Search results for: content independent features
11480 Computer-Aided Diagnosis System Based on Multiple Quantitative Magnetic Resonance Imaging Features in the Classification of Brain Tumor
Authors: Chih Jou Hsiao, Chung Ming Lo, Li Chun Hsieh
Abstract:
Brain tumor is not the cancer having high incidence rate, but its high mortality rate and poor prognosis still make it as a big concern. On clinical examination, the grading of brain tumors depends on pathological features. However, there are some weak points of histopathological analysis which can cause misgrading. For example, the interpretations can be various without a well-known definition. Furthermore, the heterogeneity of malignant tumors is a challenge to extract meaningful tissues under surgical biopsy. With the development of magnetic resonance imaging (MRI), tumor grading can be accomplished by a noninvasive procedure. To improve the diagnostic accuracy further, this study proposed a computer-aided diagnosis (CAD) system based on MRI features to provide suggestions of tumor grading. Gliomas are the most common type of malignant brain tumors (about 70%). This study collected 34 glioblastomas (GBMs) and 73 lower-grade gliomas (LGGs) from The Cancer Imaging Archive. After defining the region-of-interests in MRI images, multiple quantitative morphological features such as region perimeter, region area, compactness, the mean and standard deviation of the normalized radial length, and moment features were extracted from the tumors for classification. As results, two of five morphological features and three of four image moment features achieved p values of <0.001, and the remaining moment feature had p value <0.05. Performance of the CAD system using the combination of all features achieved the accuracy of 83.18% in classifying the gliomas into LGG and GBM. The sensitivity is 70.59% and the specificity is 89.04%. The proposed system can become a second viewer on clinical examinations for radiologists.Keywords: brain tumor, computer-aided diagnosis, gliomas, magnetic resonance imaging
Procedia PDF Downloads 26011479 Novel Fluorescent High Density Polyethylene Composites for Fused Deposition Modeling 3D Printing in Packaging Security Features
Authors: Youssef R. Hassan, Mohamed S. Hasanin, Reda M. Abdelhameed
Abstract:
Recently, innovations in packaging security features become more important to see the originality of packaging in industrial application. Luminescent 3d printing materials have been a promising property which can provides a unique opportunity for the design and application of 3D printing. Lack emission of terbium ions, as a source of green emission, in salt form prevent its uses in industrial applications, so searching about stable and highly emitter material become essential. Nowadays, metal organic frameworks (MOFs) play an important role in designing light emitter material. In this work, fluorescent high density polyethylene (FHDPE) composite filament with Tb-benzene 1,3,5-tricarboxylate (Tb-BTC) MOFs for 3D printing have been successfully developed.HDPE pellets were mixed with Tb-BTC and melting extrustion with single screw extruders. It was found that Tb-BTCuniformly dispersed in the HDPE matrix and significantly increased the crystallinity of PE, which not only maintained the good thermal property but also improved the mechanical properties of Tb-BTC@HDPE composites. Notably, the composite filaments emitted ultra-bright green light under UV lamp, and the fluorescence intensity increased as the content of Tb-BTC increased. Finally, several brightly luminescent exquisite articles could be manufactured by fused deposition modeling (FDM) 3D printer with these new fluorescent filaments. In this context, the development of novel fluorescent Tb-BTC@HDPE composites was combined with 3D printing technology to amplified the packaging Security Features.Keywords: 3D printing, fluorescent, packaging, security
Procedia PDF Downloads 10111478 Structural Reliability Analysis Using Extreme Learning Machine
Authors: Mehul Srivastava, Sharma Tushar Ravikant, Mridul Krishn Mishra
Abstract:
In structural design, the evaluation of safety and probability failure of structure is of significant importance, mainly when the variables are random. On real structures, structural reliability can be evaluated obtaining an implicit limit state function. The structural reliability limit state function is obtained depending upon the statistically independent variables. In the analysis of reliability, we considered the statistically independent random variables to be the load intensity applied and the depth or height of the beam member considered. There are many approaches for structural reliability problems. In this paper Extreme Learning Machine technique and First Order Second Moment Method is used to determine the reliability indices for the same set of variables. The reliability index obtained using ELM is compared with the reliability index obtained using FOSM. Higher the reliability index, more feasible is the method to determine the reliability.Keywords: reliability, reliability index, statistically independent, extreme learning machine
Procedia PDF Downloads 68211477 Liver Tumor Detection by Classification through FD Enhancement of CT Image
Authors: N. Ghatwary, A. Ahmed, H. Jalab
Abstract:
In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.
Procedia PDF Downloads 35811476 Brand Content Optimization: A Major Challenge for Sellers on Marketplaces
Authors: Richardson Ciguene, Bertrand Marron, Nicolas Habert
Abstract:
Today, more and more consumers are purchasing their products and services online. At the same time, the penetration rate of very small and medium-sized businesses on marketplaces continues to increase, which has the direct impact of intensifying competition between sellers. Thus, only the best-optimized deals are ranked well by algorithms and are visible to consumers. However, it is almost impossible to know all the Brand Content rules and criteria established by marketplaces, which is essential to optimizing their product sheets, especially since these rules change constantly. In this paper, we propose to detail this question of Brand Content optimization by taking into account the case of Amazon in order to capture the scientific dimension behind such a subject. In a second step, we will present the genesis of our research project, DEEPERFECT, which aims to set up original methods and effective tools in order to help sellers present on marketplaces in the optimization of their branded content.Keywords: e-commerce, scoring, marketplace, Amazon, brand content, product sheets
Procedia PDF Downloads 12311475 Extraction of Urban Land Features from TM Landsat Image Using the Land Features Index and Tasseled Cap Transformation
Authors: R. Bouhennache, T. Bouden, A. A. Taleb, A. Chaddad
Abstract:
In this paper we propose a method to map the urban areas. The method uses an arithmetic calculation processed from the land features indexes and Tasseled cap transformation TC of multi spectral Thematic Mapper Landsat TM image. For this purpose the derived indexes image from the original image such SAVI the soil adjusted vegetation index, UI the urban Index, and EBBI the enhanced built up and bareness index were staked to form a new image and the bands were uncorrelated, also the Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) supervised classification approaches were first applied on the new image TM data using the reference spectra of the spectral library and subsequently the four urban, vegetation, water and soil land cover categories were extracted with their accuracy assessment.The urban features were represented using a logic calculation applied to the brightness, UI-SAVI, NDBI-greenness and EBBI- brightness data sets. The study applied to Blida and mentioned that the urban features can be mapped with an accuracy ranging from 92 % to 95%.Keywords: EBBI, SAVI, Tasseled Cap Transformation, UI
Procedia PDF Downloads 48211474 A Study of Some Water Relations and Soil Salinity Using Geotextile Mat under Sprinkler System
Abstract:
This work aimed to study the influence of a geotextile material under sprinkler irrigation on the availability of soil moisture content and salinity of 40 cm top soil profile. Field experiment was carried out to measure soil moisture content, soil salinity and water application efficiency under sprinkler irrigation system. The results indicated that, the mats placed at 20 cm depth leads to increasing of the availability of soil moisture content in the root zone. The results further showed increases in water application efficiency because of using the geotextile material. In addition, soil salinity in the root zone decreased because of increasing soil moisture content.Keywords: geotextile, moisture content, sprinkler irrigation
Procedia PDF Downloads 39911473 The Isolation of Enterobacter Ludwigii Strain T976 from Nicotiana Tabacum L. Yunyan 97 and Its Application Study
Authors: Gao Qin, Hu Liwei, Dong Xiangzhou, Zhu Qifa, Cheng Tingming, Zhao Limei, Yang Mengmeng, Zhai Zhen, Dai Huaxin, Liang Taibo, Zhang Shixiang, Xue Chaoqun
Abstract:
The functional strain T976 for starch degradation was isolated from Nicotiana tabacum L. Yunyan 97 tobacco leaves, the ratio of starch hydrolysis transparent circle diameter to colony diameter of the strain was 4.14, 16S rDNA sequencing identified these strains as Enterobacter ludwigii. Then Enterobacter ludwigii T976 was fermented and spaying Yunyan 97 plant in vigorous growing stage. The results of once spraying fermentation broth of Enterobacter ludwigii T976 showed that starch content of upper leaves decreased slightly, from 3.77% to 3.1%, the reducing sugar content increased from 4.39% to 5.53%, and the total sugar content increased from 5.82% to 7.39%. The chemical content was also checked after three time spraying. The starch content of middle leaves decreased from 5.63% to 3.74%, while the content of total sugar and reducing sugar decreased slightly. And the starch content of upper leaves decreased from 7.62% to 4.78%, the total sugar and reducing sugar decreased slightly, and starch content of middle leaf decreased from 6.27% to 3.62%, the total sugar and reducing sugar did not change much, and other chemical components were in a suitable range.Keywords: nicotiana tabacum, yunyan 97, leaf, starch, degradation, enterobacter ludwigii
Procedia PDF Downloads 5611472 Implementation of a Serializer to Represent PHP Objects in the Extensible Markup Language
Authors: Lidia N. Hernández-Piña, Carlos R. Jaimez-González
Abstract:
Interoperability in distributed systems is an important feature that refers to the communication of two applications written in different programming languages. This paper presents a serializer and a de-serializer of PHP objects to and from XML, which is an independent library written in the PHP programming language. The XML generated by this serializer is independent of the programming language, and can be used by other existing Web Objects in XML (WOX) serializers and de-serializers, which allow interoperability with other object-oriented programming languages.Keywords: interoperability, PHP object serialization, PHP to XML, web objects in XML, WOX
Procedia PDF Downloads 23611471 Content Analysis of ‘Junk Food’ Content in Children’s TV Programmes: A Comparison of UK Broadcast TV and Video-On-Demand Services
Authors: Shreesh Sinha, Alexander B. Barker, Megan Parkin, Emma Wilson, Rachael L. Murray
Abstract:
Background and Objectives: Exposure to HFSS imagery is associated with the consumption of foods high in fat, sugar or salt (HFSS), and subsequently obesity, among young people. We report and compare the results of two content analyses, one of two popular terrestrial children's television channels in the UK and the other of a selection of children's programmes available on video-on-demand (VOD) streaming sites. Methods: Content analysis of three days' worth of programmes (including advertisements) on two popular children's television channels broadcast on UK television (CBeebies and Milkshake) as well as a sample of 40 highest-rated children's programmes available on the VOD platforms, Netflix and Amazon Prime, using 1-minute interval coding. Results: HFSS content was seen in 181 broadcasts (36%) and in 417 intervals (13%) on terrestrial television, 'Milkshake' had a significantly higher proportion of programmes/adverts which contained HFSS content than 'CBeebies'. In VOD platforms, HFSS content was seen in 82 episodes (72% of the total number of episodes), across 459 intervals (19% of the total number of intervals), with no significant difference in the proportion of programmes containing HFSS content between Netflix and Amazon Prime. Conclusions: This study demonstrates that HFSS content is common in both popular UK children's television channels and children's programmes on VOD services. Since previous research has shown that HFSS content in the media has an effect on HFSS consumption, children's television programmes broadcast either on TV or VOD services are likely to have an effect on HFSS consumption in children, and legislative opportunities to prevent this exposure are being missed.Keywords: public health, junk food, children's TV, HFSS
Procedia PDF Downloads 10211470 Automatic Content Curation of Visual Heritage
Authors: Delphine Ribes Lemay, Valentine Bernasconi, André Andrade, Lara DéFayes, Mathieu Salzmann, FréDéRic Kaplan, Nicolas Henchoz
Abstract:
Digitization and preservation of large heritage induce high maintenance costs to keep up with the technical standards and ensure sustainable access. Creating impactful usage is instrumental to justify the resources for long-term preservation. The Museum für Gestaltung of Zurich holds one of the biggest poster collections of the world from which 52’000 were digitised. In the process of building a digital installation to valorize the collection, one objective was to develop an algorithm capable of predicting the next poster to show according to the ones already displayed. The work presented here describes the steps to build an algorithm able to automatically create sequences of posters reflecting associations performed by curator and professional designers. The exposed challenge finds similarities with the domain of song playlist algorithms. Recently, artificial intelligence techniques and more specifically, deep-learning algorithms have been used to facilitate their generations. Promising results were found thanks to Recurrent Neural Networks (RNN) trained on manually generated playlist and paired with clusters of extracted features from songs. We used the same principles to create the proposed algorithm but applied to a challenging medium, posters. First, a convolutional autoencoder was trained to extract features of the posters. The 52’000 digital posters were used as a training set. Poster features were then clustered. Next, an RNN learned to predict the next cluster according to the previous ones. RNN training set was composed of poster sequences extracted from a collection of books from the Gestaltung Museum of Zurich dedicated to displaying posters. Finally, within the predicted cluster, the poster with the best proximity compared to the previous poster is selected. The mean square distance between features of posters was used to compute the proximity. To validate the predictive model, we compared sequences of 15 posters produced by our model to randomly and manually generated sequences. Manual sequences were created by a professional graphic designer. We asked 21 participants working as professional graphic designers to sort the sequences from the one with the strongest graphic line to the one with the weakest and to motivate their answer with a short description. The sequences produced by the designer were ranked first 60%, second 25% and third 15% of the time. The sequences produced by our predictive model were ranked first 25%, second 45% and third 30% of the time. The sequences produced randomly were ranked first 15%, second 29%, and third 55% of the time. Compared to designer sequences, and as reported by participants, model and random sequences lacked thematic continuity. According to the results, the proposed model is able to generate better poster sequencing compared to random sampling. Eventually, our algorithm is sometimes able to outperform a professional designer. As a next step, the proposed algorithm should include a possibility to create sequences according to a selected theme. To conclude, this work shows the potentiality of artificial intelligence techniques to learn from existing content and provide a tool to curate large sets of data, with a permanent renewal of the presented content.Keywords: Artificial Intelligence, Digital Humanities, serendipity, design research
Procedia PDF Downloads 18411469 Social Media Retailing in the Creator Economy
Authors: Julianne Cai, Weili Xue, Yibin Wu
Abstract:
Social media retailing (SMR) platforms have become popular nowadays. It is characterized by a creative combination of content creation and product selling, which differs from traditional e-tailing (TE) with product selling alone. Motivated by real-world practices like social media platforms “TikTok” and douyin.com, we endeavor to study if the SMR model performs better than the TE model in a monopoly setting. By building a stylized economic model, we find that the SMR model does not always outperform the TE model. Specifically, when the SMR platform collects less commission from the seller than the TE platform, the seller, consumers, and social welfare all benefit more from the SMR model. In contrast, the platform benefits more from the SMR model if and only if the creator’s social influence is high enough or the cost of content creation is small enough. For the incentive structure of the content rewards in the SMR model, we found that a strong incentive mechanism (e.g., the quadratic form) is more powerful than a weak one (e.g., the linear form). The previous one will encourage the creator to choose a much higher quality level of content creation and meanwhile allowing the platform, consumers, and social welfare to become better off. Counterintuitively, providing more generous content rewards is not always helpful for the creator (seller), and it may reduce her profit. Our findings will guide the platform to effectively design incentive mechanisms to boost the content creation and retailing in the SMR model and help the influencers efficiently create content, engage their followers (fans), and price their products sold on the SMR platform.Keywords: content creation, creator economy, incentive strategy, platform retailing
Procedia PDF Downloads 11411468 A New Internal Architecture Based On Feature Selection for Holonic Manufacturing System
Authors: Jihan Abdulazeez Ahmed, Adnan Mohsin Abdulazeez Brifcani
Abstract:
This paper suggests a new internal architecture of holon based on feature selection model using the combination of Bees Algorithm (BA) and Artificial Neural Network (ANN). BA is used to generate features while ANN is used as a classifier to evaluate the produced features. Proposed system is applied on the Wine data set, the statistical result proves that the proposed system is effective and has the ability to choose informative features with high accuracy.Keywords: artificial neural network, bees algorithm, feature selection, Holon
Procedia PDF Downloads 45711467 Assessing the Efficacy of Artificial Intelligence Integration in the FLO Health Application
Authors: Reema Alghamdi, Rasees Aleisa, Layan Sukkar
Abstract:
The primary objective of this research is to conduct an examination of the Flo menstrual cycle application. We do that by evaluating the user experience and their satisfaction with integrated AI features. The study seeks to gather data from primary resources, primarily through surveys, to gather different insights about the application, like its usability functionality in addition to the overall user satisfaction. The focus of our project will be particularly directed towards the impact and user perspectives regarding the integration of artificial intelligence features within the application, contributing to an understanding of the holistic user experience.Keywords: period, women health, machine learning, AI features, menstrual cycle
Procedia PDF Downloads 7611466 Granule Morphology of Zirconia Powder with Solid Content on Two-Fluid Spray Drying
Authors: Hyeongdo Jeong, Jong Kook Lee
Abstract:
Granule morphology and microstructure were affected by slurry viscosity, chemical composition, particle size and spray drying process. In this study, we investigated granule morphology of zirconia powder with solid content on two-fluid spray drying. Zirconia granules after spray drying show sphere-like shapes with a diameter of 40-70 μm at low solid contents (30 or 40 wt%) and specific surface area of 5.1-5.6 m²/g. But a donut-like shape with a few cracks were observed on zirconia granules prepared from the slurry of high solid content (50 wt %), green compacts after cold isostatic pressing under the pressure of 200 MPa have the density of 2.1-2.2 g/cm³ and homogeneous fracture surface by complete destruction of granules. After the sintering at 1500 °C for 2 h, all specimens have relative density of 96.2-98.3 %. With increasing a solid content from 30 to 50 wt%, grain size increased from 0.3 to 0.6 μm, but relative density was inversely decreased from 98.3 to 96.2 %.Keywords: zirconia, solid content, granulation, spray drying
Procedia PDF Downloads 21611465 Political Agency of Women Voters in India: Dependent or Independent Voters
Authors: Priyanka Sharma
Abstract:
The women voter turnout in India is increasing. The rising female voter turnout is explained in part by men intimidating women in the household to vote. Women are more likely than men to be guided before voting. What is perhaps more significant is that the gender gap has shrunk significantly over the years. However, there are layers and categories of women voters in India. Some women are much more likely than the average woman to follow advice. Against this backdrop, this paper investigates the variation among women voters during the national elections of 2019 in India. The central question of this research paper is whether or not the development of greater political opinion among women would offset guided voting and allow them to emerge as more independent voters. So the independent variable of the study is Indian women’s opinion on politics, and the dependent variable is their voting behavior. The methodology used in this paper is both quantitative and qualitative. This study investigated and examined Lokniti’s election survey data. The sample size used in this survey is 11568. The analysis of this study has revealed that there is a considerable impact of women having a political opinion on their voting behavior. The Bivariate analysis of the variables states that 83% of Indian women who have opinions on political issues do not seek advice while going to vote. This proves the hypothesis of this paper that women with an opinion on politics are more likely to be independent voters. To check the statistical significance of the finding, a chi-square test was done and the p-value found is 0.009737, which shows it is statistically significant. Furthermore, a regression test has been done by controlling certain variables like age, educational qualification, caste, and financial position of the women to probe the influence on the dependent variable. The findings provide worthwhile insights into the relationship between these control variables and the women voting behavior in India.Keywords: dependent voter, independent voter, political opinion, voting behavior, women voter
Procedia PDF Downloads 8211464 Pairwise Relative Primality of Integers and Independent Sets of Graphs
Authors: Jerry Hu
Abstract:
Let G = (V, E) with V = {1, 2, ..., k} be a graph, the k positive integers a₁, a₂, ..., ak are G-wise relatively prime if (aᵢ, aⱼ ) = 1 for {i, j} ∈ E. We use an inductive approach to give an asymptotic formula for the number of k-tuples of integers that are G-wise relatively prime. An exact formula is obtained for the probability that k positive integers are G-wise relatively prime. As a corollary, we also provide an exact formula for the probability that k positive integers have exactly r relatively prime pairs.Keywords: graph, independent set, G-wise relatively prime, probability
Procedia PDF Downloads 9211463 Caffeic Acid Methyl and Ethyl Esters Exhibit Beneficial Effect on Glucose and Lipid Metabolism in Cultured Murine Insulin-Sensitive Cells
Authors: Hoda M. Eid, Abir Nachar, Farah Thong, Gary Sweeney, Pierre S. Haddad
Abstract:
Caffeic acid methyl ester (CAME) and caffeic ethyl esters (CAEE) were previously reported to potently stimulate glucose uptake in cultured C2C12 skeletal muscle cells via insulin-independent mechanisms involving the activation of adenosine monophosphate-activated protein kinase (AMPK). In the present study, we investigated the effect of the two compounds on the translocation of glucose transporter GLUT4 in L6 skeletal muscle cells. The cells were treated with the optimum non-toxic concentration (50 µM) of either CAME or CAEE for 18 h. Levels of GLUT4myc at the cell surface were measured by O-phenylenediamine dihydrochloride (OPD) assay. The effects of CAME and CAEE on GLUT1 and GLUT4 protein content were also measured by western immunoblot. Our results show that CAME and CAEE significantly increased glucose uptake, GLUT4 translocation and GLUT4 protein content. Furthermore, the effect of the two CA esters on two insulin-sensitive cell lines: H4IIE rat hepatoma and 3T3-L1 adipocytes were investigated. CAME and CAEE reduced the enzymatic activity of the key hepatic gluconeogenic enzyme glucose-6-phosphatase in a concentration-dependent manner. In addition, they exerted a concentration-dependent antiadipogenic effect on 3T3-L1 cells. Mitotic clonal expansion (MCE), a prerequisite for adipocytes differentiation was also concentration-dependently inhibited. The two compounds abrogated lipid droplet accumulation, blocked MCE and maintained cells in fibroblast-like state when applied at the maximum non-toxic concentration (100 µM). In addition, the expression of the early key adipogenic transcription factors CCAAT enhancer-binding protein beta (C/EBP-β) and the master regulator of adipogenesis peroxisome-proliferator-activated receptor gamma (PPAR-γ) were inhibited. We, therefore, conclude that CAME and CAEE exert pleiotropic benefits in several insulin-sensitive cell lines through insulin-independent mechanisms involving AMPK, hence they may treat obesity, diabetes and other metabolic diseases.Keywords: type 2 diabetes mellitus, insulin resistance, GLUT4, Akt, AMPK.
Procedia PDF Downloads 30911462 Stomach Specific Delivery of Andrographolide from Floating in Situ Gelling System
Authors: Pravina Gurjar, Bothiraja Pour, Vijay Kumbhar, Ganesh Dama
Abstract:
Andrographolide (AG), a bioactive phytoconstituent, has a wider range of pharmacological action. However, due to the intestinal degradation, shows low oral bioavailability. The aim of the present work was to develop Floating In-situ gelling Gastro retentive System (FISGS) for AG in order to enhance its site specific absorption and minimize pH dependent hydrolysis in alkaline environment. Further to increase its therapeutic efficacy for peptic ulcer disease caused by H. pyroli. Gellan based floating in situ gelling system of AG were prepared by using sodium citrate and calcium carbonate. The 32 factorial designs was used to study the effect of gellan and calcium carbonate concentration (independent variables) on dependent variable such as viscosity, floating lag time and drug release. Developed system was evaluated for drug content, floating lag time, viscosity, and drug release studies. Drug content, viscosity, and floating lag time was found to be 81-99%, 67-117 Cps, and 3-5 sec, respectively. The obtained system showed good in vitro floating ability for more than 12 h using 0.1 N HCl as dissolution medium with initial burst release followed by the controlled zero order drug release up to 24 hrs. In vivo testing of FISGS of AG to rats demonstrated significant antiulcer activity that were evaluated by various parameters like pH, volume, total acidity, millimole equivalent of H+ ions/30 min, and protein content of gastric content. The densities of all the formulation batches were found to be near about 0.9 and floating duration above 12 hr. It was observed that with the increase in conc. of gellan there was increase in the viscosity of formulation but all formulations were in optimum range. The drug content of optimized batch was found to be 99.23. In histopathology study of stomach, the villi at the mucosal surface, the intercellular junction, the intestinal lumen were intact; no destruction of the epithelium, and submucosal gland in formulation treated and control group animals as compared to pure drug AG and standard ranitidine. Gellan-based in situ gastro retentive floating system could be advantageous in terms of increased bioavailability of AG to maintain an effective drug conc. in gastric fluid as well as in serum for longer period of time.Keywords: andrographolide, floating drug delivery, in situ gelling system, gastroretentive system
Procedia PDF Downloads 36111461 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals
Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou
Abstract:
In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.Keywords: continuous wavelet transform, convolution neural net-work, gated recurrent unit, health indicators, remaining useful life
Procedia PDF Downloads 13311460 Frequency- and Content-Based Tag Cloud Font Distribution Algorithm
Authors: Ágnes Bogárdi-Mészöly, Takeshi Hashimoto, Shohei Yokoyama, Hiroshi Ishikawa
Abstract:
The spread of Web 2.0 has caused user-generated content explosion. Users can tag resources to describe and organize them. Tag clouds provide rough impression of relative importance of each tag within overall cloud in order to facilitate browsing among numerous tags and resources. The goal of our paper is to enrich visualization of tag clouds. A font distribution algorithm has been proposed to calculate a novel metric based on frequency and content, and to classify among classes from this metric based on power law distribution and percentages. The suggested algorithm has been validated and verified on the tag cloud of a real-world thesis portal.Keywords: tag cloud, font distribution algorithm, frequency-based, content-based, power law
Procedia PDF Downloads 50511459 Analyzing the Influence of Hydrometeorlogical Extremes, Geological Setting, and Social Demographic on Public Health
Authors: Irfan Ahmad Afip
Abstract:
This main research objective is to accurately identify the possibility for a Leptospirosis outbreak severity of a certain area based on its input features into a multivariate regression model. The research question is the possibility of an outbreak in a specific area being influenced by this feature, such as social demographics and hydrometeorological extremes. If the occurrence of an outbreak is being subjected to these features, then the epidemic severity for an area will be different depending on its environmental setting because the features will influence the possibility and severity of an outbreak. Specifically, this research objective was three-fold, namely: (a) to identify the relevant multivariate features and visualize the patterns data, (b) to develop a multivariate regression model based from the selected features and determine the possibility for Leptospirosis outbreak in an area, and (c) to compare the predictive ability of multivariate regression model and machine learning algorithms. Several secondary data features were collected locations in the state of Negeri Sembilan, Malaysia, based on the possibility it would be relevant to determine the outbreak severity in the area. The relevant features then will become an input in a multivariate regression model; a linear regression model is a simple and quick solution for creating prognostic capabilities. A multivariate regression model has proven more precise prognostic capabilities than univariate models. The expected outcome from this research is to establish a correlation between the features of social demographic and hydrometeorological with Leptospirosis bacteria; it will also become a contributor for understanding the underlying relationship between the pathogen and the ecosystem. The relationship established can be beneficial for the health department or urban planner to inspect and prepare for future outcomes in event detection and system health monitoring.Keywords: geographical information system, hydrometeorological, leptospirosis, multivariate regression
Procedia PDF Downloads 11511458 Formulation and Nutrition Analysis of Low-Sugar Snack Bars
Authors: S. Kongtun-Janphuk, S. Niwitpong Jr., J. Saengsai
Abstract:
Low-sugar snack bars were formulated with 3 main formulas depending on the main ingredient, which were peanut-green bean-sesame, apple, and prune. The most acceptable formula of each group was obtained by sensory evaluation using a nine-point hedonic scale. The moisture content, total ash, protein, fat and fiber were analyzed by the standard methods of AOAC. The peanut-mung bean-sesame snack bar showed the highest protein content (88.32%) and total fat (0.48%) with the lowest of fiber content (0.01%) while the prune formula showed the lowest protein content (71.91%) and total fat (0.21%) with the highest of fiber content (0.03%). This result indicated that the prune formula could be used as diet food to assist in weight loss program.Keywords: low-sugar snack bar, diet food, nutrition analysis, food formulation
Procedia PDF Downloads 39711457 Content Based Instruction: An Interdisciplinary Approach in Promoting English Language Competence
Authors: Sanjeeb Kumar Mohanty
Abstract:
Content Based Instruction (CBI) in English Language Teaching (ELT) basically helps English as Second Language (ESL) learners of English. At the same time, it fosters multidisciplinary style of learning by promoting collaborative learning style. It is an approach to teaching ESL that attempts to combine language with interdisciplinary learning for bettering language proficiency and facilitating content learning. Hence, the basic purpose of CBI is that language should be taught in conjunction with academic subject matter. It helps in establishing the content as well as developing language competency. This study aims at supporting the potential values of interdisciplinary approach in promoting English Language Learning (ELL) by teaching writing skills to a small group of learners and discussing the findings with the teachers from various disciplines in a workshop. The teachers who are oriented, they use the same approach in their classes collaboratively. The inputs from the learners as well as the teachers hopefully raise positive consciousness with regard to the vast benefits that Content Based Instruction can offer in advancing the language competence of the learners.Keywords: content based instruction, interdisciplinary approach, writing skills, collaborative approach
Procedia PDF Downloads 27711456 A Real-Time Snore Detector Using Neural Networks and Selected Sound Features
Authors: Stelios A. Mitilineos, Nicolas-Alexander Tatlas, Georgia Korompili, Lampros Kokkalas, Stelios M. Potirakis
Abstract:
Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a widespread chronic disease that mostly remains undetected, mainly due to the fact that it is diagnosed via polysomnography which is a time and resource-intensive procedure. Screening the disease’s symptoms at home could be used as an alternative approach in order to alert individuals that potentially suffer from OSAHS without compromising their everyday routine. Since snoring is usually linked to OSAHS, developing a snore detector is appealing as an enabling technology for screening OSAHS at home using ubiquitous equipment like commodity microphones (included in, e.g., smartphones). In this context, this study developed a snore detection tool and herein present the approach and selection of specific sound features that discriminate snoring vs. environmental sounds, as well as the performance of the proposed tool. Furthermore, a Real-Time Snore Detector (RTSD) is built upon the snore detection tool and employed in whole-night sleep sound recordings resulting to a large dataset of snoring sound excerpts that are made freely available to the public. The RTSD may be used either as a stand-alone tool that offers insight to an individual’s sleep quality or as an independent component of OSAHS screening applications in future developments.Keywords: obstructive sleep apnea hypopnea syndrome, apnea screening, snoring detection, machine learning, neural networks
Procedia PDF Downloads 20711455 Exploiting Fast Independent Component Analysis Based Algorithm for Equalization of Impaired Baseband Received Signal
Authors: Muhammad Umair, Syed Qasim Gilani
Abstract:
A technique using Independent Component Analysis (ICA) for blind receiver signal processing is investigated. The problem of the receiver signal processing is viewed as of signal equalization and implementation imperfections compensation. Based on this, a model similar to a general ICA problem is developed for the received signal. Then, the use of ICA technique for blind signal equalization in the time domain is presented. The equalization is regarded as a signal separation problem, since the desired signal is separated from interference terms. This problem is addressed in the paper by over-sampling of the received signal. By using ICA for equalization, besides channel equalization, other transmission imperfections such as Direct current (DC) bias offset, carrier phase and In phase Quadrature phase imbalance will also be corrected. Simulation results for a system using 16-Quadraure Amplitude Modulation(QAM) are presented to show the performance of the proposed scheme.Keywords: blind equalization, blind signal separation, equalization, independent component analysis, transmission impairments, QAM receiver
Procedia PDF Downloads 21411454 The Usage of Negative Emotive Words in Twitter
Authors: Martina Katalin Szabó, István Üveges
Abstract:
In this paper, the usage of negative emotive words is examined on the basis of a large Hungarian twitter-database via NLP methods. The data is analysed from a gender point of view, as well as changes in language usage over time. The term negative emotive word refers to those words that, on their own, without context, have semantic content that can be associated with negative emotion, but in particular cases, they may function as intensifiers (e.g. rohadt jó ’damn good’) or a sentiment expression with positive polarity despite their negative prior polarity (e.g. brutális, ahogy ez a férfi rajzol ’it’s awesome (lit. brutal) how this guy draws’. Based on the findings of several authors, the same phenomenon can be found in other languages, so it is probably a language-independent feature. For the recent analysis, 67783 tweets were collected: 37818 tweets (19580 tweets written by females and 18238 tweets written by males) in 2016 and 48344 (18379 tweets written by females and 29965 tweets written by males) in 2021. The goal of the research was to make up two datasets comparable from the viewpoint of semantic changes, as well as from gender specificities. An exhaustive lexicon of Hungarian negative emotive intensifiers was also compiled (containing 214 words). After basic preprocessing steps, tweets were processed by ‘magyarlanc’, a toolkit is written in JAVA for the linguistic processing of Hungarian texts. Then, the frequency and collocation features of all these words in our corpus were automatically analyzed (via the analysis of parts-of-speech and sentiment values of the co-occurring words). Finally, the results of all four subcorpora were compared. Here some of the main outcomes of our analyses are provided: There are almost four times fewer cases in the male corpus compared to the female corpus when the negative emotive intensifier modified a negative polarity word in the tweet (e.g., damn bad). At the same time, male authors used these intensifiers more frequently, modifying a positive polarity or a neutral word (e.g., damn good and damn big). Results also pointed out that, in contrast to female authors, male authors used these words much more frequently as a positive polarity word as well (e.g., brutális, ahogy ez a férfi rajzol ’it’s awesome (lit. brutal) how this guy draws’). We also observed that male authors use significantly fewer types of emotive intensifiers than female authors, and the frequency proportion of the words is more balanced in the female corpus. As for changes in language usage over time, some notable differences in the frequency and collocation features of the words examined were identified: some of the words collocate with more positive words in the 2nd subcorpora than in the 1st, which points to the semantic change of these words over time.Keywords: gender differences, negative emotive words, semantic changes over time, twitter
Procedia PDF Downloads 20511453 A Comprehensive Methodology for Voice Segmentation of Large Sets of Speech Files Recorded in Naturalistic Environments
Authors: Ana Londral, Burcu Demiray, Marcus Cheetham
Abstract:
Speech recording is a methodology used in many different studies related to cognitive and behaviour research. Modern advances in digital equipment brought the possibility of continuously recording hours of speech in naturalistic environments and building rich sets of sound files. Speech analysis can then extract from these files multiple features for different scopes of research in Language and Communication. However, tools for analysing a large set of sound files and automatically extract relevant features from these files are often inaccessible to researchers that are not familiar with programming languages. Manual analysis is a common alternative, with a high time and efficiency cost. In the analysis of long sound files, the first step is the voice segmentation, i.e. to detect and label segments containing speech. We present a comprehensive methodology aiming to support researchers on voice segmentation, as the first step for data analysis of a big set of sound files. Praat, an open source software, is suggested as a tool to run a voice detection algorithm, label segments and files and extract other quantitative features on a structure of folders containing a large number of sound files. We present the validation of our methodology with a set of 5000 sound files that were collected in the daily life of a group of voluntary participants with age over 65. A smartphone device was used to collect sound using the Electronically Activated Recorder (EAR): an app programmed to record 30-second sound samples that were randomly distributed throughout the day. Results demonstrated that automatic segmentation and labelling of files containing speech segments was 74% faster when compared to a manual analysis performed with two independent coders. Furthermore, the methodology presented allows manual adjustments of voiced segments with visualisation of the sound signal and the automatic extraction of quantitative information on speech. In conclusion, we propose a comprehensive methodology for voice segmentation, to be used by researchers that have to work with large sets of sound files and are not familiar with programming tools.Keywords: automatic speech analysis, behavior analysis, naturalistic environments, voice segmentation
Procedia PDF Downloads 28111452 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition
Authors: Fawaz S. Al-Anzi, Dia AbuZeina
Abstract:
Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.Keywords: speech recognition, acoustic features, mel frequency, cepstral coefficients
Procedia PDF Downloads 25911451 Effects of Water Content on Dielectric Properties of Mineral Transformer Oil
Authors: Suwarno, M. Helmi Prakoso
Abstract:
Mineral oil is commonly used for high voltage transformer insulation. The insulation quality of mineral oil is affecting the operation process of high voltage transformer. There are many contaminations which could decrease the insulation quality of mineral oil. One of them is water. This research talks about the effect of water content on dielectric properties, physic properties, and partial discharge pattern on mineral oil. Samples were varied with 10 varieties of water content value. And then all samples were tested to measure the dielectric properties, physic properties, and partial discharge pattern. The result of this research showed that an increment of water content value would decrease the insulation quality of mineral oil.Keywords: dielectric properties, high voltage transformer, mineral oil, water content
Procedia PDF Downloads 399