Search results for: coconut kernel
159 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection
Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa
Abstract:
Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.Keywords: classification, airborne LiDAR, parameters selection, support vector machine
Procedia PDF Downloads 148158 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition
Procedia PDF Downloads 275157 A Semiparametric Approach to Estimate the Mode of Continuous Multivariate Data
Authors: Tiee-Jian Wu, Chih-Yuan Hsu
Abstract:
Mode estimation is an important task, because it has applications to data from a wide variety of sources. We propose a semi-parametric approach to estimate the mode of an unknown continuous multivariate density function. Our approach is based on a weighted average of a parametric density estimate using the Box-Cox transform and a non-parametric kernel density estimate. Our semi-parametric mode estimate improves both the parametric- and non-parametric- mode estimates. Specifically, our mode estimate solves the non-consistency problem of parametric mode estimates (at large sample sizes) and reduces the variability of non-parametric mode estimates (at small sample sizes). The performance of our method at practical sample sizes is demonstrated by simulation examples and two real examples from the fields of climatology and image recognition.Keywords: Box-Cox transform, density estimation, mode seeking, semiparametric method
Procedia PDF Downloads 285156 Catalytic and Non-Catalytic Pyrolysis of Walnut Shell Waste to Biofuel: Characterisation of Catalytic Biochar and Biooil
Authors: Saimatun Nisa
Abstract:
Walnut is an important export product from the Union Territory of Jammy and Kashmir. After extraction of the kernel, the walnut shell forms a solid waste that needs to be managed. Pyrolysis is one interesting option for the utilization of this walnut waste. In this study microwave pyrolysis reactor is used to convert the walnut shell biomass into its value-added products. Catalytic and non-catalytic conversion of walnut shell waste to oil, gas and char was evaluated using a Co-based catalyst. The catalyst was characterized using XPS and SEM analysis. Pyrolysis temperature, reaction time, particle size and sweeping gas (N₂) flow rate were set in the ranges of 400–600 °C, 40 min, <0.6mm to < 4.75mm and 300 ml min−1, respectively. The heating rate was fixed at 40 °C min−1. Maximum gas yield was obtained at 600 °C, 40 min, particle size range 1.18-2.36, 0.5 molar catalytic as 45.2%. The liquid product catalytic and non-catalytic was characterized by GC–MS analyses. In addition, the solid product was analyzed by means of FTIR & SEM.Keywords: walnut shell, biooil, biochar, microwave pyrolysis
Procedia PDF Downloads 56155 Protein Remote Homology Detection and Fold Recognition by Combining Profiles with Kernel Methods
Authors: Bin Liu
Abstract:
Protein remote homology detection and fold recognition are two most important tasks in protein sequence analysis, which is critical for protein structure and function studies. In this study, we combined the profile-based features with various string kernels, and constructed several computational predictors for protein remote homology detection and fold recognition. Experimental results on two widely used benchmark datasets showed that these methods outperformed the competing methods, indicating that these predictors are useful computational tools for protein sequence analysis. By analyzing the discriminative features of the training models, some interesting patterns were discovered, reflecting the characteristics of protein superfamilies and folds, which are important for the researchers who are interested in finding the patterns of protein folds.Keywords: protein remote homology detection, protein fold recognition, profile-based features, Support Vector Machines (SVMs)
Procedia PDF Downloads 164154 In vitro Fermentation Characteristics of Palm Oil Byproducts Which is Supplemented with Growth Factor Rumen Microbes
Authors: Mardiati Zain, Jurnida Rahman, Khasrad, Erpomen
Abstract:
The aim of this experiment was to study the use of palm oil by products (oil palm fronds (OPF), palm oil sludge (POS) and palm kernel cake (PKC)), that supplemented with growth factor rumen microbes (Sapindus rarak and Sacharomyces cerevisiae) on digestibility and fermentation in vitro. Oil Palm Fronds was previously treated with 3% urea. The treatments consist of 50% OPF+ 30% POS+ 20% PKC as a control diet (A), B = A + 4% Sapindus rarak, C = A + 0.5 % Sacharomyces cerevisiae and D = A + 4% Sapindus rarak + 0.5% Sacharomyces cerevisiae. Digestibility of DM, OM, ADF, NDF, cellulose and rumen parameters (NH3 and VFA) of all treatments were significantly different (P < 0.05). Fermentation and digestibility treatment A were significantly lower than treatments B, C, and D. The result indicated that supplementation Sapindus rarak and S. cerevisiae were able to improve fermentability and digestibility of palm oil by product.Keywords: palm oil by product, Sapindus rarak, Sacharomyces rerevisiae, fermentability, OPF ammoniated
Procedia PDF Downloads 690153 Investigation of New Gait Representations for Improving Gait Recognition
Authors: Chirawat Wattanapanich, Hong Wei
Abstract:
This study presents new gait representations for improving gait recognition accuracy on cross gait appearances, such as normal walking, wearing a coat and carrying a bag. Based on the Gait Energy Image (GEI), two ideas are implemented to generate new gait representations. One is to append lower knee regions to the original GEI, and the other is to apply convolutional operations to the GEI and its variants. A set of new gait representations are created and used for training multi-class Support Vector Machines (SVMs). Tests are conducted on the CASIA dataset B. Various combinations of the gait representations with different convolutional kernel size and different numbers of kernels used in the convolutional processes are examined. Both the entire images as features and reduced dimensional features by Principal Component Analysis (PCA) are tested in gait recognition. Interestingly, both new techniques, appending the lower knee regions to the original GEI and convolutional GEI, can significantly contribute to the performance improvement in the gait recognition. The experimental results have shown that the average recognition rate can be improved from 75.65% to 87.50%.Keywords: convolutional image, lower knee, gait
Procedia PDF Downloads 202152 Nonparametric Estimation of Risk-Neutral Densities via Empirical Esscher Transform
Authors: Manoel Pereira, Alvaro Veiga, Camila Epprecht, Renato Costa
Abstract:
This paper introduces an empirical version of the Esscher transform for risk-neutral option pricing. Traditional parametric methods require the formulation of an explicit risk-neutral model and are operational only for a few probability distributions for the returns of the underlying. In our proposal, we make only mild assumptions on the pricing kernel and there is no need for the formulation of the risk-neutral model for the returns. First, we simulate sample paths for the returns under the physical distribution. Then, based on the empirical Esscher transform, the sample is reweighted, giving rise to a risk-neutralized sample from which derivative prices can be obtained by a weighted sum of the options pay-offs in each path. We compare our proposal with some traditional parametric pricing methods in four experiments with artificial and real data.Keywords: esscher transform, generalized autoregressive Conditional Heteroscedastic (GARCH), nonparametric option pricing
Procedia PDF Downloads 490151 Synthesis and Performance Adsorbent from Coconut Shells Polyetheretherketone for Natural Gas Storage
Authors: Umar Hayatu Sidik
Abstract:
The natural gas vehicle represents a cost-competitive, lower-emission alternative to the gasoline-fuelled vehicle. The immediate challenge that confronts natural gas is increasing its energy density. This paper addresses the question of energy density by reviewing the storage technologies for natural gas with improved adsorbent. Technical comparisons are made between storage systems containing adsorbent and conventional compressed natural gas based on the associated amount of moles contained with Compressed Natural Gas (CNG) and Adsorbed Natural Gas (ANG). We also compare gas storage in different cylinder types (1, 2, 3 and 4) based on weight factor and storage capacity. For the storage tank system, we discussed the concept of carbon adsorbents, when used in CNG tanks, offer a means of increasing onboard fuel storage and, thereby, increase the driving range of the vehicle. It confirms that the density of the stored gas in ANG is higher than that of compressed natural gas (CNG) operated at the same pressure. The obtained experimental data were correlated using linear regression analysis with common adsorption kinetic (Pseudo-first order and Pseudo-second order) and isotherm models (Sip and Toth). The pseudo-second-order kinetics describe the best fitness with a correlation coefficient of 9945 at 35 bar. For adsorption isotherms, the Sip model shows better fitness with the regression coefficient (R2) of 0.9982 and with the lowest RSMD value of 0.0148. The findings revealed the potential of adsorbent in natural gas storage applications.Keywords: natural gas, adsorbent, compressed natural gas, adsorption
Procedia PDF Downloads 60150 Impact of Network Workload between Virtualization Solutions on a Testbed Environment for Cybersecurity Learning
Authors: Kevin Fernagut, Olivier Flauzac, Erick M. G. Robledo, Florent Nolot
Abstract:
The adoption of modern lightweight virtualization often comes with new threats and network vulnerabilities. This paper seeks to assess this with a different approach studying the behavior of a testbed built with tools such as Kernel-Based Virtual Machine (KVM), Linux Containers (LXC) and Docker, by performing stress tests within a platform where students experiment simultaneously with cyber-attacks, and thus observe the impact on the campus network and also find the best solution for cyber-security learning. Interesting outcomes can be found in the literature comparing these technologies. It is, however, difficult to find results of the effects on the global network where experiments are carried out. Our work shows that other physical hosts and the faculty network were impacted while performing these trials. The problems found are discussed, as well as security solutions and the adoption of new network policies.Keywords: containerization, containers, cybersecurity, cyberattacks, isolation, performance, virtualization, virtual machines
Procedia PDF Downloads 151149 Composite Panels from Under-Utilized Wood and Agricultural Fiber Resources
Authors: Salim Hiziroglu
Abstract:
Rice straw, jute, coconut fiber, oil palm, bagasse and bamboo are some of agricultural resources that can be used to produce different types of value-added composite panels including particleboard and medium density fiberboard (MDF). Invasive species such as Eastern red cedar in South Western states in the USA would also be considered as viable raw material to manufacture above products. The main objective of this study was to investigate both physical and mechanical properties of both structural and non-structural panels manufactured from underutilized and agricultural species. Eastern red cedar, bamboo and rice straw were used to manufacture experimental panels. Properties of such samples including bending, internal bond strength, thickness swelling, density profiles and surface roughness were evaluated. Panels made 100% bamboo had the best properties among the other samples. Having rice straw in particleboard and medium density fiberboard panels reduced overall properties of the samples. Manufacturing interior sandwich type of panels having fibers on the face layers while particle of the same type of materials in the core improved their surface quality. Based on the findings of this work such species could have potential to be used as raw material to manufacture value-added panels with accepted properties.Keywords: composite panels, wood and non-wood fibers, mechanical properties, bamboo
Procedia PDF Downloads 432148 Detection of Curvilinear Structure via Recursive Anisotropic Diffusion
Authors: Sardorbek Numonov, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Dongeun Choi, Byung-Woo Hong
Abstract:
The detection of curvilinear structures often plays an important role in the analysis of images. In particular, it is considered as a crucial step for the diagnosis of chronic respiratory diseases to localize the fissures in chest CT imagery where the lung is divided into five lobes by the fissures that are characterized by linear features in appearance. However, the characteristic linear features for the fissures are often shown to be subtle due to the high intensity variability, pathological deformation or image noise involved in the imaging procedure, which leads to the uncertainty in the quantification of anatomical or functional properties of the lung. Thus, it is desired to enhance the linear features present in the chest CT images so that the distinctiveness in the delineation of the lobe is improved. We propose a recursive diffusion process that prefers coherent features based on the analysis of structure tensor in an anisotropic manner. The local image features associated with certain scales and directions can be characterized by the eigenanalysis of the structure tensor that is often regularized via isotropic diffusion filters. However, the isotropic diffusion filters involved in the computation of the structure tensor generally blur geometrically significant structure of the features leading to the degradation of the characteristic power in the feature space. Thus, it is required to take into consideration of local structure of the feature in scale and direction when computing the structure tensor. We apply an anisotropic diffusion in consideration of scale and direction of the features in the computation of the structure tensor that subsequently provides the geometrical structure of the features by its eigenanalysis that determines the shape of the anisotropic diffusion kernel. The recursive application of the anisotropic diffusion with the kernel the shape of which is derived from the structure tensor leading to the anisotropic scale-space where the geometrical features are preserved via the eigenanalysis of the structure tensor computed from the diffused image. The recursive interaction between the anisotropic diffusion based on the geometry-driven kernels and the computation of the structure tensor that determines the shape of the diffusion kernels yields a scale-space where geometrical properties of the image structure are effectively characterized. We apply our recursive anisotropic diffusion algorithm to the detection of curvilinear structure in the chest CT imagery where the fissures present curvilinear features and define the boundary of lobes. It is shown that our algorithm yields precise detection of the fissures while overcoming the subtlety in defining the characteristic linear features. The quantitative evaluation demonstrates the robustness and effectiveness of the proposed algorithm for the detection of fissures in the chest CT in terms of the false positive and the true positive measures. The receiver operating characteristic curves indicate the potential of our algorithm as a segmentation tool in the clinical environment. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).Keywords: anisotropic diffusion, chest CT imagery, chronic respiratory disease, curvilinear structure, fissure detection, structure tensor
Procedia PDF Downloads 233147 Syndromic Surveillance Framework Using Tweets Data Analytics
Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden
Abstract:
Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza
Procedia PDF Downloads 116146 Dissolved Oxygen Prediction Using Support Vector Machine
Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed
Abstract:
In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, water temperature, and conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.Keywords: dissolved oxygen, water quality, predication DO, support vector machine
Procedia PDF Downloads 290145 Mass Pheromone Trapping on Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Oil Palm Plantations of Terengganu
Authors: Wahizatul Afzan Azmi, Nur Ain Farhah Ros Saidon Khudri, Mohamad Haris Hussain, Tse Seng Chuah
Abstract:
Malaysia houses a broad range of palm trees species and some of these palm trees are very crucial for the country’s social and economic development, especially the oil palm trees. However, the destructive pest of the various palms species, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) or known as Red Palm Weevil (RPW) was first detected in Terengganu in 2007. Recently, the pattern of infestation has move from coastal lines toward inland areas. After the coconut plantations, it is presumed that the RPW will be a serious threat to the oil palm plantations in Malaysia. Thus, this study was carried out to detect the presence and distribution of Red Palm Weevil (RPW) in selected oil palm plantations of Terengganu. A total of 42 traps were installed in the three oil palm plantations in Terengganu and were inspected every week for two months. Oil palm plantation A collected significantly higher adults RPW compared to the other locations. Generally, females of RPW were significantly higher than male individuals. Females were collected more as the synthetic aggregation pheromone used, ferrugineol was synthesized from the male aggregation pheromone of adult RPW. Oil palm plantation A collected the highest number of RPW might be due to the abundance of soft part in the host plant as the oil palm trees age ranged between 6 to 10 years old. As a conclusion, RPW presence was detected in some oil palm plantations of Terengganu and immediate action is crucially needed before it is too late.Keywords: red palm weevil, pest, oil palm, pheromone
Procedia PDF Downloads 213144 Application of Nitric Acid Modified Cocos nucifera, Pennisetum glaucum and Sorghum bicolor Activated Carbon for Adsorption of H₂S Gas
Authors: Z. N. Ali, O. A. Babatunde, S. Garba, H. M. S. Haruna
Abstract:
The potency of modified and unmodified activated carbons prepared from shells of Cocos nucifera (coconut shell), straws of Pennisetum glaucum (millet) and Sorghum bicolor (sorghum) for adsorption of hydrogen sulphide gas were investigated using an adsorption apparatus (stainless steel cylinder) at constant temperature (ambient temperature). The adsorption equilibria states were obtained when the pressure indicated on the pressure gauge remained constant. After modification with nitric acid, results of the scanning electron microscopy of the unmodified and modified activated carbons showed that HNO3 greatly improved the formation of micropores and mesopores on the activated carbon surface. The adsorption of H2S gas was found to be highest in modified Cocos nucifera activated carbon with maximum monolayer coverage of 28.17 mg/g, and the adsorption processes were both physical and chemical with the physical process being predominant. The adsorption data were well fitted into the Langmuir isotherm model with the adsorption capacities of the activated carbons in the order modified Cocos nucifera > modified Pennisetum glaucum > modified Sorghum bicolor > unmodified Cocos nucifera > unmodified Pennisetum glaucum > unmodified Sorghum bicolour.Keywords: activated carbon adsorption, hydrogen sulphide, nitric acid, modification, stainless steel cylinder
Procedia PDF Downloads 139143 Synthesis and Applications of Biosorbent from Barley Husk for Adsorption of Heavy Metals and Bacteria from Water
Authors: Sudarshan Kalsulkar, Sunil S. Bhagwat
Abstract:
Biosorption is a physiochemical process that occurs naturally in certain biomass which allows it to passively concentrate and bind contaminants onto its cellular structure. Activated carbons (AC) are one such efficient biosorbents made by utilizing lignocellulosic materials from agricultural waste. Steam activated carbon (AC) was synthesized from Barley husk. Its synthesis parameters of time and temperature were optimized. Its physico-chemical properties like density, surface area, pore volume, Methylene blue and Iodine values were characterized. BET surface area was found to be 42 m²/g. Batch Adsorption tests were carried out to determine the maximum adsorption capacity (qmax) for various metal ions. Cd+2 48.74 mg/g, Pb+2 19.28 mg/g, Hg+2 39.1mg/g were the respective qmax values. pH and time were optimized for adsorption of each ion. Column Adsorptions were carried for each to obtain breakthrough data. Microbial adsorption was carried using E. coli K12 strain. 78% reduction in cell count was observed at operating conditions. Thus the synthesized Barley husk AC can be an economically feasible replacement for commercially available AC prepared from the costlier coconut shells. Breweries and malting industries where barley husk is a primary waste generated on a large scale can be a good source for bulk raw material.Keywords: activated carbon, Barley husk, biosorption, decontamination, heavy metal removal, water treatment
Procedia PDF Downloads 415142 Image Compression Based on Regression SVM and Biorthogonal Wavelets
Authors: Zikiou Nadia, Lahdir Mourad, Ameur Soltane
Abstract:
In this paper, we propose an effective method for image compression based on SVM Regression (SVR), with three different kernels, and biorthogonal 2D Discrete Wavelet Transform. SVM regression could learn dependency from training data and compressed using fewer training points (support vectors) to represent the original data and eliminate the redundancy. Biorthogonal wavelet has been used to transform the image and the coefficients acquired are then trained with different kernels SVM (Gaussian, Polynomial, and Linear). Run-length and Arithmetic coders are used to encode the support vectors and its corresponding weights, obtained from the SVM regression. The peak signal noise ratio (PSNR) and their compression ratios of several test images, compressed with our algorithm, with different kernels are presented. Compared with other kernels, Gaussian kernel achieves better image quality. Experimental results show that the compression performance of our method gains much improvement.Keywords: image compression, 2D discrete wavelet transform (DWT-2D), support vector regression (SVR), SVM Kernels, run-length, arithmetic coding
Procedia PDF Downloads 382141 Product Development of Standard Multi-Layer Sweet (Khanom- Chan) Recipe to Healthy for Thai Dessert
Authors: Tidarat Sanphom
Abstract:
Aim of this research is to development of Standard Layer pudding (Khanom-Chan) recipe to healthy Thai dessert. The objective are to study about standard recipe in multi-layer sweet. It was found that the appropriate recipe in multi-layer sweet, was consisted of rice starch 56 grams, tapioca starch 172 grams, arrowroot flour 98 grams, mung been-flour 16 grams, coconut milk 774 grams, fine sugar 374 grams, pandan leaf juice 47 grams and oil 5 grams.Then the researcher studied about the ratio of rice-berries flour to rice starch in multi-layer sweet at level of 30:70, 50:50, and only rice-berry flour 100 percentage. Result sensory evaluation, it was found the ratio of rice-berry flour to rice starch 30:70 had well score. The result of multi-layer sweet with rice-berry flour reduced sugar 20, 40 and 60 percentage found that 20 percentage had well score. Calculated total calories and calories from fat in Sweet layer cake with rice-berry flour reduced sugar 20 percentage had 250.04 kcal and 65.16 kcal.Keywords: multi-layer sweet (Khanom-Chan), rice-berry flour, leaf juice, desert
Procedia PDF Downloads 433140 Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue
Authors: U.V. Suryawanshi, S.S. Chowhan, U.V Kulkarni
Abstract:
Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results.Keywords: image segmentation, preprocessing, MRI, FCM, KFCM, SFCM, IFCM
Procedia PDF Downloads 334139 Residual Stress Around Embedded Particles in Bulk YBa2Cu3Oy Samples
Authors: Anjela Koblischka-Veneva, Michael R. Koblischka
Abstract:
To increase the flux pinning performance of bulk YBa2Cu3O7-δ (YBCO or Y-123) superconductors, it is common to employ secondary phase particles, either Y2BaCuO5 (Y-211) particles created during the growth of the samples or additionally added (nano)particles of various types, embedded in the superconducting Y-123 matrix. As the crystallographic parameters of all the particles indicate a misfit to Y-123, there will be residual strain within the Y-123 matrix around such particles. With a dedicated analysis of electron backscatter diffraction (EBSD) data obtained on various bulk, Y-123 superconductor samples, the strain distribution around such embedded secondary phase particles can be revealed. The results obtained are presented in form of Kernel Average Misorientation (KAM) mappings. Around large Y-211 particles, the strain can be so large that YBCO subgrains are formed. Therefore, it is essential to properly control the particle size as well as their distribution within the bulk sample to obtain the best performance. The impact of the strain distribution on the flux pinning properties is discussed.Keywords: Bulk superconductors, EBSD, Strain, YBa2Cu3Oy
Procedia PDF Downloads 150138 Effect of Different Media and Mannitol Concentrations on Growth and Development of Vandopsis lissochiloides (Gaudich.) Pfitz. under Slow Growth Conditions
Authors: J. Linjikao, P. Inthima, A. Kongbangkerd
Abstract:
In vitro conservation of orchid germplasm provides an effective technique for ex situ conservation of orchid diversity. In this study, an efficient protocol for in vitro conservation of Vandopsis lissochiloides (Gaudich.) Pfitz. plantlet under slow growth conditions was investigated. Plantlets were cultured on different strength of Vacin and Went medium (½VW and ¼VW) supplemented with different concentrations of mannitol (0, 2, 4, 6 and 8%), sucrose (0 and 3%) and 50 g/L potato extract, 150 mL/L coconut water. The cultures were incubated at 25±2 °C and maintained under 20 µmol/m2s light intensity for 24 weeks without subculture. At the end of preservation period, the plantlets were subcultured to fresh medium for growth recovery. The results found that the highest leaf number per plantlet could be observed on ¼VW medium without adding sucrose and mannitol while the highest root number per plantlet was found on ½VW added with 3% sucrose without adding mannitol after 24 weeks of in vitro storage. The results showed that the maximum number of leaves (5.8 leaves) and roots (5.0 roots) of preserved plantlets were produced on ¼VW medium without adding sucrose and mannitol. Therefore, ¼VW medium without adding sucrose and mannitol was the best minimum growth conditions for medium-term storage of V. lissochiloides plantlets.Keywords: preservation, vandopsis, germplasm, in vitro
Procedia PDF Downloads 145137 A Non-parametric Clustering Approach for Multivariate Geostatistical Data
Authors: Francky Fouedjio
Abstract:
Multivariate geostatistical data have become omnipresent in the geosciences and pose substantial analysis challenges. One of them is the grouping of data locations into spatially contiguous clusters so that data locations within the same cluster are more similar while clusters are different from each other, in some sense. Spatially contiguous clusters can significantly improve the interpretation that turns the resulting clusters into meaningful geographical subregions. In this paper, we develop an agglomerative hierarchical clustering approach that takes into account the spatial dependency between observations. It relies on a dissimilarity matrix built from a non-parametric kernel estimator of the spatial dependence structure of data. It integrates existing methods to find the optimal cluster number and to evaluate the contribution of variables to the clustering. The capability of the proposed approach to provide spatially compact, connected and meaningful clusters is assessed using bivariate synthetic dataset and multivariate geochemical dataset. The proposed clustering method gives satisfactory results compared to other similar geostatistical clustering methods.Keywords: clustering, geostatistics, multivariate data, non-parametric
Procedia PDF Downloads 477136 Design and Motion Control of a Two-Wheel Inverted Pendulum Robot
Authors: Shiuh-Jer Huang, Su-Shean Chen, Sheam-Chyun Lin
Abstract:
Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.Keywords: balance control, speed control, intelligent controller, two wheel inverted pendulum
Procedia PDF Downloads 224135 Discrete Estimation of Spectral Density for Alpha Stable Signals Observed with an Additive Error
Authors: R. Sabre, W. Horrigue, J. C. Simon
Abstract:
This paper is interested in two difficulties encountered in practice when observing a continuous time process. The first is that we cannot observe a process over a time interval; we only take discrete observations. The second is the process frequently observed with a constant additive error. It is important to give an estimator of the spectral density of such a process taking into account the additive observation error and the choice of the discrete observation times. In this work, we propose an estimator based on the spectral smoothing of the periodogram by the polynomial Jackson kernel reducing the additive error. In order to solve the aliasing phenomenon, this estimator is constructed from observations taken at well-chosen times so as to reduce the estimator to the field where the spectral density is not zero. We show that the proposed estimator is asymptotically unbiased and consistent. Thus we obtain an estimate solving the two difficulties concerning the choice of the instants of observations of a continuous time process and the observations affected by a constant error.Keywords: spectral density, stable processes, aliasing, periodogram
Procedia PDF Downloads 138134 Using New Machine Algorithms to Classify Iranian Musical Instruments According to Temporal, Spectral and Coefficient Features
Authors: Ronak Khosravi, Mahmood Abbasi Layegh, Siamak Haghipour, Avin Esmaili
Abstract:
In this paper, a study on classification of musical woodwind instruments using a small set of features selected from a broad range of extracted ones by the sequential forward selection method was carried out. Firstly, we extract 42 features for each record in the music database of 402 sound files belonging to five different groups of Flutes (end blown and internal duct), Single –reed, Double –reed (exposed and capped), Triple reed and Quadruple reed. Then, the sequential forward selection method is adopted to choose the best feature set in order to achieve very high classification accuracy. Two different classification techniques of support vector machines and relevance vector machines have been tested out and an accuracy of up to 96% can be achieved by using 21 time, frequency and coefficient features and relevance vector machine with the Gaussian kernel function.Keywords: coefficient features, relevance vector machines, spectral features, support vector machines, temporal features
Procedia PDF Downloads 322133 Trend Detection Using Community Rank and Hawkes Process
Authors: Shashank Bhatnagar, W. Wilfred Godfrey
Abstract:
We develop in this paper, an approach to find the trendy topic, which not only considers the user-topic interaction but also considers the community, in which user belongs. This method modifies the previous approach of user-topic interaction to user-community-topic interaction with better speed-up in the range of [1.1-3]. We assume that trend detection in a social network is dependent on two things. The one is, broadcast of messages in social network governed by self-exciting point process, namely called Hawkes process and the second is, Community Rank. The influencer node links to others in the community and decides the community rank based on its PageRank and the number of users links to that community. The community rank decides the influence of one community over the other. Hence, the Hawkes process with the kernel of user-community-topic decides the trendy topic disseminated into the social network.Keywords: community detection, community rank, Hawkes process, influencer node, pagerank, trend detection
Procedia PDF Downloads 384132 An Experimental Study on Some Conventional and Hybrid Models of Fuzzy Clustering
Authors: Jeugert Kujtila, Kristi Hoxhalli, Ramazan Dalipi, Erjon Cota, Ardit Murati, Erind Bedalli
Abstract:
Clustering is a versatile instrument in the analysis of collections of data providing insights of the underlying structures of the dataset and enhancing the modeling capabilities. The fuzzy approach to the clustering problem increases the flexibility involving the concept of partial memberships (some value in the continuous interval [0, 1]) of the instances in the clusters. Several fuzzy clustering algorithms have been devised like FCM, Gustafson-Kessel, Gath-Geva, kernel-based FCM, PCM etc. Each of these algorithms has its own advantages and drawbacks, so none of these algorithms would be able to perform superiorly in all datasets. In this paper we will experimentally compare FCM, GK, GG algorithm and a hybrid two-stage fuzzy clustering model combining the FCM and Gath-Geva algorithms. Firstly we will theoretically dis-cuss the advantages and drawbacks for each of these algorithms and we will describe the hybrid clustering model exploiting the advantages and diminishing the drawbacks of each algorithm. Secondly we will experimentally compare the accuracy of the hybrid model by applying it on several benchmark and synthetic datasets.Keywords: fuzzy clustering, fuzzy c-means algorithm (FCM), Gustafson-Kessel algorithm, hybrid clustering model
Procedia PDF Downloads 515131 Modeling Food Popularity Dependencies Using Social Media Data
Authors: DEVASHISH KHULBE, MANU PATHAK
Abstract:
The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses
Procedia PDF Downloads 118130 Study of the Chemical Composition of Rye, Millet and Sorghum from Algeria
Authors: Soualem Mami Zoubida, Brixi Nassima, Beghdad Choukri, Belarbi Meriem
Abstract:
Cereals are the most important source of dietary fiber in the Nordic diet. The fiber in cereals is located mainly in the outer layers of the kernel; particularly in the bran. Improved diet can help unlock the door to good health. Whole grains are an important source of nutrients that are in short supply in our diet, including digestible carbohydrates, dietary fiber, trace minerals, and other compounds of interest in disease prevention, including phytoestrogens and antioxidants (1). The objective of this study is to know the composition of whole grain cereals (rye, millet, white, and red sorghum) which a majority pushes in the south of Algeria. This shows that the millet has a high rate of the sugar estimated at 67.6%. The high proportion of proteins has been found in the two varieties of sorghum and rye. The millet presents the great percentage in lipids compared with the others cereals. And at the last, a red sorghum has the highest rate of fiber(2). These nutrients, as well as other components of whole grain cereals, have, in terms of health, an increased effect if they are consumed together.Keywords: chemical composition, miller, Secale cereal, Sorghum bicolor
Procedia PDF Downloads 415