Search results for: personnel information
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11290

Search results for: personnel information

8950 Data Mining Meets Educational Analysis: Opportunities and Challenges for Research

Authors: Carla Silva

Abstract:

Recent development of information and communication technology enables us to acquire, collect, analyse data in various fields of socioeconomic – technological systems. Along with the increase of economic globalization and the evolution of information technology, data mining has become an important approach for economic data analysis. As a result, there has been a critical need for automated approaches to effective and efficient usage of massive amount of educational data, in order to support institutions to a strategic planning and investment decision-making. In this article, we will address data from several different perspectives and define the applied data to sciences. Many believe that 'big data' will transform business, government, and other aspects of the economy. We discuss how new data may impact educational policy and educational research. Large scale administrative data sets and proprietary private sector data can greatly improve the way we measure, track, and describe educational activity and educational impact. We also consider whether the big data predictive modeling tools that have emerged in statistics and computer science may prove useful in educational and furthermore in economics. Finally, we highlight a number of challenges and opportunities for future research.

Keywords: data mining, research analysis, investment decision-making, educational research

Procedia PDF Downloads 359
8949 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature

Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon

Abstract:

Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.

Keywords: deep-learning, altimetry, sea surface temperature, forecast

Procedia PDF Downloads 91
8948 Distributed Multi-Agent Based Approach on Intelligent Transportation Network

Authors: Xiao Yihong, Yu Kexin, Burra Venkata Durga Kumar

Abstract:

With the accelerating process of urbanization, the problem of urban road congestion is becoming more and more serious. Intelligent transportation system combining distributed and artificial intelligence has become a research hotspot. As the core development direction of the intelligent transportation system, Cooperative Intelligent Transportation System (C-ITS) integrates advanced information technology and communication methods and realizes the integration of humans, vehicle, roadside infrastructure, and other elements through the multi-agent distributed system. By analyzing the system architecture and technical characteristics of C-ITS, the report proposes a distributed multi-agent C-ITS. The system consists of Roadside Sub-system, Vehicle Sub-system, and Personal Sub-system. At the same time, we explore the scalability of the C-ITS and put forward incorporating local rewards in the centralized training decentralized execution paradigm, hoping to add a scalable value decomposition method. In addition, we also suggest introducing blockchain to improve the safety of the traffic information transmission process. The system is expected to improve vehicle capacity and traffic safety.

Keywords: distributed system, artificial intelligence, multi-agent, cooperative intelligent transportation system

Procedia PDF Downloads 215
8947 Hybrid Control Mode Based on Multi-Sensor Information by Fuzzy Approach for Navigation Task of Autonomous Mobile Robot

Authors: Jonqlan Lin, C. Y. Tasi, K. H. Lin

Abstract:

This paper addresses the issue of the autonomous mobile robot (AMR) navigation task based on the hybrid control modes. The novel hybrid control mode, based on multi-sensors information by using the fuzzy approach, has been presented in this research. The system operates in real time, is robust, enables the robot to operate with imprecise knowledge, and takes into account the physical limitations of the environment in which the robot moves, obtaining satisfactory responses for a large number of different situations. An experiment is simulated and carried out with a pioneer mobile robot. From the experimental results, the effectiveness and usefulness of the proposed AMR obstacle avoidance and navigation scheme are confirmed. The experimental results show the feasibility, and the control system has improved the navigation accuracy. The implementation of the controller is robust, has a low execution time, and allows an easy design and tuning of the fuzzy knowledge base.

Keywords: autonomous mobile robot, obstacle avoidance, MEMS, hybrid control mode, navigation control

Procedia PDF Downloads 468
8946 Integrating Virtual Reality and Building Information Model-Based Quantity Takeoffs for Supporting Construction Management

Authors: Chin-Yu Lin, Kun-Chi Wang, Shih-Hsu Wang, Wei-Chih Wang

Abstract:

A construction superintendent needs to know not only the amount of quantities of cost items or materials completed to develop a daily report or calculate the daily progress (earned value) in each day, but also the amount of quantities of materials (e.g., reinforced steel and concrete) to be ordered (or moved into the jobsite) for performing the in-progress or ready-to-start construction activities (e.g., erection of reinforced steel and concrete pouring). These daily construction management tasks require great effort in extracting accurate quantities in a short time (usually must be completed right before getting off work every day). As a result, most superintendents can only provide these quantity data based on either what they see on the site (high inaccuracy) or the extraction of quantities from two-dimension (2D) construction drawings (high time consumption). Hence, the current practice of providing the amount of quantity data completed in each day needs improvement in terms of more accuracy and efficiency. Recently, a three-dimension (3D)-based building information model (BIM) technique has been widely applied to support construction quantity takeoffs (QTO) process. The capability of virtual reality (VR) allows to view a building from the first person's viewpoint. Thus, this study proposes an innovative system by integrating VR (using 'Unity') and BIM (using 'Revit') to extract quantities to support the above daily construction management tasks. The use of VR allows a system user to be present in a virtual building to more objectively assess the construction progress in the office. This VR- and BIM-based system is also facilitated by an integrated database (consisting of the information and data associated with the BIM model, QTO, and costs). In each day, a superintendent can work through a BIM-based virtual building to quickly identify (via a developed VR shooting function) the building components (or objects) that are in-progress or finished in the jobsite. And he then specifies a percentage (e.g., 20%, 50% or 100%) of completion of each identified building object based on his observation on the jobsite. Next, the system will generate the completed quantities that day by multiplying the specified percentage by the full quantities of the cost items (or materials) associated with the identified object. A building construction project located in northern Taiwan is used as a case study to test the benefits (i.e., accuracy and efficiency) of the proposed system in quantity extraction for supporting the development of daily reports and the orders of construction materials.

Keywords: building information model, construction management, quantity takeoffs, virtual reality

Procedia PDF Downloads 133
8945 The Media and Reportage of Boko Haram Insurgency in Nigeria

Authors: Priscilla Marcus

Abstract:

The mass media was a force to reckon with in the struggle and attainment of Nigeria’s independence in 1960 and since then, the Nigerian media has carved a niche for itself in performing its traditional role of education, information, entertainment, shaping of opinions and swinging of views of the society on knotty national issues. Boko Haram insurgency in Nigeria which emerged from an unnoticed, negligible and quiet beginning, has turned out daring, monstrous and unstoppable. This paper examines The Media and Reportage of Boko Haram Insurgency in Nigeria and to suggest strategies the mass media could adopt in combating this form of terrorism. Data for the study were collected from a variety of sources including the print and electronic media. The major observation of this study is that the mass media have an enormous role to play if Boko Haram’s activities are to be combated. It argued that even though the media houses are just doing their job – reporting the incident(s) as they occur, thus keeping the citizens abreast of facts; the rate at which news keeps coming regarding the activities of the sect has portrayed the media as information dissemination and terror campaign spread. It also argued that the ceaseless reporting has not translated to a decrease in the activities of the sect or increase in the level of government actions to check the insurgency. However, the information being disseminated is enlightening the populace and also creating an atmosphere of panic and insecurity. It further argued that the media should move beyond mere recitation of events to providing the public with knowledge needed to make things better. This is because the sect has been accorded too much undeserved and unnecessary publicity while the government on the other hand has been portrayed, albeit indirectly as a weak organization incapable of handling the ‘more organized’ Boko Haram. The study, concluded that, to effectively address the problem of this form of terrorism in Nigeria, the media have to brace up to the task of uncovering activities of the sect in appreciation of their watch-dog role.

Keywords: Boko Haram, insurgency, mass media, Nigeria

Procedia PDF Downloads 330
8944 Groundwater Investigation Using Resistivity Method and Drilling for Irrigation during the Dry Season in Lwantonde District, Uganda

Authors: Tamale Vincent

Abstract:

Groundwater investigation is the investigation of underground formations to understand the hydrologic cycle, known groundwater occurrences, and identify the nature and types of aquifers. There are different groundwater investigation methods and surface geophysical method is one of the groundwater investigation more especially the Geoelectrical resistivity Schlumberger configuration method which provides valuable information regarding the lateral and vertical successions of subsurface geomaterials in terms of their individual thickness and corresponding resistivity values besides using surface geophysical method, hydrogeological and geological investigation methods are also incorporated to aid in preliminary groundwater investigation. Investigation for groundwater in lwantonde district has been implemented. The area project is located cattle corridor and the dry seasonal troubles the communities in lwantonde district of which 99% of people living there are farmers, thus making agriculture difficult and local government to provide social services to its people. The investigation was done using the Geoelectrical resistivity Schlumberger configuration method. The measurement point is located in the three sub-counties, with a total of 17 measurement points. The study location is at 0025S, 3110E, and covers an area of 160 square kilometers. Based on the results of the Geoelectrical information data, it was found two types of aquifers, which are open aquifers in depth ranging from six meters to twenty-two meters and a confined aquifer in depth ranging from forty-five meters to eighty meters. In addition to the Geoelectrical information data, drilling was done at an accessible point by heavy equipment in the Lwakagura village, Kabura sub-county. At the drilling point, artesian wells were obtained at a depth of eighty meters and can rise to two meters above the soil surface. The discovery of artesian well is then used by residents to meet the needs of clean water and for irrigation considering that in this area most wells contain iron content.

Keywords: artesian well, geoelectrical, lwantonde, Schlumberger

Procedia PDF Downloads 128
8943 Qualitative Data Summary of Piloted Observation Instrument for Designing Adaptations in Inclusive Settings

Authors: Rebecca Lynn

Abstract:

The successful inclusion of students with disabilities depends upon many factors, including the collaboration between general and special education teachers for meeting student learning goals as outlined in the Individualized Education Plan (IEP). However, Individualized Education Plans do not provide sufficient information on accommodations and modifications for the variety of general education contexts and content areas in which a student may participate. In addition, general and special education teachers lack observation skills and tools for gathering essential information about the strengths and needs of students with disabilities in relation to general education instruction and classrooms. More research and tools are needed for planning adaptations that increase access to content in general education classrooms. This paper will discuss the outcomes of a qualitative field-based study of a structured observation instrument used for gathering information on student strengths and needs in relation to social, academic and regulatory expectations during instruction in general education classrooms. The study explores the following questions: To what extent does the observation structure and instrument increase collaborative planning of adaptations in general education classrooms for students with disabilities? To what extent does the observation structure and instrument change pedagogical practices and collaboration in general education classrooms for fostering successful inclusion? A hypothesis of this study was that use of the instrument in the context of lessons and in collaborative debriefing would increase awareness and use of meaningful adaptations, and lead to universal design in the planning of instruction. A finding of the study is a shift from viewing students with disabilities as passive participants to a more pedagogical inclusion as teachers developed skills in observation and created content/context-specific adaptations for students with disabilities in the general education classroom.

Keywords: adaptations, collaboration, inclusion, observations

Procedia PDF Downloads 128
8942 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).

Keywords: intrusion detection, supervised learning, traffic classification, computer networks

Procedia PDF Downloads 353
8941 Delivering Inclusive Growth through Information and Communication Technology: The Miracle of Internet of Everything

Authors: Olawale Johnson

Abstract:

The cry and agitation for the creation of equal opportunities is one of the major reasons behind the social menace countries of the world experience. As the poor, continue to demand for the dividends of economic growth, countries of the world are in a state of dilemma because, despite impressive growth figures, the poor are still far below the empowerment line. However, evidence from the Asian Tigers has proven that with the adoption and efficient utilization of information technology, a growth miracle is not far-fetched. With the mind-boggling pace of technological innovation, the need to ensure that the innovative products are all connected has become vital. Technologies that did not exist a few years ago have become vital equipment used to underlie every aspect of our economy from medicine to banking to sports. The need to connect things sensors, actuators and smart systems with the aim of ensuring person-to-object, object-to-object communications has promoted the need of internet of things. As developing countries struggle with delivering inclusiveness, the Internet of Everything is perceived to be the miracle that will deliver this in no time. This paper examines how the Asian Tigers have been able to promote inclusive growth through the Internet of Everything.

Keywords: inclusive growth, internet of everything, innovation, embedded systems and smart technologies

Procedia PDF Downloads 321
8940 Content Monetization as a Mark of Media Economy Quality

Authors: Bela Lebedeva

Abstract:

Characteristics of the Web as a channel of information dissemination - accessibility and openness, interactivity and multimedia news - become wider and cover the audience quickly, positively affecting the perception of content, but blur out the understanding of the journalistic work. As a result audience and advertisers continue migrating to the Internet. Moreover, online targeting allows monetizing not only the audience (as customarily given to traditional media) but also the content and traffic more accurately. While the users identify themselves with the qualitative characteristics of the new market, its actors are formed. Conflict of interests is laid in the base of the economy of their relations, the problem of traffic tax as an example. Meanwhile, content monetization actualizes fiscal interest of the state too. The balance of supply and demand is often violated due to the political risks, particularly in terms of state capitalism, populism and authoritarian methods of governance such social institutions as the media. A unique example of access to journalistic material, limited by monetization of content is a television channel Dozhd' (Rain) in Russian web space. Its liberal-minded audience has a better possibility for discussion. However, the channel could have been much more successful in terms of unlimited free speech. Avoiding state pressure and censorship its management has decided to save at least online performance and monetizing all of the content for the core audience. The study Methodology was primarily based on the analysis of journalistic content, on the qualitative and quantitative analysis of the audience. Reconstructing main events and relationships of actors on the market for the last six years researcher has reached some conclusions. First, under the condition of content monetization the capitalization of its quality will always strive to quality characteristics of user, thereby identifying him. Vice versa, the user's demand generates high-quality journalism. The second conclusion follows the previous one. The growth of technology, information noise, new political challenges, the economy volatility and the cultural paradigm change – all these factors form the content paying model for an individual user. This model defines him as a beneficiary of specific knowledge and indicates the constant balance of supply and demand other conditions being equal. As a result, a new economic quality of information is created. This feature is an indicator of the market as a self-regulated system. Monetized information quality is less popular than that of the Public Broadcasting Service, but this audience is able to make decisions. These very users keep the niche sectors which have more potential of technology development, including the content monetization ways. The third point of the study allows develop it in the discourse of media space liberalization. This cultural phenomenon may open opportunities for the development of social and economic relations architecture both locally and regionally.

Keywords: content monetization, state capitalism, media liberalization, media economy, information quality

Procedia PDF Downloads 251
8939 Digital Transformation in Developing Countries, A Study into Building Information Modelling Adoption in Thai Design and Engineering Small- and Medium-Sizes Enterprises

Authors: Prompt Udomdech, Eleni Papadonikolaki, Andrew Davies

Abstract:

Building information modelling (BIM) is the major technological trend amongst built environment organisations. Digitalising businesses and operations, BIM brings forth a digital transformation in any built environment industry. The adoption of BIM presents challenges for organisations, especially small- and medium-sizes enterprises (SMEs). The main problem for built-environment SMEs is the lack of project actors with adequate BIM competences. The research highlights learning in projects as the key and explores into the learning of BIM in projects of designers and engineers within Thai design and engineering SMEs. The study uncovers three impeding attributes, which are: a) lack of English proficiency; b) unfamiliarity with digital technologies; and c) absence of public standards. This research expands on the literature on BIM competences and adoption.

Keywords: BIM competences and adoption, digital transformation, learning in projects, SMEs, and developing built environment industry

Procedia PDF Downloads 146
8938 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability

Procedia PDF Downloads 292
8937 Geospatial Modeling of Dry Snow Avalanches Distribution Using Geographic Information Systems and Remote Sensing: A Case Study of the Šar Mountains (Balkan Peninsula)

Authors: Uroš Durlević, Ivan Novković, Nina Čegar, Stefanija Stojković

Abstract:

Snow avalanches represent one of the most dangerous natural phenomena in mountain regions worldwide. Material and human casualties caused by snow avalanches can be very significant. In this study, using geographic information systems and remote sensing, the natural conditions of the Šar Mountains were analyzed for geospatial modeling of dry slab avalanches. For this purpose, the Fuzzy Analytic Hierarchy Process (FAHP) multi-criteria analysis method was used, within which fifteen environmental criteria were analyzed and evaluated. Based on the existing analyzes and results, it was determined that a significant area of the Šar Mountains is very highly susceptible to the occurrence of dry slab avalanches. The obtained data can be of significant use to local governments, emergency services, and other institutions that deal with natural disasters at the local level. To our best knowledge, this is one of the first research in the Republic of Serbia that uses the FAHP method for geospatial modeling of dry slab avalanches.

Keywords: GIS, FAHP, Šar Mountains, snow avalanches, environmental protection

Procedia PDF Downloads 96
8936 Keyloggers Prevention with Time-Sensitive Obfuscation

Authors: Chien-Wei Hung, Fu-Hau Hsu, Chuan-Sheng Wang, Chia-Hao Lee

Abstract:

Nowadays, the abuse of keyloggers is one of the most widespread approaches to steal sensitive information. In this paper, we propose an On-Screen Prompts Approach to Keyloggers (OSPAK) and its analysis, which is installed in public computers. OSPAK utilizes a canvas to cue users when their keystrokes are going to be logged or ignored by OSPAK. This approach can protect computers against recoding sensitive inputs, which obfuscates keyloggers with letters inserted among users' keystrokes. It adds a canvas below each password field in a webpage and consists of three parts: two background areas, a hit area and a moving foreground object. Letters at different valid time intervals are combined in accordance with their time interval orders, and valid time intervals are interleaved with invalid time intervals. It utilizes animation to visualize valid time intervals and invalid time intervals, which can be integrated in a webpage as a browser extension. We have tested it against a series of known keyloggers and also performed a study with 95 users to evaluate how easily the tool is used. Experimental results made by volunteers show that OSPAK is a simple approach.

Keywords: authentication, computer security, keylogger, privacy, information leakage

Procedia PDF Downloads 123
8935 Getting to Know ICU Nurses and Their Duties

Authors: Masih Nikgou

Abstract:

ICU nurses or intensive care nurses are highly specialized and trained healthcare personnel. These nurses provide nursing care for patients with life-threatening illnesses or conditions. They provide the experience, knowledge and specialized skills that patients need to survive and recover. Intensive care nurses (ICU) are trained to make momentary decisions and act quickly when the patient's condition changes. Their primary work environment is in the hospital in intensive care units. Typically, ICU patients require a high level of care. ICU nurses work in challenging and complex fields in their nursing profession. They have the primary duty of caring for and saving patients who are fighting for their lives. Intensive care (ICU) nurses are highly trained to provide exceptional care to patients who depend on 24/7 nursing care. A patient in the ICU is often equipped with a ventilator, intubated and connected to several life support machines and medical equipment. Intensive Care Nurses (ICU) have full expertise in considering all aspects of bringing back their patients. Some of the specific responsibilities of ICU nurses include (a) Assessing and monitoring the patient's progress and identifying any sudden changes in the patient's medical condition. (b) Administration of drugs intravenously by injection or through gastric tubes. (c) Provide regular updates on patient progress to physicians, patients, and their families. (d) According to the clinical condition of the patient, perform the approved diagnostic or treatment methods. (e) In case of a health emergency, informing the relevant doctors. (f) To determine the need for emergency interventions, evaluate laboratory data and vital signs of patients. (g) Caring for patient needs during recovery in the ICU. (h) ICU nurses often provide emotional support to patients and their families. (i) Regulating and monitoring medical equipment and devices such as medical ventilators, oxygen delivery devices, transducers, and pressure lines. (j) Assessment of pain level and sedation needs of patients. (k) Maintaining patient reports and records. As the name suggests, critical care nurses work primarily in ICU health care units. ICUs are completely healthy and have proper lighting with strict adherence to health and safety from medical centers. ICU nurses usually move between the intensive care unit, the emergency department, the operating room, and other special departments of the hospital. ICU nurses usually follow a standard shift schedule that includes morning, afternoon, and night schedules. There are also other relocation programs depending on the hospital and region. Nurses who are passionate about data and managing a patient's condition and outcomes typically do well as ICU nurses. An inquisitive mind and attention to processes are equally important. ICU nurses are completely compassionate and are not afraid to advocate for their patients and family members. who are distressed.

Keywords: nursing, intensive care unit, pediatric intensive care unit, mobile intensive care unit, surgical intensive care unite

Procedia PDF Downloads 80
8934 Multimodal Convolutional Neural Network for Musical Instrument Recognition

Authors: Yagya Raj Pandeya, Joonwhoan Lee

Abstract:

The dynamic behavior of music and video makes it difficult to evaluate musical instrument playing in a video by computer system. Any television or film video clip with music information are rich sources for analyzing musical instruments using modern machine learning technologies. In this research, we integrate the audio and video information sources using convolutional neural network (CNN) and pass network learned features through recurrent neural network (RNN) to preserve the dynamic behaviors of audio and video. We use different pre-trained CNN for music and video feature extraction and then fine tune each model. The music network use 2D convolutional network and video network use 3D convolution (C3D). Finally, we concatenate each music and video feature by preserving the time varying features. The long short term memory (LSTM) network is used for long-term dynamic feature characterization and then use late fusion with generalized mean. The proposed network performs better performance to recognize the musical instrument using audio-video multimodal neural network.

Keywords: multimodal, 3D convolution, music-video feature extraction, generalized mean

Procedia PDF Downloads 216
8933 Investigation of Preschool Children's Mathematics Concept Acquisition in Terms of Different Variables

Authors: Hilal Karakuş, Berrin Akman

Abstract:

Preschool years are considered as critical years because of shaping the future lives of individuals. All of the knowledge, skills, and concepts are acquired during this period. Also, basis of academic skills is based on this period. As all of the developmental areas are the fastest in that period, the basis of mathematics education should be given in this period, too. Mathematics is seen as a difficult and abstract course by the most people. Therefore, the enjoyable side of mathematics should be presented in a concrete way in this period to avoid any bias of children for mathematics. This study is conducted to examine mathematics concept acquisition of children in terms of different variables. Screening model is used in this study which is carried out in a quantity way. The study group of this research consists of total 300 children, selected from each class randomly in groups of five, who are from public and private preschools in Çankaya, which is district of Ankara, in 2014-2015 academic year and attending children in the nursery classes and preschool institutions are connected to the Ministry of National Education. The study group of the research was determined by stage sampling method. The schools, which formed study group, are chosen by easy sampling method and the children are chosen by simple random method. Research data were collected with Bracken Basic Concept Scale–Revised Form and Child’s Personal Information Form generated by the researcher in order to get information about children and their families. Bracken Basic Concept Scale-Revised Form consists of 11 sub-dimensions (color, letter, number, size, shape, comparison, direction-location, and quantity, individual and social awareness, building- material) and 307 items. Subtests related to the mathematics were used in this research. In the “Child Individual Information Form” there are items containing demographic information as followings: age of children, gender of children, attending preschools educational intuitions for children, school attendance, mother’s and father’s education levels. At the result of the study, while it was found that children’s mathematics skills differ from age, state of attending any preschool educational intuitions , time of attending any preschool educational intuitions, level of education of their mothers and their fathers; it was found that it does not differ by the gender and type of school they attend.

Keywords: preschool education, preschool period children, mathematics education, mathematics concept acquisitions

Procedia PDF Downloads 352
8932 A Decision Support System for the Detection of Illicit Substance Production Sites

Authors: Krystian Chachula, Robert Nowak

Abstract:

Manufacturing home-made explosives and synthetic drugs is an increasing problem in Europe. To combat that, a data fusion system is proposed for the detection and localization of production sites in urban environments. The data consists of measurements of properties of wastewater performed by various sensors installed in a sewage network. A four-stage fusion strategy allows detecting sources of waste products from known chemical reactions. First, suspicious measurements are used to compute the amount and position of discharged compounds. Then, this information is propagated through the sewage network to account for missing sensors. The next step is clustering and the formation of tracks. Eventually, tracks are used to reconstruct discharge events. Sensor measurements are simulated by a subsystem based on real-world data. In this paper, different discharge scenarios are considered to show how the parameters of used algorithms affect the effectiveness of the proposed system. This research is a part of the SYSTEM project (SYnergy of integrated Sensors and Technologies for urban sEcured environMent).

Keywords: continuous monitoring, information fusion and sensors, internet of things, multisensor fusion

Procedia PDF Downloads 117
8931 Biosensor: An Approach towards Sustainable Environment

Authors: Purnima Dhall, Rita Kumar

Abstract:

Introduction: River Yamuna, in the national capital territory (NCT), and also the primary source of drinking water for the city. Delhi discharges about 3,684 MLD of sewage through its 18 drains in to the Yamuna. Water quality monitoring is an important aspect of water management concerning to the pollution control. Public concern and legislation are now a day’s demanding better environmental control. Conventional method for estimating BOD5 has various drawbacks as they are expensive, time-consuming, and require the use of highly trained personnel. Stringent forthcoming regulations on the wastewater have necessitated the urge to develop analytical system, which contribute to greater process efficiency. Biosensors offer the possibility of real time analysis. Methodology: In the present study, a novel rapid method for the determination of biochemical oxygen demand (BOD) has been developed. Using the developed method, the BOD of a sample can be determined within 2 hours as compared to 3-5 days with the standard BOD3-5day assay. Moreover, the test is based on specified consortia instead of undefined seeding material therefore it minimizes the variability among the results. The device is coupled to software which automatically calculates the dilution required, so, the prior dilution of the sample is not required before BOD estimation. The developed BOD-Biosensor makes use of immobilized microorganisms to sense the biochemical oxygen demand of industrial wastewaters having low–moderate–high biodegradability. The method is quick, robust, online and less time consuming. Findings: The results of extensive testing of the developed biosensor on drains demonstrate that the BOD values obtained by the device correlated with conventional BOD values the observed R2 value was 0.995. The reproducibility of the measurements with the BOD biosensor was within a percentage deviation of ±10%. Advantages of developed BOD biosensor • Determines the water pollution quickly in 2 hours of time; • Determines the water pollution of all types of waste water; • Has prolonged shelf life of more than 400 days; • Enhanced repeatability and reproducibility values; • Elimination of COD estimation. Distinctiveness of Technology: • Bio-component: can determine BOD load of all types of waste water; • Immobilization: increased shelf life > 400 days, extended stability and viability; • Software: Reduces manual errors, reduction in estimation time. Conclusion: BiosensorBOD can be used to measure the BOD value of the real wastewater samples. The BOD biosensor showed good reproducibility in the results. This technology is useful in deciding treatment strategies well ahead and so facilitating discharge of properly treated water to common water bodies. The developed technology has been transferred to M/s Forbes Marshall Pvt Ltd, Pune.

Keywords: biosensor, biochemical oxygen demand, immobilized, monitoring, Yamuna

Procedia PDF Downloads 279
8930 Lecturers Attitudes towards the Use of Information and Communication Technology

Authors: Sujata Gupta Kedar, Fasiha Fayaz

Abstract:

This paper presents various studies being carried out by various researchers globally on the attitude of lecturers towards the advent of information technology and e-learning. An effort has been made in this paper to study the various trends being presented by researchers and draw some general conclusions. These show the effect of the lecturer’s gender, age and educational background on their attitude towards the e-learning. Also the favorable attitude of teachers' towards using new technology in teaching will certainly make teachers use them in appropriate situations in teaching and thus measuring of teachers attitude towards using new technology in teaching is very much needed. The sample of 50 males and 50 females were studied from different colleges of Bangalore “Attitudes towards using new technology scale” by Dr. Rajasekar was used. It was seen that male and female had no significant difference in hardware and software use, whereas both had favorable attitude. And there was a significant difference at 1% level among female lecturers belonging to arts faculty. There is no significant difference between the gender and age, because higher the age lower the score is. Irrespective of teaching experience males had no significant difference, whereas females are significant at 1% level, which says that higher the teaching experience of lecturers less knowledge they have towards the use of ICT, as the younger generation is more expose to technology.

Keywords: e-learning, ICT, attitudes, lecturers, communication technology

Procedia PDF Downloads 467
8929 Improvement of Brain Tumors Detection Using Markers and Boundaries Transform

Authors: Yousif Mohamed Y. Abdallah, Mommen A. Alkhir, Amel S. Algaddal

Abstract:

This was experimental study conducted to study segmentation of brain in MRI images using edge detection and morphology filters. For brain MRI images each film scanned using digitizer scanner then treated by using image processing program (MatLab), where the segmentation was studied. The scanned image was saved in a TIFF file format to preserve the quality of the image. Brain tissue can be easily detected in MRI image if the object has sufficient contrast from the background. We use edge detection and basic morphology tools to detect a brain. The segmentation of MRI images steps using detection and morphology filters were image reading, detection entire brain, dilation of the image, filling interior gaps inside the image, removal connected objects on borders and smoothen the object (brain). The results of this study were that it showed an alternate method for displaying the segmented object would be to place an outline around the segmented brain. Those filters approaches can help in removal of unwanted background information and increase diagnostic information of Brain MRI.

Keywords: improvement, brain, matlab, markers, boundaries

Procedia PDF Downloads 518
8928 Multiscale Modelling of Textile Reinforced Concrete: A Literature Review

Authors: Anicet Dansou

Abstract:

Textile reinforced concrete (TRC)is increasingly used nowadays in various fields, in particular civil engineering, where it is mainly used for the reinforcement of damaged reinforced concrete structures. TRC is a composite material composed of multi- or uni-axial textile reinforcements coupled with a fine-grained cementitious matrix. The TRC composite is an alternative solution to the traditional Fiber Reinforcement Polymer (FRP) composite. It has good mechanical performance and better temperature stability but also, it makes it possible to meet the criteria of sustainable development better.TRCs are highly anisotropic composite materials with nonlinear hardening behavior; their macroscopic behavior depends on multi-scale mechanisms. The characterization of these materials through numerical simulation has been the subject of many studies. Since TRCs are multiscale material by definition, numerical multi-scale approaches have emerged as one of the most suitable methods for the simulation of TRCs. They aim to incorporate information pertaining to microscale constitute behavior, mesoscale behavior, and macro-scale structure response within a unified model that enables rapid simulation of structures. The computational costs are hence significantly reduced compared to standard simulation at a fine scale. The fine scale information can be implicitly introduced in the macro scale model: approaches of this type are called non-classical. A representative volume element is defined, and the fine scale information are homogenized over it. Analytical and computational homogenization and nested mesh methods belong to these approaches. On the other hand, in classical approaches, the fine scale information are explicitly introduced in the macro scale model. Such approaches pertain to adaptive mesh refinement strategies, sub-modelling, domain decomposition, and multigrid methods This research presents the main principles of numerical multiscale approaches. Advantages and limitations are identified according to several criteria: the assumptions made (fidelity), the number of input parameters required, the calculation costs (efficiency), etc. A bibliographic study of recent results and advances and of the scientific obstacles to be overcome in order to achieve an effective simulation of textile reinforced concrete in civil engineering is presented. A comparative study is further carried out between several methods for the simulation of TRCs used for the structural reinforcement of reinforced concrete structures.

Keywords: composites structures, multiscale methods, numerical modeling, textile reinforced concrete

Procedia PDF Downloads 110
8927 Love and Loss: The Emergence of Shame in Romantic Information Communication Technology

Authors: C. Caudwell, R. Syed, C. Lacey

Abstract:

While the development and advancement of information communication technologies (ICTs) offers powerful opportunities for meaningful connections and relationships, shame is a significant barrier to social and cultural acceptance. In particular, artificial intelligence and socially oriented robots are increasingly becoming partners in romantic relationships with people, offering bonding, support, comfort, growth, and reciprocity. However, these relationships suffer hierarchical, anthropocentric shame that is a significant barrier to their success and longevity. This paper will present case studies of human and artificially intelligent agent relationships, in the context of internal and external shame, as cultivated, propagated, and communicated through ICT. Using an interdisciplinary methodology we aim to present a framework for technological shame, building on the experimental and emergent psychoanalytical theories of emotions. Our study finds principally that socialization is a powerful factor in the vectors of shame as experienced by humans. On a wider scale, we contribute understanding of social emotion and the phenomenon of shame proliferated through ICTs, which is at present under-explored, but vital, as society and culture is increasingly mediated through this medium.

Keywords: shame, artificial intelligence, romance, society

Procedia PDF Downloads 135
8926 Building Green Infrastructure Networks Based on Cadastral Parcels Using Network Analysis

Authors: Gon Park

Abstract:

Seoul in South Korea established the 2030 Seoul City Master Plan that contains green-link projects to connect critical green areas within the city. However, the plan does not have detailed analyses for green infrastructure to incorporate land-cover information to many structural classes. This study maps green infrastructure networks of Seoul for complementing their green plans with identifying and raking green areas. Hubs and links of main elements of green infrastructure have been identified from incorporating cadastral data of 967,502 parcels to 135 of land use maps using geographic information system. Network analyses were used to rank hubs and links of a green infrastructure map with applying a force-directed algorithm, weighted values, and binary relationships that has metrics of density, distance, and centrality. The results indicate that network analyses using cadastral parcel data can be used as the framework to identify and rank hubs, links, and networks for the green infrastructure planning under a variable scenarios of green areas in cities.

Keywords: cadastral data, green Infrastructure, network analysis, parcel data

Procedia PDF Downloads 209
8925 Rules in Policy Integration, Case Study: Victoria Catchment Management

Authors: Ratri Werdiningtyas, Yongping Wei, Andrew Western

Abstract:

This paper contributes to on-going attempts at bringing together land, water and environmental policy in catchment management. A tension remains in defining the boundaries of policy integration. Most of Integrated Water Resource Management is valued as rhetoric policy. It is far from being achieved on the ground because the socio-ecological system has not been understood and developed into complete and coherent problem representation. To clarify the feature of integration, this article draws on institutional fit for public policy integration and uses these insights in an empirical setting to identify the mechanism that can facilitate effective public integration for catchment management. This research is based on the journey of Victoria’s government from 1890-2016. A total of 274 Victorian Acts related to land, water, environment management published in those periods has been investigated. Four conditions of integration have been identified in their co-evolution: (1) the integration policy based on reserves, (2) the integration policy based on authority interest, (3) policy based on integrated information and, (4) policy based coordinated resource, authority and information. Results suggest that policy coordination among their policy instrument is superior rather than policy integration in the case of catchment management.

Keywords: catchment management, co-evolution, policy integration, phase

Procedia PDF Downloads 249
8924 An Exploratory Study Regarding the Effects of Auditor Switch, Auditee’s Industry, and Auditee’s Location on Audit Fees in Australia

Authors: Ashkan Mirzay Fashami

Abstract:

This study examines the effects of auditor switch, auditee’s industry, and auditee’s location on audit fees in Australia. It uses fee data of Australian Securities Exchange 500 companies, considering all industry classifications throughout the country from 2006 until 2016. Main findings show that auditor switch does not affect audit fees. However, auditee’s industry affects audit fees. This effect occurs in information technology, financials, energy, and materials sectors among the top 500 companies. Financials, energy, and materials sectors face a fee rise, whereas information technology has a fee cut. The extent of fee changes is different among various industries, wherein the financial sector has the highest increase. Further, auditee’s location affects audit fees. Top 500 companies in Hobart, Perth, and Brisbane face a fee reduction, wherein the highest cut is in Hobart. Further analysis suggests that the Australian audit market is being increasingly concentrated in the hands of the Big Four audit firms.

Keywords: audit, auditor switch, Australia, fee, low-balling

Procedia PDF Downloads 141
8923 Spatiotemporal Neural Network for Video-Based Pose Estimation

Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan

Abstract:

Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.

Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series

Procedia PDF Downloads 150
8922 Human Machine Interface for Controlling a Robot Using Image Processing

Authors: Ambuj Kumar Gautam, V. Vasu

Abstract:

This paper introduces a head movement based Human Machine Interface (HMI) that uses the right and left movements of head to control a robot motion. Here we present an approach for making an effective technique for real-time face orientation information system, to control a robot which can be efficiently used for Electrical Powered Wheelchair (EPW). Basically this project aims at application related to HMI. The system (machine) identifies the orientation of the face movement with respect to the pixel values of image in a certain areas. Initially we take an image and divide that whole image into three parts on the basis of its number of columns. On the basis of orientation of face, maximum pixel value of approximate same range of (R, G, and B value of a pixel) lie in one of divided parts of image. This information we transfer to the microcontroller through serial communication port and control the motion of robot like forward motion, left and right turn and stop in real time by using head movements.

Keywords: electrical powered wheelchair (EPW), human machine interface (HMI), robotics, microcontroller

Procedia PDF Downloads 292
8921 Turkey Disaster Risk Management System Project (TAFRISK)

Authors: Ahmet Parlak, Celalettin Bilgen

Abstract:

In order to create an effective early warning system, Identification of the risks, preparation and carrying out risk modeling of risk scenarios, taking into account the shortcomings of the old disaster scenarios should be used to improve the system. In the light of this, the importance of risk modeling in creating an effective early warning system is understood. In the scope of TAFRISK project risk modeling trend analysis report on risk modeling developed and a demonstration was conducted for Risk Modeling for flood and mass movements. For risk modeling R&D, studies have been conducted to determine the information, and source of the information, to be gathered, to develop algorithms and to adapt the current algorithms to Turkey’s conditions for determining the risk score in the high disaster risk areas. For each type of the disaster; Disaster Deficit Index (DDI), Local Disaster Index (LDI), Prevalent Vulnerability Index (PVI), Risk Management Index (RMI) have been developed as disaster indices taking danger, sensitivity, fragility, and vulnerability, the physical and economic damage into account in the appropriate scale of the respective type.

Keywords: disaster, hazard, risk modeling, sensor

Procedia PDF Downloads 431