Search results for: down hole safety valve
3726 The Impact of Malicious Attacks on the Performance of Routing Protocols in Mobile Ad-Hoc Networks
Authors: Habib Gorine, Rabia Saleh
Abstract:
Mobile Ad-Hoc Networks are the special type of wireless networks which share common security requirements with other networks such as confidentiality, integrity, authentication, and availability, which need to be addressed in order to secure data transfer through the network. Their routing protocols are vulnerable to various malicious attacks which could have a devastating consequence on data security. In this paper, three types of attacks such as selfish, gray hole, and black hole attacks have been applied to the two most important routing protocols in MANET named dynamic source routing and ad-hoc on demand distance vector in order to analyse and compare the impact of these attacks on the Network performance in terms of throughput, average delay, packet loss, and consumption of energy using NS2 simulator.Keywords: MANET, wireless networks, routing protocols, malicious attacks, wireless networks simulation
Procedia PDF Downloads 3203725 The Role of Gender and Socio-Demographics Variables on Food Safety Perceptions of Lebanese University Students
Authors: Lara Hanna-Wakim, Carine El Sokhn
Abstract:
The perception of the consumer in food safety plays an important role in reducing the incidence of foodborne diseases. Studies show that young adults aged between 18 and 25 years are more prone to foodborne illnesses than adults because of their lack of food safety knowledge. The aim of this study was to measure the degree of university students' awareness in food safety, as well as to explore whether there is a relationship or not between the demographic characteristics of university students and their knowledge and practices. A valid questionnaire divided into three parts was distributed to 938 university students, aged between 18-25 years, living alone or with their parents, from different majors and years of study. The data collected was analyzed using the SPSS program. The total scores of the students surveyed were 47.95% on their food safety knowledge and 56.45% on their practices in the matter. The final score of the food safety perception of university students in both genders was 52.2%. Female students scored higher (63.14%) than male students (39.69%), and students majoring in health related fields (67.45%) scored higher than those majoring in areas not related to public health (49.21%). These results showed an overall low level of food safety perception of university students. Educational interventions are needed to improve their food safety knowledge and practices as they will be responsible for their own family one day.Keywords: food safety, gender, perception, practices, knowledge, lebanese university students
Procedia PDF Downloads 4773724 Simulation and Analysis of Different Parameters in Hydraulic Circuit Due to Leakage
Abstract:
Leakage is the main gradual failure in the fluid power system, which is usually caused by the impurity in the oil and wear of matching surfaces between parts and lead to the change of the gap value. When leakage occurs in the system, the oil will flow from the high pressure chamber into the low pressure chamber through the gap, causing the reduction of system flow as well as the loss of system pressure, resulting in the decreasing of system efficiency. In the fluid power system, internal leakage may occur in various components such as gear pump, reversing valve and hydraulic cylinder, and affect the system work performance. Therefore, component leakage in the fluid power system is selected as the study to characterize the leakage and the effect of leakage on the system. Effect of leakage on system pressure and cylinder displacement can be obtained using pressure sensors and the displacement sensor. The leakage can be varied by changing the orifice using a flow control valve. Hydraulic circuit for leakage will be developed in Matlab/Simulink environment and simulations will be done by changing different parameters.Keywords: leakage causes, effect, analysis, MATLAB simulation, hydraulic circuit
Procedia PDF Downloads 3993723 The Optimization Process of Aortic Heart Valve Stent Geometry
Authors: Arkadiusz Mezyk, Wojciech Klein, Mariusz Pawlak, Jacek Gnilka
Abstract:
The aortic heart valve stents should fulfill many criterions. These criteria have a strong impact on the geometrical shape of the stent. Usually, the final construction of stent is a result of many year experience and knowledge. Depending on patents claims, different stent shapes are produced by different companies. This causes difficulties for biomechanics engineers narrowing the domain of feasible solutions. The paper present optimization method for stent geometry defining by a specific analytical equation based on various mathematical functions. This formula was implemented as APDL script language in ANSYS finite element environment. For the purpose of simulation tests, a few parameters were separated from developed equation. The application of the genetic algorithms allows finding the best solution due to selected objective function. Obtained solution takes into account parameters such as radial force, compression ratio and coefficient of expansion on the transverse axial.Keywords: aortic stent, optimization process, geometry, finite element method
Procedia PDF Downloads 2803722 The Generalized Lemaitre-Tolman-Bondi Solutions in Modeling the Cosmological Black Holes
Authors: Elena M. Kopteva, Pavlina Jaluvkova, Zdenek Stuchlik
Abstract:
In spite of the numerous attempts to close the discussion about the influence of cosmological expansion on local gravitationally bounded systems, this question arises in literature again and again and remains still far from its final resolution. Here one of the main problems is the problem of obtaining a physically adequate model of strongly gravitating object immersed in non-static cosmological background. Such objects are usually called ‘cosmological’ black holes and are of great interest in wide set of cosmological and astrophysical areas. In this work the set of new exact solutions of the Einstein equations is derived for the flat space that generalizes the known Lemaitre-Tolman-Bondi solution for the case of nonzero pressure. The solutions obtained are pretending to describe the black hole immersed in nonstatic cosmological background and give a possibility to investigate the hot problems concerning the effects of the cosmological expansion in gravitationally bounded systems, the structure formation in the early universe, black hole thermodynamics and other related problems. It is shown that each of the solutions obtained contains either the Reissner-Nordstrom or the Schwarzschild black hole in the central region of the space. It is demonstrated that the approach of the mass function use in solving of the Einstein equations allows clear physical interpretation of the resulting solutions, that is of much benefit to any their concrete application.Keywords: exact solutions of the Einstein equations, cosmological black holes, generalized Lemaitre-Tolman-Bondi solutions, nonzero pressure
Procedia PDF Downloads 4233721 Improving Order Quantity Model with Emergency Safety Stock (ESS)
Authors: Yousef Abu Nahleh, Alhasan Hakami, Arun Kumar, Fugen Daver
Abstract:
This study considers the problem of calculating safety stocks in disaster situations inventory systems that face demand uncertainties. Safety stocks are essential to make the supply chain, which is controlled by forecasts of customer needs, in response to demand uncertainties and to reach predefined goal service levels. To solve the problem of uncertainties due to the disaster situations affecting the industry sector, the concept of Emergency Safety Stock (ESS) was proposed. While there exists a huge body of literature on determining safety stock levels, this literature does not address the problem arising due to the disaster and dealing with the situations. In this paper, the problem of improving the Order Quantity Model to deal with uncertainty of demand due to disasters is managed by incorporating a new idea called ESS which is based on the probability of disaster occurrence and uses probability matrix calculated from the historical data.Keywords: Emergency Safety Stocks, safety stocks, Order Quantity Model, supply chain
Procedia PDF Downloads 3473720 Comparative Study on the Evaluation of Patient Safety in Malaysian Retail Pharmacy Setup
Authors: Palanisamy Sivanandy, Tan Tyng Wei, Tan Wee Loon, Lim Chong Yee
Abstract:
Background: Patient safety has become a major concern over recent years with elevated medication errors; particularly prescribing and dispensing errors. Meticulous prescription screening and diligent drug dispensing is therefore important to prevent drug-related adverse events from inflicting harm to patients. Hence, pharmacists play a significant role in this scenario. The evaluation of patient safety in a pharmacy setup is crucial to contemplate current practices, attitude and perception of pharmacists towards patient safety. Method: The questionnaire for Pharmacy Survey on Patient Safety Culture developed by the Agency for Healthcare and Research Quality (AHRQ) was used to assess patient safety. Main objectives of the study was to evaluate the attitude and perception of pharmacists towards patient safety in retail pharmacies setup in Malaysia. Results: 417 questionnaire were distributed via convenience sampling in three different states of Malaysia, where 390 participants were responded and the response rate was 93.52%. The overall positive response rate (PRR) was ranged from 31.20% to 87.43% and the average PRR was found to be 67%. The overall patient safety grade for our pharmacies was appreciable and it ranges from good to very good. The study found a significant difference in the perception of senior and junior pharmacists towards patient safety. The internal consistency of the questionnaire contents /dimensions was satisfactory (Cronbach’s alpha - 0.92). Conclusion: Our results reflect that there was positive attitude and perception of retail pharmacists towards patient safety. Despite this, various efforts can be implemented in the future to amplify patient safety in retail pharmacies setup.Keywords: patient safety, attitude, perception, positive response rate, medication errors
Procedia PDF Downloads 3203719 Enhancing Civil Aviation Safety and Security: A Comprehensive Approach
Authors: J. Waldon
Abstract:
The civil aviation industry plays a crucial role in global transportation, connecting people and goods across the world. Ensuring the safety and security of passengers, crew, and aircraft is of paramount importance. This paper aims to address the aspect of training and human factors, amongst others, necessary for enhancing civil aviation safety and security. In this context, we are focusing on the level of attention exhibited in the checking of luggage and travel credentials, with the aim to identify areas of improvement and avoid compromising security and safety at the Nsimalen Airport Yaoundé, Cameroon. We found that there is a lack of proper awareness among both travelers and some staff on the safety and security of goods and passengers. We suggest that improved training and handling, and sensitization in the form of legible billboards are important. Thus, we recommend refresher courses like this one for staff to keep abreast with the fast-changing security landscape in air transport as well as proper sensitization, including health-related issues. In conclusion, we established that the human factors, as well as the frequency of training and refresher courses, have a positive outlook on safety and security in air transport.Keywords: safety, security, passengers, cargo
Procedia PDF Downloads 673718 Factors Affecting Implementation of Construction Health and Safety Regulations, Their Effects and Mitigation Measures in Building Construction Project Sites of Hawassa City
Authors: Tadewos Awugchew Wudineh
Abstract:
Health and safety issues have always been a major problem and concern in the building construction industry. The health and safety regulations are stated to eliminate the potential hazards and to reduce the consequential risks. However, the importance of the regulations seems to be overlooked in building construction sites of Hawassa City. Accordingly, many companies don’t follow the regulations as construction workers are more likely to be injured and killed by construction accident than any other type of employment. This paper aimed to identify factors that affect the implementation of construction health and safety regulations, their effects and mitigation measures in building construction project sites of Hawassa City. To reach this objective, a review of literature as well as the Ethiopian construction health and safety regulations have been undertaken. Mainly a five-point Likert scale questionnaire was distributed, and statistical analysis was used to summarize, interpret the data, and to find the significances of the responses. In addition, interviews were carried out. Accordingly, the findings indicate that the top factors which affect the implementation of CHS regulations are, availability and development of a clear health and safety policy, health and safety inspections by top management, conducting health and safety training and orientation, provision of healthy and safe working environment and employment of trained safety officers. The study revealed that implementation or non-implementation of CHS regulations have effects on the worker’s productivity, job satisfaction, rate of accidents, and cost greatly. Thus, the suggestion to minimize the impact on worker’s job performance are, developing of a clear health and safety policy, management commitment towards implementation of health and safety regulations, health and safety education and training and conducting regular health and safety inspections. It was concluded from the study that good implementation of health and safety regulations are the results from administrative and management commitment which calls for more attention to be paid to improve the implementation of CHS regulations in building construction sites of Hawassa City.Keywords: construction health and safety regulations, effects, factors, mitigation
Procedia PDF Downloads 2603717 Transient Performance Evaluation and Control Measures for Oum Azza Pumping Station Case Study
Authors: Itissam Abuiziah
Abstract:
This work presents a case study of water-hammer analysis and control for the Oum Azza pumping station project in the coastal area of Rabat to Casablanca from the dam Sidi Mohamed Ben Abdellah (SMBA). This is a typical pumping system with a long penstock and is currently at design and executions stages. Since there is no ideal location for construction of protection devices, the protection devices were provisionally designed to protect the whole conveying pipeline. The simulation results for the transient conditions caused by a sudden pumping stopping without including any protection devices, show that there is a negative beyond 1300m to the station 5725m near the arrival of the reservoir, therefore; there is a need for the protection devices to protect the conveying pipeline. To achieve the goal behind the transient flow analysis which is to protect the conveying pipeline system, four scenarios had been investigated in this case study with two types of protecting devices (pressure relief valve and desurging tank with automatic air control). The four scenarios are conceders as with pressure relief valve, with pressure relief valve and a desurging tank with automatic air control, with pressure relief valve and tow desurging tanks with automatic air control and with pressure relief valve and three desurging tanks with automatic air control. The simulation result for the first scenario shows that overpressure corresponding to an instant pumping stopping is reduced from 263m to 240m, and the minimum hydraulic grad line for the length approximately from station 1300m to station 5725m is still below the pipeline profile which means that the pipe must be equipped with another a protective devices for smoothing depressions. The simulation results for the second scenario show that the minimum and maximum pressures envelopes are decreases especially in the depression phase but not effectively protects the conduct in this case study. The minimum pressure increased from -77.7m for the previous scenario to -65.9m for the current scenario. Therefore the pipeline is still requiring additional protective devices; another desurging tank with automatic air control is installed at station2575.84m. The simulation results for the third scenario show that the minimum and maximum pressures envelopes are decreases but not effectively protects the conduct in this case study since the depression is still exist and varies from -0.6m to– 12m. Therefore the pipeline is still requiring additional protective devices; another desurging tank with automatic air control is installed at station 5670.32 m. Examination of the envelope curves of the minimum pressuresresults for the fourth scenario, we noticed that the piezometric pressure along the pipe remains positive over the entire length of the pipe. We can, therefore, conclude that such scenario can provide effective protection for the pipeline.Keywords: analysis methods, protection devices, transient flow, water hammer
Procedia PDF Downloads 1873716 Establishment and Evaluation of Information System for Chemotherapy Care
Authors: Yi-Ting Liu, Pei-Ying Wen
Abstract:
In order to improve the overall safety of chemotherapy, safety-protecting net was established for the whole process from prescribing by physicians, transcribing by nurses, dispensing by pharmacists to administering by nurses. The information system was used to check and monitor whole process of administration and related sheets were computerized to simplify the paper work.Keywords: chemotherapy, bar code medication administration, medication safety
Procedia PDF Downloads 2983715 The Effect of Applying Surgical Safety Checklist on Surgical Team’s Knowledge and Performance in Operating Room
Authors: Soheir Weheida, Amal E. Shehata, Samira E. Aboalizm
Abstract:
The aim of this study was to examine the effect of surgical safety checklist on surgical team’s knowledge and performance in operating room. Subjects: A convenience sample 151 (48 head nurse, 45 nurse, 37 surgeon and 21 anesthesiologist) which available in operating room at two different hospitals was included in the study. Setting: The study was carried out at operating room in Menoufia University and Shebin Elkom Teaching Hospitals, Egypt. Tools: I: Surgical safety: Surgical team knowledge assessment structure interview schedule. II: WHO surgical safety observational Checklist. III: Post Surgery Culture Survey scale. Results: There was statistical significant improvement of knowledge mean score and performance about surgical safety especially in post and follow up than pre intervention, before patients entering the operating, before induction of anesthesia, skin incision and post skin closure and before patient leaves operating room, P values (P < 0.001). Improvement of communication post intervention than pre intervention between surgical team’s (4.74 ± 0.540). About two thirds (73.5 %) of studied sample strongly agreed on surgical safety in operating room. Conclusions: Implementation of surgical safety checklist has a positive effect on improving knowledge, performance and communication between surgical teams and these seems to have a positive effect on improve patient safety in the operating room.Keywords: knowledge, operating room, performance, surgical safety checklist
Procedia PDF Downloads 3343714 Placement of Inflow Control Valve for Horizontal Oil Well
Authors: S. Thanabanjerdsin, F. Srisuriyachai, J. Chewaroungroj
Abstract:
Drilling horizontal well is one of the most cost-effective method to exploit reservoir by increasing exposure area between well and formation. Together with horizontal well technology, intelligent completion is often co-utilized to increases petroleum production by monitoring/control downhole production. Combination of both technological results in an opportunity to lower water cresting phenomenon, a detrimental problem that does not lower only oil recovery but also cause environmental problem due to water disposal. Flow of reservoir fluid is a result from difference between reservoir and wellbore pressure. In horizontal well, reservoir fluid around the heel location enters wellbore at higher rate compared to the toe location. As a consequence, Oil-Water Contact (OWC) at the heel side of moves upward relatively faster compared to the toe side. This causes the well to encounter an early water encroachment problem. Installation of Inflow Control Valve (ICV) in particular sections of horizontal well can involve several parameters such as number of ICV, water cut constrain of each valve, length of each section. This study is mainly focused on optimization of ICV configuration to minimize water production and at the same time, to enhance oil production. A reservoir model consisting of high aspect ratio of oil bearing zone to underneath aquifer is drilled with horizontal well and completed with variation of ICV segments. Optimization of the horizontal well configuration is firstly performed by varying number of ICV, segment length, and individual preset water cut for each segment. Simulation results show that installing ICV can increase oil recovery factor up to 5% of Original Oil In Place (OOIP) and can reduce of produced water depending on ICV segment length as well as ICV parameters. For equally partitioned-ICV segment, more number of segment results in better oil recovery. However, number of segment exceeding 10 may not give a significant additional recovery. In first production period, deformation of OWC strongly depends on number of segment along the well. Higher number of segment results in smoother deformation of OWC. After water breakthrough at heel location segment, the second production period begins. Deformation of OWC is principally dominated by ICV parameters. In certain situations that OWC is unstable such as high production rate, high viscosity fluid above aquifer and strong aquifer, second production period may give wide enough window to ICV parameter to take the roll.Keywords: horizontal well, water cresting, inflow control valve, reservoir simulation
Procedia PDF Downloads 4183713 Development of Risk-Based Dam Safety Framework in Climate Change Condition for Batu Dam, Malaysia
Authors: Wan Noorul Hafilah Binti Wan Ariffin
Abstract:
Dam safety management is the crucial infrastructure as dam failure has a catastrophic effect on the community. Dam safety management is the effective framework of key actions and activities for the dam owner to manage the safety of the dam for its entire life cycle. However, maintaining dam safety is a challenging task as there are changes in current dam states. These changes introduce new risks to the dam's safety, which had not been considered when the dam was designed. A new framework has to be developed to adapt to the changes in the dam risk and make the dams resilient. This study proposes a risk-based decision-making adaptation framework for dam safety management. The research focuses on climate change's impact on hydrological situations as it causes floods and damages the dam structure. The risk analysis framework is adopted to improve the dam management strategies. The proposed study encompasses four phases. To start with, measuring the effect by assessing the impact of climate change on embankment dam, the second phase is to analyze the potential embankment dam failures. The third is analyzing the different components of risks related to the dam and, finally, developing a robust decision-making framework.Keywords: climate change, embankment dam, failure, risk-informed decision making
Procedia PDF Downloads 1653712 Inter-Departmental Survey to Check the Impact of Bio-Safety Training Sessions among Lab Employees
Authors: Noorulaine Maqsood, Saeed Khan
Abstract:
Background: Concern regarding incident reporting and bio-safety training in clinical laboratories in Pakistan has increased remarkably in the last few years due to rapid increase in diagnosis and research on infectious organisms. In order to ensure the safety of employees, this issue needs to be addressed immediately. Bio-safety training sessions and lectures are necessary for the protection of laboratory workers in order to ensure safe practices and minimize the count of incident reporting in the lab. Objective: To carry out an inter-departmental survey in lab regarding the awareness of bio-safety practices among lab employees before and after conducting bio-safety training sessions. Methodology: We conducted a 30 questions survey of laboratory workers in June 2013 (before training session) to gather information related to bio-safety awareness. Afterwards, we conducted another survey after training sessions and workshops related to bio-safety. Result: The survey regarding bio-safety level showed that before the training session 32% of the participants were aware of bio-safety level being used in their lab whereas after the session this percentage increased to 72%. 48% of the participants had information about the proper usage of PPE which increased to 76%. Awareness regarding proper management of hazardous waste increased from 32% to 64%. The incident reporting practice, sample handling and hand hygiene awareness was previously reported to be 40%, 65%, and 52% that increased to 80%, 85% and 88% respectively after the training session was completed. Conclusion: The first survey results showed lack of awareness that suggest nearly all senior scientists, faculty, medical technologist, lab attendant and housekeeping staff working in laboratories are required to have bio-safety training, and required inspection at least twice a year by a bio-safety officer and also required to renew their bio-safety training. After the training session, significant changes in awareness level and attitude of the participants regarding biosafety practices were observed. Therefore, such bio-safety sessions should be carried out regularly in clinical laboratories.Keywords: biosafety practices, clinical laboratory, Pakistan, survey
Procedia PDF Downloads 4273711 Real-Time Mine Safety System with the Internet of Things
Authors: Şakir Bingöl, Bayram İslamoğlu, Ebubekir Furkan Tepeli, Fatih Mehmet Karakule, Fatih Küçük, Merve Sena Arpacık, Mustafa Taha Kabar, Muhammet Metin Molak, Osman Emre Turan, Ömer Faruk Yesir, Sıla İnanır
Abstract:
This study introduces an IoT-based real-time safety system for mining, addressing global safety challenges. The wearable device, seamlessly integrated into miners' jackets, employs LoRa technology for communication and offers real-time monitoring of vital health and environmental data. Unique features include an LCD panel for immediate information display and sound-based location tracking for emergency response. The methodology involves sensor integration, data transmission, and ethical testing. Validation confirms the system's effectiveness in diverse mining scenarios. The study calls for ongoing research to adapt the system to different mining contexts, emphasizing its potential to significantly enhance safety standards in the industry.Keywords: mining safety, internet of things, wearable technology, LoRa, RFID tracking, real-time safety system, safety alerts, safety measures
Procedia PDF Downloads 633710 Assessment of Health and Safety Item on Construction Site in Ondo State
Authors: Ikumapayi Catherine Mayowa
Abstract:
The well-being of humans on a construction site is critical; abundant manpower had been lost through accidents which kill or make workers physically unfit to carry out construction activities, these, in turn, have multiple effects on the whole economy. Thus, it is necessary to put all safety items and regulations in place before construction activities can commence. This study was carried out in the Ondo state of Nigeria to investigate and analyze the state of health and safety of construction workers in the state. The study was done using first-hand observations, 50 construction project sites were visited in ten major towns of Ondo state, questionnaires were distributed, and the results were analyzed. The result shows that construction workers are being exposed to many construction site hazards due to lack of inadequate safety programs and lack of appropriate safety equipment for workers on site. From the data gotten from each site visited and the statistical analysis, it can be concluded that occurrences of an accident on construction sites depend significantly on the available safety facilities on the sites. The result of the regression statistics shows that the dependence of the frequency of occurrence of an accident on the availability of safety items on the site is 0.0362 which is less than 0.05 maximum significant level allowed. Therefore, a vital way of sustaining our building strategy is given a detail attention to the provision of adequate health and safety items on construction sites which will reduce the occurrence of accident, loss of manpower and death of skilled workers.Keywords: construction sites, health, safety, welfare
Procedia PDF Downloads 3273709 A Framework for an Automated Decision Support System for Selecting Safety-Conscious Contractors
Authors: Rawan A. Abdelrazeq, Ahmed M. Khalafallah, Nabil A. Kartam
Abstract:
Selection of competent contractors for construction projects is usually accomplished through competitive bidding or negotiated contracting in which the contract bid price is the basic criterion for selection. The evaluation of contractor’s safety performance is still not a typical criterion in the selection process, despite the existence of various safety prequalification procedures. There is a critical need for practical and automated systems that enable owners and decision makers to evaluate contractor safety performance, among other important contractor selection criteria. These systems should ultimately favor safety-conscious contractors to be selected by the virtue of their past good safety records and current safety programs. This paper presents an exploratory sequential mixed-methods approach to develop a framework for an automated decision support system that evaluates contractor safety performance based on a multitude of indicators and metrics that have been identified through a comprehensive review of construction safety research, and a survey distributed to domain experts. The framework is developed in three phases: (1) determining the indicators that depict contractor current and past safety performance; (2) soliciting input from construction safety experts regarding the identified indicators, their metrics, and relative significance; and (3) designing a decision support system using relational database models to integrate the identified indicators and metrics into a system that assesses and rates the safety performance of contractors. The proposed automated system is expected to hold several advantages including: (1) reducing the likelihood of selecting contractors with poor safety records; (2) enhancing the odds of completing the project safely; and (3) encouraging contractors to exert more efforts to improve their safety performance and practices in order to increase their bid winning opportunities which can lead to significant safety improvements in the construction industry. This should prove useful to decision makers and researchers, alike, and should help improve the safety record of the construction industry.Keywords: construction safety, contractor selection, decision support system, relational database
Procedia PDF Downloads 2803708 Creation of Processes for a Safety Element Out of Context for an Actuator Circuit Control Module
Authors: Hassan Noun, Christian Urban-Seelmann, Mohamed Abdelfattah, Guillaume Zeller, Rajesh G., Iryna Mozgova, Roland Lachmayer
Abstract:
Several modules in automotive are usually modified and adapted for various project-specific applications. Due to a standardized safety concept, high reusability is accessible. A safety element out of context (SEooC) according to ISO 26262 can be a suitable approach. Based on the same safety concept and analysis, common modules can reach high usability. For developing according to a module out of context, an appropriate and detailed development approach is required. This paper shows how to derive these development processes for platform modules. Therefore, the detailed approach to the safety element out of context is derived. The aim is to create a detailed workflow for all phases of the development and integration of any kind of system modules. As an application example, an automotive project for an actuator control module is considered.Keywords: functional safety, engineering processes, system engineering, electronic engineering
Procedia PDF Downloads 1443707 General Principles of Accident Prevention in Built Environment Rehabilitation
Authors: Alfredo Soeiro
Abstract:
Rehabilitation in construction or built environment is a particular type of operations when concerning prevention of accidents. In fact, it is also a different type of task in construction itself. Therefore, due to the complex characteristics of construction rehabilitation tasks and due to the intrinsic difficulty of preventing accidents in construction, a major challenge faces the responsibility for implementing adequate safety levels in this type of safety management. This paper addresses a set of proposed generic measures to face the unknown characteristics of built environment in terms of stability, materials and actual performance of buildings or other constructions. It is also addressed the necessary adaptation of preventive guidelines to this type of delicate refurbishing and renovating of existing facilities. Training, observation and reflective approaches are necessary to perform this safety management in the rehabilitation of built environment.Keywords: built environment, rehabilitation, construction safety, accident prevention, safety plan
Procedia PDF Downloads 2173706 Gravitational Water Vortex Power Plant: Experimental-Parametric Design of a Hydraulic Structure Capable of Inducing the Artificial Formation of a Gravitational Water Vortex Appropriate for Hydroelectric Generation
Authors: Henrry Vicente Rojas Asuero, Holger Manuel Benavides Muñoz
Abstract:
Approximately 80% of the energy consumed worldwide is generated from fossil sources, which are responsible for the emission of a large volume of greenhouse gases. For this reason, the global trend, at present, is the widespread use of energy produced from renewable sources. This seeks safety and diversification of energy supply, based on social cohesion, economic feasibility and environmental protection. In this scenario, small hydropower systems (P ≤ 10MW) stand out due to their high efficiency, economic competitiveness and low environmental impact. Small hydropower systems, along with wind and solar energy, are expected to represent a significant percentage of the world's energy matrix in the near term. Among the various technologies present in the state of the art, relating to small hydropower systems, is the Gravitational Water Vortex Power Plant, a recent technology that excels because of its versatility of operation, since it can operate with jumps in the range of 0.70 m-2.00 m and flow rates from 1 m3/s to 20 m3/s. Its operating system is based on the utilization of the energy of rotation contained within a large water vortex artificially induced. This paper presents the study and experimental design of an optimal hydraulic structure with the capacity to induce the artificial formation of a gravitational water vortex trough a system of easy application and high efficiency, able to operate in conditions of very low head and minimum flow. The proposed structure consists of a channel, with variable base, vortex inductor, tangential flow generator, coupled to a circular tank with a conical transition bottom hole. In the laboratory test, the angular velocity of the water vortex was related to the geometric characteristics of the inductor channel, as well as the influence of the conical transition bottom hole on the physical characteristics of the water vortex. The results show angular velocity values of greater magnitude as a function of depth, in addition the presence of the conical transition in the bottom hole of the circular tank improves the water vortex formation conditions while increasing the angular velocity values. Thus, the proposed system is a sustainable solution for the energy supply of rural areas near to watercourses.Keywords: experimental model, gravitational water vortex power plant, renewable energy, small hydropower
Procedia PDF Downloads 2893705 The Cost and Benefit on the Investment in Safety and Health of the Enterprises in Thailand
Authors: Charawee Butbumrung
Abstract:
The purpose of this study is to evaluate the monetary worthiness of investment and the usefulness of risk estimation as a tool employed by a production section of an electronic factory. This study employed the case study of accidents occurring in production areas. Data is collected from interviews with six production of safety coordinators and collect the information from the relevant section. The study will present the ratio of benefits compared with the operation costs for investment. The result showed that it is worthwhile for investment with the safety measures. In addition, the organizations must be able to analyze the causes of accidents about the benefits of investing in protective working process. They also need to quickly provide the manual for the staff to learn how to protect themselves from accidents and how to use all of the safety equipment.Keywords: cost and benefit, enterprises in Thailand, investment in safety and health, risk estimation
Procedia PDF Downloads 2653704 Fabrication of Graphene Oxide Based Planar Hetero-Junction Perovskite Solar Cells
Authors: Khursheed Ahmad, Shaikh M. Mobin
Abstract:
In this work, we have developed a highly stable planar heterojunction perovskite solar cells (PSCs) with a architecture (ITO/GO/PEDOT:PSS/MAPbI3/PCBM/Carbon tape). The PSCs was fabricated under air using GO/PEDOT:PSS as hole transport layer while the carbon tape used as a back contact to complete the device. The fabricated PSCs device exhibited good stability and performance in terms of power conversion efficiency of 5.2%. The PSCs devices were exposed to ambient condition for 4 days which shows excellent stability confirmed by XRD analysis. We believed that the stability of the planar heterojunction perovskite solar cell may be due the presence of GO which inhibits the direct contact between PEDOT:PSS and MAPbI3.Keywords: graphene oxide, perovskite solar cells, hole transport layer, PEDOT:PSS
Procedia PDF Downloads 1813703 Pressure Relief in Prosthetic Sockets through Hole Implementation Using Different Materials
Authors: Gabi N. Nehme
Abstract:
Below-knee amputees commonly experience asymmetrical gait patterns. It is generally believed that ischemia is related to the formation of pressure sores due to uneven distribution of forces. Micro-vascular responses can reveal local malnutrition. Changes in local skin blood supply under various external loading conditions have been studied for a number of years. Radionuclide clearance, photo-plethysmography, trans-cutaneous oxygen tension along with other studies showed that the blood supply would be influenced by the epidermal forces, and the rate and the amount of blood supply would decrease with increased epidermal loads being shear forces or normal forces. Several cases of socket designs were investigated using Finite Element Model (FEM) and Design of Experiment (DOE) to increase flexibility and minimize the pressure at the limb/socket interface using ultra high molecular weight polyethylene (UHMWPE) and polyamide 6 (PA6) or Duraform. The pressure reliefs at designated areas where reducing thickness is involved are seen to be critical in determination of amputees’ comfort and are very important to clinical applications. Implementing a hole between the Patellar Tendon (PT) and Distal Tibia (DT) would decrease stiffness and increase prosthesis range of motion where flexibility is needed. In addition, displacement and prosthetic energy storage increased without compromising mechanical efficiency and prosthetic design integrity.Keywords: patellar tendon, distal tibia, prosthetic socket relief areas, hole implementation
Procedia PDF Downloads 4143702 Activity-Based Safety Assessment of Real Estate Projects in Western India
Authors: Patel Parul, Harsh Ganvit
Abstract:
The construction industry is the second highest industry after agriculture provides employment in India. In developing countries like India, many construction projects are coming up to meet the demand. On the one hand, construction projects are increasing; on the other hand still, construction companies are struggling with many problems. One of the major problems is to ensure safe working conditions at the construction site. Due to a lack of safety awareness and ignorance of safety aspects, many fatal accidents are very common at the construction site in India. One of the key success factors for construction projects is “Accident-Free Construction Projects”. The construction projects can be divided into various categories like Infrastructure projects, industrial construction and real estate construction. Real estate projects are mainly comprised of commercial and residential projects. In the construction industry, private sectors play a huge role in urban and rural development and also contribute significantly to the growth of the nation. Infrastructure and Industrial projects are mainly executed by well-qualified construction contractors. For such projects, ensuring safety at construction projects is inevitable and probably one of the major clauses of contract documents as well. These projects are monitored from time to time by national agencies and researchers, too. However, Real estate projects are rarely monitored for safety aspects. No systematic contract system is followed for these projects. Safety is the most neglected aspect of these projects. In the current research projects, an attempt is made to carry out safety auditing for about 75 real estate projects. The objective of this work is to collect the activity-based safety survey of real estate projects in western India. The analysis of activity-based safety implementation for real estate projects is discussed in the present work. The activities are divided into three categories based on the data collected. The findings of this work will help local monitoring authorities to implement a safety management plan for real estate projects.Keywords: construction safety, safety assessment, activity-based safety, real estate projects
Procedia PDF Downloads 553701 Architectural Building Safety and Health Performance Model for Stratified Low-Cost Housing: Education and Management Tool for Building Managers
Authors: Zainal Abidin Akasah, Maizam Alias, Azuin Ramli
Abstract:
The safety and health performances aspects of a building are the most challenging aspect of facility management. It requires a deep understanding by the building managers on the factors that contribute to health and safety performances. This study attempted to develop an explanatory architectural safety performance model for stratified low-cost housing in Malaysia. The proposed Building Safety and Health Performance (BSHP) model was tested empirically through a survey on 308 construction practitioners using Partial Least Squares (PLS) and Structural Equation Modelling (SEM) tool. Statistical analysis results supports the conclusion that architecture, building services, external environment, management approaches and maintenance management have positive influence on safety and health performance of stratified low-cost housing in Malaysia. The findings provide valuable insights for construction industry to introduce BSHP model in the future where the model could be used as a guideline for training purposes of managers and better planning and implementation of building management.Keywords: building management, stratified low-cost housing, safety, health model
Procedia PDF Downloads 5553700 The Synthesis of AgInS₂/SnS₂/RGO Heterojunctions with Enhanced Photocatalytic Degradation of Norfloxacin
Authors: Mingmei Zhang, Xinyong Li
Abstract:
Novel AgInS2/SnS2/RGO (AISR) heterojunctions photocatalysts were synthesized by simple hydrothermal method. The morphology and composition of the fabricated AISR nanocomposites were investigated by field-emission scanning electron microscopy (SEM), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). Moreover, the as-prepared AISR photocatalysts exhibited excellent photocatalytic activities for the degradation of Norfloxacin (NOR), mainly due to its high optical absorption and separation efficiency of photogenerated electron-hole pairs, as evidenced by UV–vis diffusion reflection spectra (DRS) and Surface photovoltage (SPV) spectra. Furthermore, laser flash photolysis technique was conducted to test the lifetime of charge carriers of the fabricated nanocomposites. The interfacial charges transfer mechanism was also discussed.Keywords: AISR heterojunctions, electron-hole pairs, SPV spectra, charges transfer mechanism
Procedia PDF Downloads 1813699 Quantitative Evaluation of Mitral Regurgitation by Using Color Doppler Ultrasound
Authors: Shang-Yu Chiang, Yu-Shan Tsai, Shih-Hsien Sung, Chung-Ming Lo
Abstract:
Mitral regurgitation (MR) is a heart disorder which the mitral valve does not close properly when the heart pumps out blood. MR is the most common form of valvular heart disease in the adult population. The diagnostic echocardiographic finding of MR is straightforward due to the well-known clinical evidence. In the determination of MR severity, quantification of sonographic findings would be useful for clinical decision making. Clinically, the vena contracta is a standard for MR evaluation. Vena contracta is the point in a blood stream where the diameter of the stream is the least, and the velocity is the maximum. The quantification of vena contracta, i.e. the vena contracta width (VCW) at mitral valve, can be a numeric measurement for severity assessment. However, manually delineating the VCW may not accurate enough. The result highly depends on the operator experience. Therefore, this study proposed an automatic method to quantify VCW to evaluate MR severity. Based on color Doppler ultrasound, VCW can be observed from the blood flows to the probe as the appearance of red or yellow area. The corresponding brightness represents the value of the flow rate. In the experiment, colors were firstly transformed into HSV (hue, saturation and value) to be closely align with the way human vision perceives red and yellow. Using ellipse to fit the high flow rate area in left atrium, the angle between the mitral valve and the ultrasound probe was calculated to get the vertical shortest diameter as the VCW. Taking the manual measurement as the standard, the method achieved only 0.02 (0.38 vs. 0.36) to 0.03 (0.42 vs. 0.45) cm differences. The result showed that the proposed automatic VCW extraction can be efficient and accurate for clinical use. The process also has the potential to reduce intra- or inter-observer variability at measuring subtle distances.Keywords: mitral regurgitation, vena contracta, color doppler, image processing
Procedia PDF Downloads 3703698 Effect of Soil and Material Characteristics on Safety of Concrete Structures Including SSI
Authors: A. E. Kurtoglu, A. Cevik, M. Bilgehan
Abstract:
In this parametric study, effect of soil and material characteristics on safety of structures is investigated. The soil parameters such as shear strength, unit weight; geometrical parameters of the structure such as foundation depth and height of building; and material properties such as weight of concrete were selected as input parameters. A real accelerogram of 1989 El-Centro earthquake recorded by the USGS in Imperial Valley is used for this study. It is contained in the standard Strong Motion CD-ROM (SMC) format, which can be recognized and interpreted by FEM software used. The soil-structure interaction model subjected to above-mentioned earthquake was analyzed for 729 cases. Effect of input parameters on safety factor of the soil-structure system was then investigated and the interaction between the input and output parameters is presented in graphical form. Findings showed that all input parameters have significant effects on factor of safety results.Keywords: factor of safety, finite element method, safety of structures, soil structure interaction
Procedia PDF Downloads 5063697 Lean Implementation Analysis on the Safety Performance of Construction Projects in the Philippines
Authors: Kim Lindsay F. Restua, Jeehan Kyra A. Rivero, Joneka Myles D. Taguba
Abstract:
Lean construction is defined as an approach in construction with the purpose of reducing waste in the process without compromising the value of the project. There are numerous lean construction tools that are applied in the construction process, which maximizes the efficiency of work and satisfaction of customers while minimizing waste. However, the complexity and differences of construction projects cause a rise in challenges on achieving the lean benefits construction can give, such as improvement in safety performance. The objective of this study is to determine the relationship between lean construction tools and their effects on safety performance. The relationship between construction tools applied in construction and safety performance is identified through Logistic Regression Analysis, and Correlation Analysis was conducted thereafter. Based on the findings, it was concluded that almost 60% of the factors listed in the study, which are different tools and effects of lean construction, were determined to have a significant relationship with the level of safety in construction projects.Keywords: correlation analysis, lean construction tools, lean construction, logistic regression analysis, risk management, safety
Procedia PDF Downloads 186