Search results for: beam transmission
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2893

Search results for: beam transmission

2683 An Improved Cooperative Communication Scheme for IoT System

Authors: Eui-Hak Lee, Jae-Hyun Ro, Hyoung-Kyu Song

Abstract:

In internet of things (IoT) system, the communication scheme with reliability and low power is required to connect a terminal. Cooperative communication can achieve reliability and lower power than multiple-input multiple-output (MIMO) system. Cooperative communication increases the reliability with low power, but decreases a throughput. It has a weak point that the communication throughput is decreased. In this paper, a novel scheme is proposed to increase the communication throughput. The novel scheme is a transmission structure that increases transmission rate. And a decoding scheme according to the novel transmission structure is proposed. Simulation results show that the proposed scheme increases the throughput without bit error rate (BER) performance degradation.

Keywords: cooperative communication, IoT, STBC, transmission rate

Procedia PDF Downloads 396
2682 Investigation on the Behavior of Conventional Reinforced Coupling Beams

Authors: Akash K. Walunj, Dipendu Bhunia, Samarth Gupta, Prabhat Gupta

Abstract:

Coupled shear walls consist of two shear walls connected intermittently by beams along the height. The behavior of coupled shear walls is mainly governed by the coupling beams. The coupling beams are designed for ductile inelastic behavior in order to dissipate energy. The base of the shear walls may be designed for elastic or ductile inelastic behavior. The amount of energy dissipation depends on the yield moment capacity and plastic rotation capacity of the coupling beams. In this paper, an analytical model of coupling beam was developed to calculate the rotations and moment capacities of coupling beam with conventional reinforcement.

Keywords: design studies, computational model(s), case study/studies, modelling, coupling beam

Procedia PDF Downloads 476
2681 Modeling Reflection and Transmission of Elastodiffussive Wave Sata Semiconductor Interface

Authors: Amit Sharma, J. N. Sharma

Abstract:

This paper deals with the study of reflection and transmission characteristics of acoustic waves at the interface of a semiconductor halfspace and elastic solid. The amplitude ratios (reflection and transmission coefficients) of reflected and transmitted waves to that of incident wave varying with the incident angles have been examined for the case of quasi-longitudinal wave. The special cases of normal and grazing incidence have also been derived with the help of Gauss elimination method. The mathematical model consisting of governing partial differential equations of motion and charge carriers diffusion of n-type semiconductors and elastic solid has been solved both analytically and numerically in the study. The numerical computations of reflection and transmission coefficients has been carried out by using MATLAB programming software for silicon (Si) semiconductor and copper elastic solid. The computer simulated results have been plotted graphically for Si semiconductors. The study may be useful in semiconductors, geology, and seismology in addition to surface acoustic wave (SAW) devices.

Keywords: quasilongitudinal, reflection and transmission, semiconductors, acoustics

Procedia PDF Downloads 391
2680 Study of Effect of Gear Tooth Accuracy on Transmission Mount Vibration

Authors: Kalyan Deepak Kolla, Ketan Paua, Rajkumar Bhagate

Abstract:

Transmission dynamics occupy major role in customer perception of the product in both senses of touch and quality of sound. The quantity and quality of sound perceived is more concerned with the whine noise of the gears engaged. Whine noise is tonal in nature and tonal noises cause fatigue and irritation to customers, which in turn affect the quality of the product. Transmission error is the usual suspect for whine noise, which can be caused due to misalignments, tolerances, manufacturing variabilities. In-cabin noise is also more sensitive to the gear design. As the details of the gear tooth design and manufacturing are in microns, anything out of the tolerance zone, either in design or manufacturing, will cause a whine noise. This will also cause high variation in stress and deformation due to change in the load and leads to the fatigue failure of the gears. Hence gear design and development take priority in the transmission development process. This paper aims to study such variability by considering five pairs of helical spur gears and their effect on the transmission error, contact pattern and vibration level on the transmission.

Keywords: gears, whine noise, manufacturing variability, mount vibration variability

Procedia PDF Downloads 150
2679 Technical and Economic Evaluation of Harmonic Mitigation from Offshore Wind Power Plants by Transmission Owners

Authors: A. Prajapati, K. L. Koo, F. Ghassemi, M. Mulimakwenda

Abstract:

In the UK, as the volume of non-linear loads connected to transmission grid continues to rise steeply, the harmonic distortion levels on transmission network are becoming a serious concern for the network owners and system operators. This paper outlines the findings of the study conducted to verify the proposal that the harmonic mitigation could be optimized and can be managed economically and effectively at the transmission network level by the Transmission Owner (TO) instead of the individual polluter connected to the grid. Harmonic mitigation studies were conducted on selected regions of the transmission network in England for recently connected offshore wind power plants to strategize and optimize selected harmonic filter options. The results – filter volume and capacity – were then compared against the mitigation measures adopted by the individual connections. Estimation ratios were developed based on the actual installed and optimal proposed filters. These estimation ratios were then used to derive harmonic filter requirements for future contracted connections. The study has concluded that a saving of 37% in the filter volume/capacity could be achieved if the TO is to centrally manage the harmonic mitigation instead of individual polluter installing their own mitigation solution.

Keywords: C-type filter, harmonics, optimization, offshore wind farms, interconnectors, HVDC, renewable energy, transmission owner

Procedia PDF Downloads 157
2678 Analytical Modelling of the Moment-Rotation Behavior of Top and Seat Angle Connection with Stiffeners

Authors: Merve Sagiroglu

Abstract:

The earthquake-resistant steel structure design is required taking into account the behavior of beam-column connections besides the basic properties of the structure such as material and geometry. Beam-column connections play an important role in the behavior of frame systems. Taking into account the behaviour of connection in analysis and design of steel frames is important due to presenting the actual behavior of frames. So, the behavior of the connections should be well known. The most important force which transmitted by connections in the structural system is the moment. The rotational deformation is customarily expressed as a function of the moment in the connection. So, the moment-rotation curves are the best expression of behaviour of the beam-to-column connections. The designed connections form various moment-rotation curves according to the elements of connection and the shape of placement. The only way to achieve this curve is with real-scale experiments. The experiments of some connections have been carried out partially and are formed in the databank. It has been formed the models using this databank to express the behavior of connection. In this study, theoretical studies have been carried out to model a real behavior of the top and seat angles connections with angles. Two stiffeners in the top and seat angle to increase the stiffness of the connection, and two stiffeners in the beam web to prevent local buckling are used in this beam-to-column connection. Mathematical models have been performed using the database of the beam-to-column connection experiments previously by authors. Using the data of the tests, it has been aimed that analytical expressions have been developed to obtain the moment-rotation curve for the connection details whose test data are not available. The connection has been dimensioned in various shapes and the effect of the dimensions of the connection elements on the behavior has been examined.

Keywords: top and seat angle connection, stiffener, moment-rotation curves, analytical study

Procedia PDF Downloads 179
2677 Equivalent Circuit Representation of Lossless and Lossy Power Transmission Systems Including Discrete Sampler

Authors: Yuichi Kida, Takuro Kida

Abstract:

In a new smart society supported by the recent development of 5G and 6G Communication systems, the im- portance of wireless power transmission is increasing. These systems contain discrete sampling systems in the middle of the transmission path and equivalent circuit representation of lossless or lossy power transmission through these systems is an important issue in circuit theory. In this paper, for the given weight function, we show that a lossless power transmission system with the given weight is expressed by an equivalent circuit representation of the Kida’s optimal signal prediction system followed by a reactance multi-port circuit behind it. Further, it is shown that, when the system is lossy, the system has an equivalent circuit in the form of connecting a multi-port positive-real circuit behind the Kida’s optimal signal prediction system. Also, for the convenience of the reader, in this paper, the equivalent circuit expression of the reactance multi-port circuit and the positive- real multi-port circuit by Cauer and Ohno, whose information is currently being lost even in the world of the Internet.

Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, power transmission

Procedia PDF Downloads 122
2676 Localized Dynamic Lensing with Extended Depth of Field via Enhanced Light Sound Interaction

Authors: Hamid R. Chabok, Demetrios N. Christodoulides, Mercedeh Khajavikhan

Abstract:

In recent years, acousto-optic (AO) lenses with tunable foci have emerged as a powerful tool for optical beam shaping, imaging, and particle manipulation. In most current AO lenses, the incident light that propagates orthogonally to a standing ultrasonic wave converts to a Bessel-like beam pattern due to the Raman-Nath effect, thus forming annular fringes that result in compromised focus response. Here, we report a new class of AO dynamic lensing based on generating a 3D-variable refractive index profile via a z-axis-scan ultrasound transducer. By utilizing the co- /counter propagation of light and acoustic waves that interact over a longer distance, the laser beam can be strongly focused in a fully controllable manner. Using this approach, we demonstrate AO lenses with instantaneous extended depth of field (DoF) and laterally localized dynamic focusing. This new light-sound interaction scheme may pave the way towards applications that require remote focusing, 3D micromanipulation, and deep tissue therapy/imaging.

Keywords: acousto-optic, optical beam shaping, dynamic lensing, ultrasound

Procedia PDF Downloads 101
2675 Experimental and Theoratical Methods to Increase Core Damping for Sandwitch Cantilever Beam

Authors: Iyd Eqqab Maree, Moouyad Ibrahim Abbood

Abstract:

The purpose behind this study is to predict damping effect for steel cantilever beam by using two methods of passive viscoelastic constrained layer damping. First method is Matlab Program, this method depend on the Ross, Kerwin and Unger (RKU) model for passive viscoelastic damping. Second method is experimental lab (frequency domain method), in this method used the half-power bandwidth method and can be used to determine the system loss factors for damped steel cantilever beam. The RKU method has been applied to a cantilever beam because beam is a major part of a structure and this prediction may further leads to utilize for different kinds of structural application according to design requirements in many industries. In this method of damping a simple cantilever beam is treated by making sandwich structure to make the beam damp, and this is usually done by using viscoelastic material as a core to ensure the damping effect. The use of viscoelastic layers constrained between elastic layers is known to be effective for damping of flexural vibrations of structures over a wide range of frequencies. The energy dissipated in these arrangements is due to shear deformation in the viscoelastic layers, which occurs due to flexural vibration of the structures. The theory of dynamic stability of elastic systems deals with the study of vibrations induced by pulsating loads that are parametric with respect to certain forms of deformation. There is a very good agreement of the experimental results with the theoretical findings. The main ideas of this thesis are to find the transition region for damped steel cantilever beam (4mm and 8mm thickness) from experimental lab and theoretical prediction (Matlab R2011a). Experimentally and theoretically proved that the transition region for two specimens occurs at modal frequency between mode 1 and mode 2, which give the best damping, maximum loss factor and maximum damping ratio, thus this type of viscoelastic material core (3M468) is very appropriate to use in automotive industry and in any mechanical application has modal frequency eventuate between mode 1 and mode 2.

Keywords: 3M-468 material core, loss factor and frequency, domain method, bioinformatics, biomedicine, MATLAB

Procedia PDF Downloads 271
2674 Composite Laminate and Thin-Walled Beam Correlations for Aircraft Wing Box Design

Authors: S. J. M. Mohd Saleh, S. Guo

Abstract:

Composite materials have become an important option for the primary structure of aircraft due to their design flexibility and ability to improve the overall performance. At present, the option for composite usage in aircraft component is largely based on experience, knowledge, benchmarking and partly market driven. An inevitable iterative design during the design stage and validation process will increase the development time and cost. This paper aims at presenting the correlation between laminate and composite thin-wall beam structure, which contains the theoretical and numerical investigations on stiffness estimation of composite aerostructures with applications to aircraft wings. Classical laminate theory and thin-walled beam theory were applied to define the correlation between 1-dimensional composite laminate and 2-dimensional composite beam structure, respectively. Then FE model was created to represent the 3-dimensional structure. A detailed study on stiffness matrix of composite laminates has been carried out to understand the effects of stacking sequence on the coupling between extension, shear, bending and torsional deformation of wing box structures for 1-dimensional, 2-dimensional and 3-dimensional structures. Relationships amongst composite laminates and composite wing box structures of the same material have been developed in this study. These correlations will be guidelines for the design engineers to predict the stiffness of the wing box structure during the material selection process and laminate design stage.

Keywords: aircraft design, aircraft structures, classical lamination theory, composite structures, laminate theory, structural design, thin-walled beam theory, wing box design

Procedia PDF Downloads 232
2673 Study Secondary Particle Production in Carbon Ion Beam Radiotherapy

Authors: Shaikah Alsubayae, Gianluigi Casse, Carlos Chavez, Jon Taylor, Alan Taylor, Mohammad Alsulimane

Abstract:

Ensuring accurate radiotherapy with carbon therapy requires precise monitoring of radiation dose distribution within the patient's body. This monitoring is essential for targeted tumor treatment, minimizing harm to healthy tissues, and improving treatment effectiveness while lowering side effects. In our investigation, we employed a methodological approach to monitor secondary proton doses in carbon therapy using Monte Carlo simulations. Initially, Geant4 simulations were utilized to extract the initial positions of secondary particles formed during interactions between carbon ions and water. These particles included protons, gamma rays, alpha particles, neutrons, and tritons. Subsequently, we studied the relationship between the carbon ion beam and these secondary particles. Interaction Vertex Imaging (IVI) is valuable for monitoring dose distribution in carbon therapy. It provides details about the positions and amounts of secondary particles, particularly protons. The IVI method depends on charged particles produced during ion fragmentation to gather information about the range by reconstructing particle trajectories back to their point of origin, referred to as the vertex. In our simulations regarding carbon ion therapy, we observed a strong correlation between some secondary particles and the range of carbon ions. However, challenges arose due to the target's unique elongated geometry, which hindered the straightforward transmission of forward-generated protons. Consequently, the limited protons that emerged mostly originated from points close to the target entrance. The trajectories of fragments (protons) were approximated as straight lines, and a beam back-projection algorithm, using recorded interaction positions in Si detectors, was developed to reconstruct vertices. The analysis revealed a correlation between the reconstructed and actual positions.

Keywords: radiotherapy, carbon therapy, monitoring of radiation dose, interaction vertex imaging

Procedia PDF Downloads 84
2672 Comparative Study of Radiation Protection in a Hospital Environment

Authors: Lahoucine Zaama, Sanae Douama

Abstract:

In this work, we present the results of a dosimetry study in a Moroccan radiology department . The results are compared with those of a similar study in France. Furthermore, it determines the coefficient of transmission of the lead sheets of different thicknesses depending on the voltage (KV) in a direct exposure. The objective of this study is to choose the thickness of the radiation means to determine the leaf sample sealed with the smallest percentage value radiation transmission, and that in the context of optimization. Thus the comparison among the studies is essential to consider conduct studies and research in this framework to achieve the goal of optimization.

Keywords: radiology, dosimetry, radiation, dose, transmission

Procedia PDF Downloads 494
2671 Determination of Weld Seam Thickness in Welded Connection Subjected to Local Buckling Effects

Authors: Tugrul Tulunay, Iyas Devran Celik

Abstract:

When the materials used in structural steel industry are evaluated, box beam profiles are considerably preferred. As a result of the cross-sectional properties that these profiles possess, the connection of these profiles to each other and to profiles having different types of cross sections is becoming viable by means of additional measures. An important point to note in such combinations is continuous transfer of internal forces from element to element. At the beginning to ensure this continuity, header plate is needed to use. The connection of the plates to the elements works mainly through welds. In this study, it is aimed to determine the ideal welding thickness in box beam under bending effect and the joints exposed to local buckles that will form in the column. The connection with box column and box beam designed in this context was made by means of corner and circular filler welds. Corner welds of different thickness and analysis by types with different lengths depending on plate dimensions in numerical models were made with the help of ANSYS Workbench program and examined behaviours.

Keywords: welding thickness, box beam-column joints, design of steel structures, calculation and construction principles 2016, welded joints under local buckling

Procedia PDF Downloads 167
2670 Audit of TPS photon beam dataset for small field output factors using OSLDs against RPC standard dataset

Authors: Asad Yousuf

Abstract:

Purpose: The aim of the present study was to audit treatment planning system beam dataset for small field output factors against standard dataset produced by radiological physics center (RPC) from a multicenter study. Such data are crucial for validity of special techniques, i.e., IMRT or stereotactic radiosurgery. Materials/Method: In this study, multiple small field size output factor datasets were measured and calculated for 6 to 18 MV x-ray beams using the RPC recommend methods. These beam datasets were measured at 10 cm depth for 10 × 10 cm2 to 2 × 2 cm2 field sizes, defined by collimator jaws at 100 cm. The measurements were made with a Landauer’s nanoDot OSLDs whose volume is small enough to gather a full ionization reading even for the 1×1 cm2 field size. At our institute the beam data including output factors have been commissioned at 5 cm depth with an SAD setup. For comparison with the RPC data, the output factors were converted to an SSD setup using tissue phantom ratios. SSD setup also enables coverage of the ion chamber in 2×2 cm2 field size. The measured output factors were also compared with those calculated by Eclipse™ treatment planning software. Result: The measured and calculated output factors are in agreement with RPC dataset within 1% and 4% respectively. The large discrepancies in TPS reflect the increased challenge in converting measured data into a commissioned beam model for very small fields. Conclusion: OSLDs are simple, durable, and accurate tool to verify doses that delivered using small photon beam fields down to a 1x1 cm2 field sizes. The study emphasizes that the treatment planning system should always be evaluated for small field out factors for the accurate dose delivery in clinical setting.

Keywords: small field dosimetry, optically stimulated luminescence, audit treatment, radiological physics center

Procedia PDF Downloads 327
2669 Mean Square Responses of a Cantilever Beam with Various Damping Mechanisms

Authors: Yaping Zhao, Yimin Zhang

Abstract:

In the present paper, the stationary random vibration of a uniform cantilever beam is investigated. Two types of damping mechanism, i.e. the external and internal viscous dampings, are taken into account simultaneously. The excitation form is the support motion, and it is ideal white. Because two type of damping mechanism are considered concurrently, the product of the modal damping ratio and the natural frequency is not a constant anymore. As a result, the infinite definite integral encountered in the process of computing the mean square response is more complex than that in the existing literature. One signal progress of this work is to have calculated these definite integrals accurately. The precise solution of the mean square response is thus obtained in the infinite series form finally. Numerical examples are supplied and the numerical outcomes acquired confirm the validity of the theoretical analyses.

Keywords: random vibration, cantilever beam, mean square response, white noise

Procedia PDF Downloads 384
2668 Cu Voids Detection of Electron Beam Inspection at the 5nm Node

Authors: Byungsik Moon

Abstract:

Electron beam inspection (EBI) has played an important role in detecting defects during the Fab process. The study focused on capturing buried Cu metal voids for 5nm technology nodes in Qualcomm Snapdragon mass production. This paper illustrates a case study where Cu metal voids can be detected without side effects with optimized EBI scanning conditions. The voids were buried in the VIA and not detected effectively by bright field inspection. EBI showed higher detectability, about 10 times that of bright fields, and a lower landing energy of EBI can avoid film damage. A comparison of detectability between EBI and bright field inspection was performed, and TEM confirmed voids that were detected by EBI. Therefore, a much higher detectability of buried Cu metal voids can be achieved without causing film damage.

Keywords: electron beam inspection, EBI, landing energy, Cu metal voids, bright field inspection

Procedia PDF Downloads 75
2667 Effectiveness Evaluation of a Machine Design Process Based on the Computation of the Specific Output

Authors: Barenten Suciu

Abstract:

In this paper, effectiveness of a machine design process is evaluated on the basis of the specific output calculus. Concretely, a screw-worm gear mechanical transmission is designed by using the classical and the 3D-CAD methods. Strength analysis and drawing of the designed parts is substantially aided by employing the SolidWorks software. Quality of the design process is assessed by manufacturing (printing) the parts, and by computing the efficiency, specific load, as well as the specific output (work) of the mechanical transmission. Influence of the stroke, travelling velocity and load on the mechanical output, is emphasized. Optimal design of the mechanical transmission becomes possible by the appropriate usage of the acquired results.

Keywords: mechanical transmission, design, screw, worm-gear, efficiency, specific output, 3D-printing

Procedia PDF Downloads 143
2666 Investigation of Multiple Dynamic Vibration Absorbers' Performance in Overhead Transmission Lines

Authors: Pedro F. D. Oliveira, Rangel S. Maia, Aline S. Paula

Abstract:

As the electric energy consumption grows, the necessity of energy transmission lines increases. One of the problems caused by an oscillatory response to dynamical loads (such as wind effects) in transmission lines is the cable fatigue. Thus, the dynamical behavior of transmission cables understanding and its control is extremely important. The socioeconomic damage caused by a failure in these cables can be quite significant, from large economic losses to energy supply interruption in large regions. Dynamic Vibration Absorbers (DVA) are oscillatory elements used to mitigate the vibration of a primary system subjected to harmonic excitation. The positioning of Stockbridge (DVA for overhead transmission lines) plays an important role in mitigating oscillations of transmission lines caused by airflows. Nowadays, the positioning is defined by technical standards or commercial software. The aim of this paper is to conduct an analysis of multiple DVAs performances in cable conductors of overhead transmission lines. The cable is analyzed by a finite element method and the model is calibrated by experimental results. DVAs performance is analyzed by evaluating total cable energy, and a study of multiple DVAs positioning is conducted. The results are compared to the existing regulations showing situations where proper positioning, different from the standard, can lead to better performance of the DVA. Results also show situations where the use of multiple DVAs is appropriate.

Keywords: dynamical vibration absorber, finite element method, overhead transmission lines, structural dynamics

Procedia PDF Downloads 127
2665 Optimal Beam for Accelerator Driven Systems

Authors: M. Paraipan, V. M. Javadova, S. I. Tyutyunnikov

Abstract:

The concept of energy amplifier or accelerator driven system (ADS) involves the use of a particle accelerator coupled with a nuclear reactor. The accelerated particle beam generates a supplementary source of neutrons, which allows the subcritical functioning of the reactor, and consequently a safe exploitation. The harder neutron spectrum realized ensures a better incineration of the actinides. The almost generalized opinion is that the optimal beam for ADS is represented by protons with energy around 1 GeV (gigaelectronvolt). In the present work, a systematic analysis of the energy gain for proton beams with energy from 0.5 to 3 GeV and ion beams from deuteron to neon with energies between 0.25 and 2 AGeV is performed. The target is an assembly of metallic U-Pu-Zr fuel rods in a bath of lead-bismuth eutectic coolant. The rods length is 150 cm. A beryllium converter with length 110 cm is used in order to maximize the energy released in the target. The case of a linear accelerator is considered, with a beam intensity of 1.25‧10¹⁶ p/s, and a total accelerator efficiency of 0.18 for proton beam. These values are planned to be achieved in the European Spallation Source project. The energy gain G is calculated as the ratio between the energy released in the target to the energy spent to accelerate the beam. The energy released is obtained through simulation with the code Geant4. The energy spent is calculating by scaling from the data about the accelerator efficiency for the reference particle (proton). The analysis concerns the G values, the net power produce, the accelerator length, and the period between refueling. The optimal energy for proton is 1.5 GeV. At this energy, G reaches a plateau around a value of 8 and a net power production of 120 MW (megawatt). Starting with alpha, ion beams have a higher G than 1.5 GeV protons. A beam of 0.25 AGeV(gigaelectronvolt per nucleon) ⁷Li realizes the same net power production as 1.5 GeV protons, has a G of 15, and needs an accelerator length 2.6 times lower than for protons, representing the best solution for ADS. Beams of ¹⁶O or ²⁰Ne with energy 0.75 AGeV, accelerated in an accelerator with the same length as 1.5 GeV protons produce approximately 900 MW net power, with a gain of 23-25. The study of the evolution of the isotopes composition during irradiation shows that the increase in power production diminishes the period between refueling. For a net power produced of 120 MW, the target can be irradiated approximately 5000 days without refueling, but only 600 days when the net power reaches 1 GW (gigawatt).

Keywords: accelerator driven system, ion beam, electrical power, energy gain

Procedia PDF Downloads 140
2664 Channels Splitting Strategy for Optical Local Area Networks of Passive Star Topology

Authors: Peristera Baziana

Abstract:

In this paper, we present a network configuration for a WDM LANs of passive star topology that assume that the set of data WDM channels is split into two separate sets of channels, with different access rights over them. Especially, a synchronous transmission WDMA access algorithm is adopted in order to increase the probability of successful transmission over the data channels and consequently to reduce the probability of data packets transmission cancellation in order to avoid the data channels collisions. Thus, a control pre-transmission access scheme is followed over a separate control channel. An analytical Markovian model is studied and the average throughput is mathematically derived. The performance is studied for several numbers of data channels and various values of control phase duration.

Keywords: access algorithm, channels division, collisions avoidance, wavelength division multiplexing

Procedia PDF Downloads 296
2663 Study on Dynamic Stiffness Matching and Optimization Design Method of a Machine Tool

Authors: Lu Xi, Li Pan, Wen Mengmeng

Abstract:

The stiffness of each component has different influences on the stiffness of the machine tool. Taking the five-axis gantry machining center as an example, we made the modal analysis of the machine tool, followed by raising and lowering the stiffness of the pillar, slide plate, beam, ram and saddle so as to study the stiffness matching among these components on the standard of whether the stiffness of the modified machine tool changes more than 50% relative to the stiffness of the original machine tool. The structural optimization of the machine tool can be realized by changing the stiffness of the components whose stiffness is mismatched. For example, the stiffness of the beam is mismatching. The natural frequencies of the first six orders of the beam increased by 7.70%, 0.38%, 6.82%, 7.96%, 18.72% and 23.13%, with the weight increased by 28Kg, leading to the natural frequencies of several orders which had a great influence on the dynamic performance of the whole machine increased by 1.44%, 0.43%, 0.065%, which verified the correctness of the optimization method based on stiffness matching proposed in this paper.

Keywords: machine tool, optimization, modal analysis, stiffness matching

Procedia PDF Downloads 102
2662 Design of Reconfigurable and Non-reciprocal Metasurface with Independent Controls of Transmission Gain, Attenuation and Phase

Authors: Shi Yu Wang, Qian Wei Zhang, He Li, Hao Han He, Yun Bo Li

Abstract:

The spatial controls of electromagnetic (EM) waves have always been a research hot spot in recent years. And the rapid development of metasurface-based technologies has provided more freedoms for manipulating the EM waves. Here we propose the design of reconfigurable and non-reciprocal metasurface with independent controls of transmission gain, attenuation and phase. The proposed meta-atom mainly consists of the cascaded textures including the receiving antenna, the middle layer in which the power amplifiers (PAs), programmable attenuator and phase shifter locate, and the transmitting antenna. The programmable attenuator and phase shifter can realize the dynamic controls of transmission amplitude and phase independently, and the PA devices in the meta-atom can actualize the performance of non-reciprocal transmission. The proposed meta-atom is analyzed applying field-circuit co-simulation and a sample of the meta-atom is fabricated and measured under using two standard waveguides. The measured results verify the ability of the independent manipulation for transmission amplitude and phase of the proposed the meta-atom and the design method has been verified very well correspondingly.

Keywords: active circuits, independent controls of multiple electromagnetic features, non-reciprocal electromagnetic transmission, reconfigurable and programmable

Procedia PDF Downloads 79
2661 Dynamic Response of Magnetorheological Fluid Tapered Laminated Beams Reinforced with Nano-Particles

Authors: Saman Momeni, Abolghassem Zabihollah, Mehdi Behzad

Abstract:

Non-uniform laminated composite structures are being used in many engineering applications where the structures are subjected to unpredicted vibration. To mitigate the vibration response of these structures, recently, magnetorheological fluid (MR), is added to non-uniform (tapered) thickness laminated composite structures to achieve a new generation of the smart composite as MR tapered beam. However, due to the nature of MR fluid, especially the low stiffness, MR tapered beam exhibit lower stiffness and in turn, lower natural frequencies. To achieve the basic design requirements of the structure without MR fluid, one may need to apply a predefined magnetic energy to the structures, requiring a constant source of energy. In the present work, a passive initial stiffness control of MR tapered beam has been studied. The effects of adding nanoparticles on the dynamic response of MR tapered beam has been investigated. It is observed that adding nanoparticles up to 3% may significantly modify the natural frequencies of the structures and achieve dynamic behavior of the structures before addition of MR fluid. Two Models of tapered structures have been taken into consideration. It is observed that adding only 3% of nanoparticles backs the structures to its initial dynamic behavior.

Keywords: non uniform laminated structures, MR fluid, nanoparticles, vibration, stiffness

Procedia PDF Downloads 240
2660 Evaluation of Seismic Behavior of Steel Shear Wall with Opening with Hardener and Beam with Reduced Cross Section under Cycle Loading with Finite Element Analysis Method

Authors: Masoud Mahdavi

Abstract:

During an earthquake, the structure is subjected to seismic loads that cause tension in the members of the building. The use of energy dissipation elements in the structure reduces the percentage of seismic forces on the main members of the building (especially the columns). Steel plate shear wall, as one of the most widely used types of energy dissipation element, has evolved today, and regular drilling of its inner plate is one of the common cases. In the present study, using a finite element method, the shear wall of the steel plate is designed as a floor (with dimensions of 447 × 6/246 cm) with Abacus software and in three different modes on which a cyclic load has been applied. The steel shear wall has a horizontal element (beam) with a reduced beam section (RBS). The hole in the interior plate of the models is created in such a way that it has the process of increasing the area, which makes the effect of increasing the surface area of the hole on the seismic performance of the steel shear wall completely clear. In the end, it was found that with increasing the opening level in the steel shear wall (with reduced cross-section beam), total displacement and plastic strain indicators increased, structural capacity and total energy indicators decreased and the Mises Monson stress index did not change much.

Keywords: steel plate shear wall with opening, cyclic loading, reduced cross-section beam, finite element method, Abaqus software

Procedia PDF Downloads 122
2659 Simulation and Performance Evaluation of Transmission Lines with Shield Wire Segmentation against Atmospheric Discharges Using ATPDraw

Authors: Marcio S. da Silva, Jose Mauricio de B. Bezerra, Antonio E. de A. Nogueira

Abstract:

This paper aims to make a performance analysis of shield wire transmission lines against atmospheric discharges when it is made the option of sectioning the shield wire and verify if the tolerability of the change. As a goal of this work, it was established to make complete modeling of a transmission line in the ATPDraw program with shield wire grounded in all the towers and in some towers. The methodology used to make the proposed evaluation was to choose an actual transmission line that served as a case study. From the choice of transmission line and verification of all its topology and materials, complete modeling of the line using the ATPDraw software was performed. Then several atmospheric discharges were simulated by striking the grounded shield wires in each tower. These simulations served to identify the behavior of the existing line against atmospheric discharges. After this first analysis, the same line was reconsidered with shield wire segmentation. The shielding wire segmentation technique aims to reduce induced losses in shield wires and is adopted in some transmission lines in Brazil. With the same conditions of atmospheric discharge the transmission line, this time with shield wire segmentation was again evaluated. The results obtained showed that it is possible to obtain similar performances against atmospheric discharges between a shield wired line in multiple towers and the same line with shield wire segmentation if some precautions are adopted as verification of the ground resistance of the wire segmented shield, adequacy of the maximum length of the segmented gap, evaluation of the separation length of the electrodes of the insulator spark, among others. As a conclusion, it is verified that since the correct assessment and adopted the correct criteria of adjustment a transmission line with shielded wire segmentation can perform very similar to the traditional use with multiple earths. This solution contributes in a very important way to the reduction of energy losses in transmission lines.

Keywords: atmospheric discharges, ATPDraw, shield wire, transmission lines

Procedia PDF Downloads 169
2658 Characteristic Study on Conventional and Soliton Based Transmission System

Authors: Bhupeshwaran Mani, S. Radha, A. Jawahar, A. Sivasubramanian

Abstract:

Here, we study the characteristic feature of conventional (ON-OFF keying) and soliton based transmission system. We consider 20 Gbps transmission system implemented with Conventional Single Mode Fiber (C-SMF) to examine the role of Gaussian pulse which is the characteristic of conventional propagation and hyperbolic-secant pulse which is the characteristic of soliton propagation in it. We note the influence of these pulses with respect to different dispersion lengths and soliton period in conventional and soliton system, respectively, and evaluate the system performance in terms of quality factor. From the analysis, we could prove that the soliton pulse has more consistent performance even for long distance without dispersion compensation than the conventional system as it is robust to dispersion. For the length of transmission of 200 Km, soliton system yielded Q of 33.958 while the conventional system totally exhausted with Q=0.

Keywords: dispersion length, retrun-to-zero (rz), soliton, soliton period, q-factor

Procedia PDF Downloads 344
2657 Study on the Impact of Size and Position of the Shear Field in Determining the Shear Modulus of Glulam Beam Using Photogrammetry Approach

Authors: Niaz Gharavi, Hexin Zhang

Abstract:

The shear modulus of a timber beam can be determined using torsion test or shear field test method. The shear field test method is based on shear distortion measurement of the beam at the zone with the constant transverse load in the standardized four-point bending test. The current code of practice advises using two metallic arms act as an instrument to measure the diagonal displacement of the constructing square. The size and the position of the constructing square might influence the shear modulus determination. This study aimed to investigate the size and the position effect of the square in the shear field test method. A binocular stereo vision system has been employed to determine the 3D displacement of a grid of target points. Six glue laminated beams were produced and tested. Analysis of Variance (ANOVA) was performed on the acquired data to evaluate the significance of the size effect and the position effect of the square. The results have shown that the size of the square has a noticeable influence on the value of shear modulus, while, the position of the square within the area with the constant shear force does not affect the measured mean shear modulus.

Keywords: shear field test method, structural-sized test, shear modulus of Glulam beam, photogrammetry approach

Procedia PDF Downloads 291
2656 Ion Beam Sputtering Deposition of Inorganic-Fluoropolymer Nano-Coatings for Real-Life Applications

Authors: M. Valentini, D. Melisi, M. A. Nitti, R A. Picca, M. C. Sportelli, E. Bonerba, G. Casamassima, N. Cioffi, L. Sabbatini, G. Tantillo, A. Valentini

Abstract:

In recent years antimicrobial coatings are receiving increasing attention due to their high demand in medical applications as well as in healthcare and hygiene. Research and technology are constantly involved to develop advanced finishing which can provide bacteriostatic growth without compromising the other typical properties of a textile as durability and non-toxicity, just to cite a few. Here we report on the antimicrobial coatings obtained, at room temperature and without the use of solvents, by means of the ion beam co-sputtering technique of an Ag target and a polytetrafluoroethylene one. In particular, such method allows to conjugate the well-known antimicrobial action of silver with the anti-stain and water-repellent properties of the fluoropolymer. Moreover, different Ag nanoparticle loadings (φ) were prepared by tuning the material deposition conditions achieving a fine control on film thickness and their antimicrobial/anti-stain properties.

Keywords: antimicrobial, ion beam sputtering, nanocoatings, anti-stain

Procedia PDF Downloads 392
2655 Design for Metal Additive Manufacturing: An Investigation of Key Design Application on Electron Beam Melting

Authors: Wadea Ameen, Abdulrahman Al-Ahmari, Osama Abdulhameed

Abstract:

Electron beam melting (EBM) is one of the modern additive manufacturing (AM) technologies. In EBM, the electron beam melts metal powder into a fully solid part layer by layer. Since EBM is a new technology, most designers are unaware of the capabilities and the limitations of EBM technology. Also, many engineers are facing many challenges to utilize the technology because of a lack of design rules for the technology. The aim of this study is to identify the capabilities and the limitations of EBM technology in fabrication of small features and overhang structures and develop a design rules that need to be considered by designers and engineers. In order to achieve this objective, a series of experiments are conducted. Several features having varying sizes were designed, fabricated, and evaluated to determine their manufacturability limits. In general, the results showed the capabilities and limitations of the EBM technology in fabrication of the small size features and the overhang structures. In the end, the results of these investigation experiments are used to develop design rules. Also, the results showed the importance of developing design rules for AM technologies in increasing the utilization of these technologies.

Keywords: additive manufacturing, design for additive manufacturing, electron beam melting, self-supporting overhang

Procedia PDF Downloads 147
2654 Improving Radiation Efficiency Using Metamaterial in Pyramidal Horn Antenna

Authors: Amit Kumar Baghel, Sisir Kumar Nayak

Abstract:

The proposed metamaterial design help to increase the radiation efficiency at 2.9 GHz by reducing the side and back lobes by making the phase difference of the waves emerging from the phase center of the horn antenna same after passing through metamaterial array. The unit cell of the metamaterial is having concentric ring structure made of copper of 0.035 mm thickness on both sides of FR4 sheet. The inner ring diameter is kept as 3 mm, and the outer ring diameters are changed according to the path and tramission phase difference of the unit cell from the phase center of the antenna in both the horizontal and vertical direction, i.e., in x- and y-axis. In this case, the ring radius varies from 3.19 mm to 6.99 mm with the respective S21 phase difference of -62.25° to -124.64°. The total phase difference can be calculated by adding the path difference of the respective unit cell in the array to the phase difference of S21. Taking one of the unit cell as the reference, the total phase difference between the reference unit cell and other cells must be integer multiple of 360°. The variation of transmission coefficient S21 with the ring radius is greater than -6 dB. The array having 5 x 5 unit cell is kept inside the pyramidal horn antenna (L X B X H = 295.451 x 384.233 x 298.66 mm3) at a distance of 36.68 mm from the waveguide throat. There is an improvement in side lobe level in E-plane by 14.6 dB when the array is used. The front to back lobe ration is increased by 1 dB by using the array. The proposed antenna with metamaterial array can be used in beam shaping for wireless power transfer applications.

Keywords: metamaterial, side lobe level, front to back ratio, beam forming

Procedia PDF Downloads 274