World Academy of Science, Engineering and Technology International Journal of Materials and Metallurgical Engineering Vol:11, No:10, 2017

Influence of Annealing on the Mechanical αc -Relaxation of Isotactic-Polypropylene: A Study from the Intermediate Phase Perspective

Authors: Baobao Chang, Konrad Schneider, Vogel Roland, Gert Heinrich

Abstract : In this work, the influence of annealing on the mechanical α c-relaxation behavior of isotactic polypropylene (iPP) was investigated. The results suggest that the mechanical α c-relaxation behavior depends strongly on the confinement force on the polymer chains in the intermediate phase and the thickness of the intermediate phase. After quenching at 10° C, abundant crystallites with a wide size distribution are formed. The polymer chains in the intermediate phase are constrained by the crystallites, giving rise to one broad α c-relaxation peak. With an annealing temperature between 60° C ~ 105° C, imperfect lamellae melting releases part of the constraint force, which reduces the conformational ordering of the polymer chains neighboring the amorphous phase. Consequently, two separate α c-relaxation peaks could be observed which are labeled as α c1-relaxation and α c2-relaxation. α c1-relaxation and α c2-relaxation describe the relaxation behavior of polymer chains in the region close to the amorphous phase and the crystalline phase, respectively. Both relaxation peaks shift to a higher temperature as annealing temperature increases. With an annealing temperature higher than 105° C, the new crystalline phase is formed in the intermediate phase, which enhances the constraint force on the polymer chains. α c1-relaxation peak is broadened obviously and its position shifts to a higher temperature as annealing temperature increases. Moreover, α c2-relaxation is undetectable because that the polymer chains in the region between the initial crystalline phase and the newly formed crystalline phase are strongly confined.

Keywords: annealing, αc-relaxation, isotactic-polypropylene, intermediate phase

Conference Title: ICPCP 2017: International Conference on Polymer Chemistry and Physics

Conference Location: London, United Kingdom Conference Dates: October 19-20, 2017