Search results for: tensor deep stacking neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5453

Search results for: tensor deep stacking neural networks

3113 Glaucoma Detection in Retinal Tomography Using the Vision Transformer

Authors: Sushish Baral, Pratibha Joshi, Yaman Maharjan

Abstract:

Glaucoma is a chronic eye condition that causes vision loss that is irreversible. Early detection and treatment are critical to prevent vision loss because it can be asymptomatic. For the identification of glaucoma, multiple deep learning algorithms are used. Transformer-based architectures, which use the self-attention mechanism to encode long-range dependencies and acquire extremely expressive representations, have recently become popular. Convolutional architectures, on the other hand, lack knowledge of long-range dependencies in the image due to their intrinsic inductive biases. The aforementioned statements inspire this thesis to look at transformer-based solutions and investigate the viability of adopting transformer-based network designs for glaucoma detection. Using retinal fundus images of the optic nerve head to develop a viable algorithm to assess the severity of glaucoma necessitates a large number of well-curated images. Initially, data is generated by augmenting ocular pictures. After that, the ocular images are pre-processed to make them ready for further processing. The system is trained using pre-processed images, and it classifies the input images as normal or glaucoma based on the features retrieved during training. The Vision Transformer (ViT) architecture is well suited to this situation, as it allows the self-attention mechanism to utilise structural modeling. Extensive experiments are run on the common dataset, and the results are thoroughly validated and visualized.

Keywords: glaucoma, vision transformer, convolutional architectures, retinal fundus images, self-attention, deep learning

Procedia PDF Downloads 191
3112 Frequency Distribution and Assertive Object Theory: An Exploration of the Late Bronze Age Italian Ceramic Landscape

Authors: Sara Fioretti

Abstract:

In the 2nd millennium BCE, maritime networks became essential to the Mediterranean lifestyle, creating an interconnected world. This phenomenon of interconnected cultures has often been misinterpreted as an “effect” of the Mycenaean “influence” without considering the complexity and role of regional and cross-cultural exchanges. This paper explores the socio-economic relationships, in both cross-cultural and potentially inter-regional settings, present within the archaeological repertoire of the southern Italian Late Bronze Age (LBA 1600 -1140 BCE). The emergence of economic relations within the connectivity of the regional settlements is explored through ceramic contexts found in the case studies Punta di Zambrone, Broglio di Trebisacce, and Nuraghe Antigori. This work-in-progress research is situated in the shifting theoretical views of the last ten years that discuss the Late Bronze Age’s connectivity through Social Networks, Entanglement, and Assertive Objects combined with a comparative statistical study of ceramic frequency distribution. Applying these theoretical frameworks with a quantitative approach demonstrates the specific regional economic relationships that shaped the cultural interactions of the Late Bronze Age. Through this intersection of theory and statistical analysis, the case studies establish a small percentage of pottery as imported, whilst assertive productions have a relatively higher quantity. Overall, the majority still adheres to regional Italian traditions. Therefore, we can dissect the rhizomatic relationships cultivated by the Italian coasts and Mycenaeans and their roles within their networks through the intersection of theoretical and statistical analysis. This research offers a new perspective on the connectivity of the Late Bronze Age relational structures.

Keywords: late bronze age, mediterranean archaeology, exchanges and trade, frequency distribution of ceramic assemblages

Procedia PDF Downloads 41
3111 Challenges and Insights by Electrical Characterization of Large Area Graphene Layers

Authors: Marcus Klein, Martina GrießBach, Richard Kupke

Abstract:

The current advances in the research and manufacturing of large area graphene layers are promising towards the introduction of this exciting material in the display industry and other applications that benefit from excellent electrical and optical characteristics. New production technologies in the fabrication of flexible displays, touch screens or printed electronics apply graphene layers on non-metal substrates and bring new challenges to the required metrology. Traditional measurement concepts of layer thickness, sheet resistance, and layer uniformity, are difficult to apply to graphene production processes and are often harmful to the product layer. New non-contact sensor concepts are required to adapt to the challenges and even the foreseeable inline production of large area graphene. Dedicated non-contact measurement sensors are a pioneering method to leverage these issues in a large variety of applications, while significantly lowering the costs of development and process setup. Transferred and printed graphene layers can be characterized with high accuracy in a huge measurement range using a very high resolution. Large area graphene mappings are applied for process optimization and for efficient quality control for transfer, doping, annealing and stacking processes. Examples of doped, defected and excellent Graphene are presented as quality images and implications for manufacturers are explained.

Keywords: graphene, doping and defect testing, non-contact sheet resistance measurement, inline metrology

Procedia PDF Downloads 307
3110 Moho Undulations beneath South of Egypt, Using the Seismic Waves Generated by Tele Earthquakes

Authors: Ahmed Hosny, Haroon Elshaikh, Gaber Hassib, Yassin Ali

Abstract:

The Moho discontinuity undulations beneath the southern part of Egypt have been defined using the seismic waves generated by tele earthquakes. These earthquakes have been recorded by the Aswan seismic network, which consists of 10 seismic stations established around the lake of Nasser. An additional seismic station was located towards the east of the Lake of Nasser by about ~ 150 km. Receiver functions and H-k stacking methods were used for obtaining the depths of Moho discontinuity and the Vp/Vs ratios beneath each seismic station. Our results revealed that, the depths of Moho discontinuity beneath the stations located around the Lake of Nasser range from 36 to 39 km, with an average value of 37.5 km. These results are consistent with the previous works done on the same area. The obtained Vp/Vs ratios for the crust of this area were ranged from 1.73 to 1.86, with an average value of 1.79. While beneath the station located towards the east, the Moho discontinuity was detected at a shallowest depth of 27 km and the Vp/Vs ratio was 1.82. The difference in the Moho depths beneath the stations located around the Lake of Nasser and the station located to the east revealed the boundary position between the Saharan Metacraton to the west and the Nubian-Arabian Shield to the east. This structural boundary delineates the position of the old collision of the Oceanic crust of the Nubian-Arabian Shield to the east with the Continental crust of the Saharan Metacraton to the west.

Keywords: Moho undulations, south of Egypt, seismic waves, earthquakes

Procedia PDF Downloads 513
3109 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach

Authors: Shital Suresh Borse, Vijayalaxmi Kadroli

Abstract:

E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.

Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN

Procedia PDF Downloads 113
3108 Room Temperature Lasing from InGaAs Quantum Well Nanowires on Silicon-On-Insulator Substrates

Authors: Balthazar Temu, Zhao Yan, Bogdan-Petrin Ratiu, Sang Soon Oh, Qiang Li

Abstract:

Quantum confinement can be used to increase efficiency and control the emitted spectra in lasers and LEDs. In semiconductor nanowires, quantum confinement can be achieved in the axial direction by stacking multiple quantum disks or in the radial direction by forming a core-shell structure. In this work we demonstrate room temperature lasing in topological photonic crystal nanowire array lasers by using the InGaAs radial quantum well as the gain material. The nanowires with the GaAs/ InGaAs/ InGaP quantum well structure are arranged in a deformed honeycomb lattice, forming a photonic crystal surface emitting laser (PCSEL) . Under optical pumping we show that the PCSEL lase at the wavelength of 1001 nm (undeformed pattern) and 966 nm (stretched pattern), with the lasing threshold of 103 µJ〖/cm 〗^2. We compare the lasing wavelengths from devices with three different nanowire diameters for undeformed compressed and stretched devices, showing that the lasing wavelength increases as the nanowire diameter increases. The impact of deforming the honeycomb pattern is studied, where it was found out that the lasing wavelengths of undeformed devices are always larger than the corresponding stretched or compressed devices with the same nanowire diameter. Using photoluminescence results and numerical simulations on the field profile and the quality factors of the devices, we establish that the lasing of the device is from the radial quantum well structure.

Keywords: honeycomb PCSEL, nanowire laser, photonic crystal laser, quantum well laser

Procedia PDF Downloads 12
3107 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19

Authors: M. Bilal Ishfaq, Adnan N. Qureshi

Abstract:

COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.

Keywords: COVID-19, feature engineering, artificial neural networks, radiology images

Procedia PDF Downloads 75
3106 A Survey on Traditional Mac Layer Protocols in Cognitive Wireless Mesh Networks

Authors: Anusha M., V. Srikanth

Abstract:

Maximizing spectrum usage and numerous applications of the wireless communication networks have forced to a high interest of available spectrum. Cognitive Radio control its receiver and transmitter features exactly so that they can utilize the vacant approved spectrum without impacting the functionality of the principal licensed users. The Use of various channels assists to address interferences thereby improves the whole network efficiency. The MAC protocol in cognitive radio network explains the spectrum usage by interacting with multiple channels among the users. In this paper we studied about the architecture of cognitive wireless mesh network and traditional TDMA dependent MAC method to allocate channels dynamically. The majority of the MAC protocols suggested in the research are operated on Common-Control-Channel (CCC) to handle the services between Cognitive Radio secondary users. In this paper, an extensive study of Multi-Channel Multi-Radios or frequency range channel allotment and continually synchronized TDMA scheduling are shown in summarized way.

Keywords: TDMA, MAC, multi-channel, multi-radio, WMN’S, cognitive radios

Procedia PDF Downloads 561
3105 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning

Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho

Abstract:

Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.

Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning

Procedia PDF Downloads 96
3104 Performance of Rapid Impact Compaction as a Middle-Deep Ground Improvement Technique

Authors: Bashar Tarawneh, Yasser Hakam

Abstract:

Rapid Impact Compaction (RIC) is a modern dynamic compaction device mainly used to compact sandy soils, where silt and clay contents are low. The device uses the piling hammer technology to increase the bearing capacity of soils through controlled impacts. The RIC device uses "controlled impact compaction" of the ground using a 9-ton hammer dropped from the height between 0.3 m to 1.2 m onto a 1.5 m diameter steel patent foot. The delivered energy is about 26,487 to 105,948 Joules per drop. To evaluate the performance of this technique, three project sites in the United Arab Emirates were improved using RIC. In those sites, a loose to very loose fine to medium sand was encountered at a depth ranging from 1.0m to 4.0m below the ground level. To evaluate the performance of the RIC, Cone Penetration Tests (CPT) were carried out before and after improvement. Also, load tests were carried out post-RIC work to assess the settlements and bearing capacity. The soil was improved to a depth of about 5.0m below the ground level depending on the CPT friction ratio (the ratio between sleeve friction and tip resistance). CPT tip resistance was significantly increased post ground improvement work. Load tests showed enhancement in the soil bearing capacity and reduction in the potential settlements. This study demonstrates the successful application of the RIC for middle-deep improvement and compaction of the ground. Foundation design criteria were achieved in all site post-RIC work.

Keywords: compaction, RIC, ground improvement, CPT

Procedia PDF Downloads 366
3103 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils

Authors: Muqdad Al-Juboori, Bithin Datta

Abstract:

Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.

Keywords: artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis

Procedia PDF Downloads 224
3102 Concept of the Active Flipped Learning in Engineering Mechanics

Authors: Lin Li, Farshad Amini

Abstract:

The flipped classroom has been introduced to promote collaborative learning and higher-order learning objectives. In contrast to the traditional classroom, the flipped classroom has students watch prerecorded lecture videos before coming to class and then “class becomes the place to work through problems, advance concepts, and engage in collaborative learning”. In this paper, the active flipped learning combines flipped classroom with active learning that is to establish an active flipped learning (AFL) model, aiming to promote active learning, stress deep learning, encourage student engagement and highlight data-driven personalized learning. Because students have watched the lecture prior to class, contact hours can be devoted to problem-solving and gain a deeper understanding of the subject matter. The instructor is able to provide students with a wide range of learner-centered opportunities in class for greater mentoring and collaboration, increasing the possibility to engage students. Currently, little is known about the extent to which AFL improves engineering students’ performance. This paper presents the preliminary study on the core course of sophomore students in Engineering Mechanics. A series of survey and interviews have been conducted to compare students’ learning engagement, empowerment, self-efficacy, and satisfaction with the AFL. It was found that the AFL model taking advantage of advanced technology is a convenient and professional avenue for engineering students to strengthen their academic confidence and self-efficacy in the Engineering Mechanics by actively participating in learning and fostering their deep understanding of engineering statics and dynamics

Keywords: active learning, engineering mechanics, flipped classroom, performance

Procedia PDF Downloads 294
3101 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 60
3100 A Framework for Strategy Development in Small Companies: A Case Study of a Telecommunication Firm

Authors: Maryam Goodarzi, Mahdieh Sheikhi, Mehdi Goodarzi

Abstract:

This study intends to offer an appropriate strategy development framework for a telecommunication firm (as a case study) which works on Information and Communication Technology (ICT) projects, development of telecommunication networks, and maintenance of local networks, according to its dominant condition. In this approach, first, the objectives were set and the mission was defined. Then, the capability was assessed by SWOT matrix. Using SPACE matrix, the strategy of the company was determined. The strategic direction is set and an appropriate and superior strategy was developed and offered employing QSPM matrix. The theoretical framework or conceptual model of the present study first involves 4 stages of framework development and then from stage 3 (assessing capability) onward, a strategic management model by Fred R. David. In this respect, the tools and methods offered in the framework are appropriate for all kinds of organizations, particularly small firms, and help strategists identify, evaluate, and select strategies.

Keywords: strategy formulation, firm mission, strategic direction, space diagram, quantitative strategic planning matrix, SWOT matrix

Procedia PDF Downloads 374
3099 Over the Air Programming Method for Learning Wireless Sensor Networks

Authors: K. Sangeeth, P. Rekha, P. Preeja, P. Divya, R. Arya, R. Maneesha

Abstract:

Wireless sensor networks (WSN) are small or tiny devices that consists of different sensors to sense physical parameters like air pressure, temperature, vibrations, movement etc., process these data and sends it to the central data center to take decisions. The WSN domain, has wide range of applications such as monitoring and detecting natural hazards like landslides, forest fire, avalanche, flood monitoring and also in healthcare applications. With such different applications, it is being taught in undergraduate/post graduate level in many universities under department of computer science. But the cost and infrastructure required to purchase WSN nodes for having the students getting hands on expertise on these devices is expensive. This paper gives overview about the remote triggered lab that consists of more than 100 WSN nodes that helps the students to remotely login from anywhere in the world using the World Wide Web, configure the nodes and learn the WSN concepts in intuitive way. It proposes new way called over the air programming (OTAP) and its internals that program the 100 nodes simultaneously and view the results without the nodes being physical connected to the computer system, thereby allowing for sparse deployment.

Keywords: WSN, over the air programming, virtual lab, AT45DB

Procedia PDF Downloads 377
3098 Social Networks And Social Complexity: The Southern Italian Drive For Trade Exchange During The Late Bronze Age

Authors: Sara Fioretti

Abstract:

During the Middle Bronze Age, southern Italy underwent a reorganisation of social structures where local cultures, such as the sub-Apennine and Nuragic, flourished and participated in maritime trade. This paper explores the socio-economic relationships, in both cross-cultural and potentially inter-regional settings, present within the archaeological repertoire of the southern Italian Late Bronze Age (LBA 1600 -1050 BCE). The emergence of economic relations within the connectivity of the regional settlements is explored through ceramic contexts found in the case studies Punta di Zambrone, Broglio di Trebisacce, and Nuraghe Antigori. This paper discusses the findings of a statistical and theoretical approach from an ongoing study in relation to the Mediterranean’s characterisation as a period dominated by Mycenaean influence. This study engages with a theoretical bricolage of Social Networks Entanglement, and Assertive Objects Theory to address the selective and assertive dynamics evident in the cross-cultural trade exchanges as well as consider inter-regional dynamics. Through this intersection of theory and statistical analysis, the case studies establish a small percentage of pottery as imported, whilst assertive productions have a relatively higher quantity. Overall, the majority still adheres to regional Italian traditions. Therefore, we can dissect the rhizomatic relationships cultivated by the Italian coasts and Mycenaeans and their roles within their networks through the intersection of theoretical and statistical analysis. This research offers a new perspective on the complex nature of the Late Bronze Age relational structures.

Keywords: late bronze age, mediterranean archaeology, exchanges and trade, frequency distribution of ceramic assemblages, social network theory, rhizomatic exchanges

Procedia PDF Downloads 47
3097 Stochastic Multicast Routing Protocol for Flying Ad-Hoc Networks

Authors: Hyunsun Lee, Yi Zhu

Abstract:

Wireless ad-hoc network is a decentralized type of temporary machine-to-machine connection that is spontaneous or impromptu so that it does not rely on any fixed infrastructure and centralized administration. As unmanned aerial vehicles (UAVs), also called drones, have recently become more accessible and widely utilized in military and civilian domains such as surveillance, search and detection missions, traffic monitoring, remote filming, product delivery, to name a few. The communication between these UAVs become possible and materialized through Flying Ad-hoc Networks (FANETs). However, due to the high mobility of UAVs that may cause different types of transmission interference, it is vital to design robust routing protocols for FANETs. In this talk, the multicast routing method based on a modified stochastic branching process is proposed. The stochastic branching process is often used to describe an early stage of an infectious disease outbreak, and the reproductive number in the process is used to classify the outbreak into a major or minor outbreak. The reproductive number to regulate the local transmission rate is adapted and modified for flying ad-hoc network communication. The performance of the proposed routing method is compared with other well-known methods such as flooding method and gossip method based on three measures; average reachability, average node usage and average branching factor. The proposed routing method achieves average reachability very closer to flooding method, average node usage closer to gossip method, and outstanding average branching factor among methods. It can be concluded that the proposed multicast routing scheme is more efficient than well-known routing schemes such as flooding and gossip while it maintains high performance.

Keywords: Flying Ad-hoc Networks, Multicast Routing, Stochastic Branching Process, Unmanned Aerial Vehicles

Procedia PDF Downloads 123
3096 How to Modernise the ECN

Authors: Dorota Galeza

Abstract:

This paper argues that networks, such as the ECN and the American network, are affected by certain small events which are inherent to path dependence and preclude the full evolution towards efficiency. It is advocated that the American network is superior to the ECN in many respects due to its greater flexibility and longer history. This stems in particular from the creation of the American network, which was based on a small number of cases. Such structure encourages further changes and modifications which are not necessarily radical. The ECN, by contrast, was established by legislative action, which explains its rigid structure and resistance to change. It might be the case that the ECN is subject not so much to path dependence but to past dependence. It might have to be replaced, as happened to its predecessor. This paper is an attempt to transpose the superiority of the American network on to the ECN. It looks at concepts such as judicial cooperation, harmonization of procedure, peer review and regulatory impact assessments (RIAs), and dispute resolution procedures. The aim is to adopt these concepts into the EU setting without recourse to legal transplantation. The major difficulty is that many of these concepts have been tested only in the US and it is difficult to tell whether they could be modified to meet EU standards. Concepts such as judicial cooperation might be difficult due to different language traditions in EU member states. It is hoped that greater flexibility, as in the American network, would boost legitimacy and transparency.

Keywords: ECN, networks, regulation, competition

Procedia PDF Downloads 428
3095 Spatially Referenced Checklist Model Dedicated to Professional Actors for a Good Evaluation and Management of Networks

Authors: Abdessalam Hijab, Hafida Boulekbache, Eric Henry

Abstract:

The objective of this article is to explain the use of geographic information system (GIS) and information and communication technologies (ICTs) in the real-time processing and analysis of data on the status of an urban sanitation network by integrating professional actors in sanitation for sustainable management in urban areas. Indeed, it is a smart geo-collaboration based on the complementarity of ICTs and GIS. This multi-actor reflection was built with the objective of contributing to the development of complementary solutions to the existing technologies to better protect the urban environment, with the help of a checklist with the spatial reference "E-Géo-LD" dedicated to the "professional/professional" actors in sanitation, for intelligent monitoring of liquid sanitation networks in urban areas. In addition, this research provides a good understanding and assimilation of liquid sanitation schemes in the "Lamkansa" sampling area of the city of Casablanca, and spatially evaluates these schemes. Downstream, it represents a guide to assess the environmental impacts of the liquid sanitation scheme.

Keywords: ICT, GIS, spatial checklist, liquid sanitation, environment

Procedia PDF Downloads 236
3094 Integrated Social Support through Social Networks to Enhance the Quality of Life of Metastatic Breast Cancer Patients

Authors: B. Thanasansomboon, S. Choemprayong, N. Parinyanitikul, U. Tanlamai

Abstract:

Being diagnosed with metastatic breast cancer, the patients as well as their caretakers are affected physically and mentally. Although the medical systems in Thailand have been attempting to improve the quality and effectiveness of the treatment of the disease in terms of physical illness, the success of the treatment also depends on the quality of mental health. Metastatic breast cancer patients have found that social support is a key factor that helps them through this difficult time. It is recognized that social support in different dimensions, including emotional support, social network support, informational support, instrumental support and appraisal support, are contributing factors that positively affect the quality of life of patients in general, and it is undeniable that social support in various forms is important in promoting the quality of life of metastatic breast patients. However, previous studies have not been dedicated to investigating their quality of life concerning affective, cognitive, and behavioral outcomes. Therefore, this study aims to develop integrated social support through social networks to improve the quality of life of metastatic breast cancer patients in Thailand.

Keywords: social support, metastatic breath cancer, quality of life, social network

Procedia PDF Downloads 149
3093 Low Overhead Dynamic Channel Selection with Cluster-Based Spatial-Temporal Station Reporting in Wireless Networks

Authors: Zeyad Abdelmageid, Xianbin Wang

Abstract:

Choosing the operational channel for a WLAN access point (AP) in WLAN networks has been a static channel assignment process initiated by the user during the deployment process of the AP, which fails to cope with the dynamic conditions of the assigned channel at the station side afterward. However, the dramatically growing number of Wi-Fi APs and stations operating in the unlicensed band has led to dynamic, distributed, and often severe interference. This highlights the urgent need for the AP to dynamically select the best overall channel of operation for the basic service set (BSS) by considering the distributed and changing channel conditions at all stations. Consequently, dynamic channel selection algorithms which consider feedback from the station side have been developed. Despite the significant performance improvement, existing channel selection algorithms suffer from very high feedback overhead. Feedback latency from the STAs, due to the high overhead, can cause the eventually selected channel to no longer be optimal for operation due to the dynamic sharing nature of the unlicensed band. This has inspired us to develop our own dynamic channel selection algorithm with reduced overhead through the proposed low-overhead, cluster-based station reporting mechanism. The main idea behind the cluster-based station reporting is the observation that STAs which are very close to each other tend to have very similar channel conditions. Instead of requesting each STA to report on every candidate channel while causing high overhead, the AP divides STAs into clusters then assigns each STA in each cluster one channel to report feedback on. With the proper design of the cluster based reporting, the AP does not lose any information about the channel conditions at the station side while reducing feedback overhead. The simulation results show equal performance and, at times, better performance with a fraction of the overhead. We believe that this algorithm has great potential in designing future dynamic channel selection algorithms with low overhead.

Keywords: channel assignment, Wi-Fi networks, clustering, DBSCAN, overhead

Procedia PDF Downloads 119
3092 Privacy-Preserving Location Sharing System with Client/Server Architecture in Mobile Online Social Network

Authors: Xi Xiao, Chunhui Chen, Xinyu Liu, Guangwu Hu, Yong Jiang

Abstract:

Location sharing is a fundamental service in mobile Online Social Networks (mOSNs), which raises significant privacy concerns in recent years. Now, most location-based service applications adopt client/server architecture. In this paper, a location sharing system, named CSLocShare, is presented to provide flexible privacy-preserving location sharing with client/server architecture in mOSNs. CSLocShare enables location sharing between both trusted social friends and untrusted strangers without the third-party server. In CSLocShare, Location-Storing Social Network Server (LSSNS) provides location-based services but do not know the users’ real locations. The thorough analysis indicates that the users’ location privacy is protected. Meanwhile, the storage and the communication cost are saved. CSLocShare is more suitable and effective in reality.

Keywords: mobile online social networks, client/server architecture, location sharing, privacy-preserving

Procedia PDF Downloads 331
3091 Anatomical Investigation of Superficial Fascia Relationships with the Skin and Underlying Tissue in the Greyhound Rump, Thigh, and Crus

Authors: Oday A. Al-Juhaishi, Sa`ad M. Ismail, Hung-Hsun Yen, Christina M. Murray, Helen M. S. Davies

Abstract:

The functional anatomy of the fascia in the greyhound is still poorly understood, and incompletely described. The basic knowledge of fascia stems mainly from anatomical, histological and ultrastructural analyses. In this study, twelve specimens of hindlimbs from six fresh greyhound cadavers (3 male, 3 female) were used to examine the topographical relationships of the superficial fascia with the skin and underlying tissue. The first incision was made along the dorsal midline from the level of the thoracolumbar junction caudally to the level of the mid sacrum. The second incision was begun at the level of the first incision and extended along the midline of the lateral aspect of the hindlimb distally, to just proximal to the tarsus, and, the skin margins carefully separated to observe connective tissue links between the skin and superficial fascia, attachment points of the fascia and the relationships of the fascia with blood vessels that supply the skin. A digital camera was used to record the anatomical features as they were revealed. The dissections identified fibrous septa connecting the skin with the superficial fascia and deep fascia in specific areas. The presence of the adipose tissue was found to be very rare within the superficial fascia in these specimens. On the extensor aspects of some joints, a fusion between the superficial fascia and deep fascia was observed. This fusion created a subcutaneous bursa in the following areas: a prepatellar bursa of the stifle, a tarsal bursa caudal to the calcaneus bone, and an ischiatic bursa caudal to the ischiatic tuberosity. The evaluation of blood vessels showed that the perforating vessels passed through fibrous septa in a perpendicular direction to supply the skin, with the largest branch noted in the gluteal area. The attachment points between the superficial fascia and skin were mainly found in the region of the flexor aspect of the joints, such as caudal to the stifle joint. The numerous fibrous septa between the superficial fascia and skin that have been identified in some areas, may create support for the blood vessels that penetrate fascia and into the skin, while allowing for movement between the tissue planes. The subcutaneous bursae between the skin and the superficial fascia where it is fused with the deep fascia may be useful to decrease friction between moving areas. The adhesion points may be related to the integrity and loading of the skin. The attachment points fix the skin and appear to divide the hindlimb into anatomical compartments.

Keywords: attachment points, fibrous septa, greyhound, subcutaneous bursa, superficial fascia

Procedia PDF Downloads 359
3090 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation

Authors: Vishwesh Kulkarni, Nikhil Bellarykar

Abstract:

Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.

Keywords: synthetic gene network, network identification, optimization, nonlinear modeling

Procedia PDF Downloads 156
3089 Use of a Novel Intermittent Compression Shoe in Reducing Lower Limb Venous Stasis

Authors: Hansraj Riteesh Bookun, Cassandra Monique Hidajat

Abstract:

This pilot study investigated the efficacy of a newly designed shoe which will act as an intermittent pneumatic compression device to augment venous flow in the lower limb. The aim was to assess the degree with which a wearable intermittent compression device can increase the venous flow in the popliteal vein. Background: Deep venous thrombosis and chronic venous insufficiency are relatively common problems with significant morbidity and mortality. While mechanical and chemical thromboprophylaxis measures are in place in hospital environments (in the form of TED stockings, intermittent pneumatic compression devices, analgesia, antiplatelet and anticoagulant agents), there are limited options in a community setting. Additionally, many individuals are poorly tolerant of graduated compression stockings due to the difficulty in putting them on, their constant tightness and increased associated discomfort in warm weather. These factors may hinder the management of their chronic venous insufficiency. Method: The device is lightweight, easy to wear and comfortable, with a self-contained power source. It features a Bluetooth transmitter and can be controlled with a smartphone. It is externally almost indistinguishable from a normal shoe. During activation, two bladders are inflated -one overlying the metatarsal heads and the second at the pedal arch. The resulting cyclical increase in pressure squeezes blood into the deep venous system. This will decrease periods of stasis and potentially reduce the risk of deep venous thrombosis. The shoe was fitted to 2 healthy participants and the peak systolic velocity of flow in the popliteal vein was measured during and prior to intermittent compression phases. Assessments of total flow volume were also performed. All haemodynamic assessments were performed with ultrasound by a licensed sonographer. Results: Mean peak systolic velocity of 3.5 cm/s with standard deviation of 1.3 cm/s were obtained. There was a three fold increase in mean peak systolic velocity and five fold increase in total flow volume. Conclusion: The device augments venous flow in the leg significantly. This may contribute to lowered thromboembolic risk during periods of prolonged travel or immobility. This device may also serve as an adjunct in the treatment of chronic venous insufficiency. The study will be replicated on a larger scale in a multi—centre trial.

Keywords: venous, intermittent compression, shoe, wearable device

Procedia PDF Downloads 194
3088 Repositioning Nigerian University Libraries for Effective Information Provision and Delivery in This Age of Globalization

Authors: S. O. Uwaifo

Abstract:

The paper examines the pivotal role of the library in university education through the provision of a wide range of information materials (print and non- print) required for the teaching, learning and research activities of the university. However certain impediments to the effectiveness of Nigerian university libraries, such as financial constraints, high foreign exchange, global disparities in accessing the internet, lack of local area networks, erratic electric power supply, absence of ICT literacy, poor maintenance culture, etc., were identified. Also, the necessity of repositioning Nigerian university libraries for effective information provision and delivery was stressed by pointing out their dividends, such as users’ access to Directory of Open Access Journals (DOAJ), Online Public Access Catalogue (OPAC), Institutional Repositories, Electronic Document Delivery, Social Media Networks, etc. It therefore becomes necessary for the libraries to be repositioned by way of being adequately automated or digitized for effective service delivery, in this age of globalization. Based on the identified barriers by this paper, some recommendations were proffered.

Keywords: repositioning, Nigerian university libraries, effective information provision and delivery, globalization

Procedia PDF Downloads 327
3087 A Student Centered Learning Environment in Engineering Education: Design and a Longitudinal Study of Impact

Authors: Tom O'Mahony

Abstract:

This article considers the design of a student-centered learning environment in engineering education. The learning environment integrates a number of components, including project-based learning, collaborative learning, two-stage assignments, active learning lectures, and a flipped-classroom. Together these elements place the individual learner and their learning at the center of the environment by focusing on understanding, enhancing relevance, applying learning, obtaining rich feedback, making choices, and taking responsibility. The evolution of this environment from 2014 to the present day is outlined. The impact of this environment on learners and their learning is evaluated via student questionnaires that consist of both open and closed-ended questions. The closed questions indicate that students found the learning environment to be really interesting and enjoyable (rated as 4.7 on a 5 point scale) and encouraged students to adopt a deep approach towards studying the course materials (rated as 4.0 on a 5 point scale). A content analysis of the open-ended questions provides evidence that the project, active learning lectures, and flipped classroom all contribute to the success of this environment. Furthermore, this analysis indicates that the two-stage assessment process, in which feedback is provided between a draft and final assignment, is the key component and the dominant theme. A limitation of the study is the small class size (less than 20 learners per year), but, to some degree, this is compensated for by the longitudinal nature of the study.

Keywords: deep approaches, formative assessment, project-based learning, student-centered learning

Procedia PDF Downloads 112
3086 Reduction of the Number of Traffic Accidents by Function of Driver's Anger Detection

Authors: Masahiro Miyaji

Abstract:

When a driver happens to be involved in some traffic congestion or after traffic incidents, the driver may fall in a state of anger. State of anger may encounter decisive risk resulting in severer traffic accidents. Preventive safety function using driver’s psychosomatic state with regard to anger may be one of solutions which would avoid that kind of risks. Identifying driver’s anger state is important to create countermeasures to prevent the risk of traffic accidents. As a first step, this research figured out root cause of traffic incidents by means of using Internet survey. From statistical analysis of the survey, dominant psychosomatic states immediately before traffic incidents were haste, distraction, drowsiness and anger. Then, we replicated anger state of a driver while driving, and then, replicated it by means of using driving simulator on bench test basis. Six types of facial expressions including anger were introduced as alternative characteristics. Kohonen neural network was adopted to classify anger state. Then, we created a methodology to detect anger state of a driver in high accuracy. We presented a driving support safety function. The function adapts driver’s anger state in cooperation with an autonomous driving unit to reduce the number of traffic accidents. Consequently, e evaluated reduction rate of driver’s anger in the traffic accident. To validate the estimation results, we referred the reduction rate of Advanced Safety Vehicle (ASV) as well as Intelligent Transportation Systems (ITS).

Keywords: Kohonen neural network, driver’s anger state, reduction of traffic accidents, driver’s state adaptive driving support safety

Procedia PDF Downloads 359
3085 An Agent-Based Modelling Simulation Approach to Calculate Processing Delay of GEO Satellite Payload

Authors: V. Vicente E. Mujica, Gustavo Gonzalez

Abstract:

The global coverage of broadband multimedia and internet-based services in terrestrial-satellite networks demand particular interests for satellite providers in order to enhance services with low latencies and high signal quality to diverse users. In particular, the delay of on-board processing is an inherent source of latency in a satellite communication that sometimes is discarded for the end-to-end delay of the satellite link. The frame work for this paper includes modelling of an on-orbit satellite payload using an agent model that can reproduce the properties of processing delays. In essence, a comparison of different spatial interpolation methods is carried out to evaluate physical data obtained by an GEO satellite in order to define a discretization function for determining that delay. Furthermore, the performance of the proposed agent and the development of a delay discretization function are together validated by simulating an hybrid satellite and terrestrial network. Simulation results show high accuracy according to the characteristics of initial data points of processing delay for Ku bands.

Keywords: terrestrial-satellite networks, latency, on-orbit satellite payload, simulation

Procedia PDF Downloads 271
3084 Axial Load Capacity of Drilled Shafts from In-Situ Test Data at Semani Site, in Albania

Authors: Neritan Shkodrani, Klearta Rrushi, Anxhela Shaha

Abstract:

Generally, the design of axial load capacity of deep foundations is based on the data provided from field tests, such as SPT (Standard Penetration Test) and CPT (Cone Penetration Test) tests. This paper reports the results of axial load capacity analysis of drilled shafts at a construction site at Semani, in Fier county, Fier prefecture in Albania. In this case, the axial load capacity analyses are based on the data of 416 SPT tests and 12 CPTU tests, which are carried out in this site construction using 12 boreholes (10 borings of a depth 30.0 m and 2 borings of a depth of 80.0m). The considered foundation widths range from 0.5m to 2.5 m and foundation embedment lengths is fixed at a value of 25m. SPT – based analytical methods from the Japanese practice of design (Building Standard Law of Japan) and CPT – based analytical Eslami and Fellenius methods are used for obtaining axial ultimate load capacity of drilled shafts. The considered drilled shaft (25m long and 0.5m - 2.5m in diameter) is analyzed for the soil conditions of each borehole. The values obtained from sets of calculations are shown in different charts. Then the reported axial load capacity values acquired from SPT and CPTU data are compared and some conclusions are found related to the mentioned methods of calculations.

Keywords: deep foundations, drilled shafts, axial load capacity, ultimate load capacity, allowable load capacity, SPT test, CPTU test

Procedia PDF Downloads 104