than two phases, the resulting sampling design is called a multi-phase sampling. In this article we will consider how one can use data collected at the first phase sampling at the stages of estimation of the parameter, stratification, selection of sample and their combinations in the second phase in a unified setup applicable to any sampling design and wider classes of estimators. The problem of the estimation of variance will also be considered. The variance of estimator is essential for estimating precision of the survey estimates, calculation of confidence intervals, determination of the optimal sample sizes and for testing of hypotheses amongst others. Although, the variance is a non-negative quantity but its estimators may not be non-negative. If the estimator of variance is negative, then it cannot be used for estimation of confidence intervals, testing of hypothesis or measure of sampling error. The non-negativity properties of the variance estimators will also be studied in details.Keywords: auxiliary information, two-phase sampling, varying probability sampling, unbiased estimators
Procedia PDF Downloads 591