Search results for: noise measurements
1534 Kinetics, Equilibrium and Thermodynamic Studies on Adsorption of Reactive Blue 29 from Aqueous Solution Using Activated Tamarind Kernel Powder
Authors: E. D. Paul, A. D. Adams, O. Sunmonu, U. S. Ishiaku
Abstract:
Activated tamarind kernel powder (ATKP) was prepared from tamarind fruit (Tamarindus indica), and utilized for the removal of Reactive Blue 29 (RB29) from its aqueous solution. The powder was activated using 4N nitric acid (HNO₃). The adsorbent was characterised using infrared spectroscopy, bulk density, ash content, pH, moisture content and dry matter content measurements. The effect of various parameters which include; temperature, pH, adsorbent dosage, ion concentration, and contact time were studied. Four different equilibrium isotherm models were tested on the experimental data, but the Temkin isotherm model was best-fitted into the experimental data. The pseudo-first order and pseudo-second-order kinetic models were also fitted into the graphs, but pseudo-second order was best fitted to the experimental data. The thermodynamic parameters showed that the adsorption of Reactive Blue 29 onto activated tamarind kernel powder is a physical process, feasible and spontaneous, exothermic in nature and there is decreased randomness at the solid/solution interphase during the adsorption process. Therefore, activated tamarind kernel powder has proven to be a very good adsorbent for the removal of Reactive Blue 29 dyes from industrial waste water.Keywords: tamarind kernel powder, reactive blue 29, isotherms, kinetics
Procedia PDF Downloads 2471533 A Comparative Analysis of Thermal Performance of Building Envelope Types over Time
Authors: Aram Yeretzian, Yaser Abunnasr, Zahraa Makki, Betina Abi Habib
Abstract:
Developments in architectural building typologies that are informed by prevalent construction techniques and socio-cultural practices generate different adaptations in the building envelope. While different building envelope types exhibit different climate responsive passive strategies, the individual and comparative thermal performance analysis resulting from these technologies is yet to be understood. This research aims to develop this analysis by selecting three building envelope types from three distinct building traditions by measuring the heat transmission in the city of Beirut. The three typical residential buildings are selected from the 1920s, 1940s, and 1990s within the same street to ensure similar climatic and urban conditions. Climatic data loggers are installed inside and outside of the three locations to measure indoor and outdoor temperatures, relative humidity, and heat flow. The analysis of the thermal measurements is complemented by site surveys on window opening, lighting, and occupancy in the three selected locations and research on building technology from the three periods. Apart from defining the U-value of the building envelopes, the collected data will help evaluate the indoor environments with respect to the thermal comfort zone. This research, thus, validates and contextualizes the role of building technologies in relation to climate responsive design.Keywords: architecture, wall construction, envelope performance, thermal comfort
Procedia PDF Downloads 2341532 Haemocompatibility of Surface Modified AISI 316L Austenitic Stainless Steel Tested in Artificial Plasma
Authors: W. Walke, J. Przondziono, K. Nowińska
Abstract:
The study comprises evaluation of suitability of passive layer created on the surface of AISI 316L stainless steel for products that are intended to have contact with blood. For that purpose, prior to and after chemical passivation, samples were subject to 7 day exposure in artificial plasma at the temperature of T=37°C. Next, tests of metallic ions infiltration from the surface to the solution were performed. The tests were performed with application of spectrometer JY 2000, by Yobin – Yvon, employing Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). In order to characterize physical and chemical features of electrochemical processes taking place during exposure of samples to artificial plasma, tests with application of electrochemical impedance spectroscopy were suggested. The tests were performed with application of measuring unit equipped with potentiostat PGSTAT 302n with an attachment for impedance tests FRA2. Measurements were made in the environment simulating human blood at the temperature of T=37°C. Performed tests proved that application of chemical passivation process for AISI 316L stainless steel used for production of goods intended to have contact with blood is well-grounded and useful in order to improve safety of their usage.Keywords: AISI 316L stainless steel, chemical passivation, artificial plasma, ions infiltration, EIS
Procedia PDF Downloads 2661531 Application of Stabilized Polyaniline Microparticles for Better Protective Ability of Zinc Coatings
Authors: N. Boshkova, K. Kamburova, N. Tabakova, N. Boshkov, Ts. Radeva
Abstract:
Coatings based on polyaniline (PANI) can improve the resistance of steel against corrosion. In this work, the preparation of stable suspensions of colloidal PANI-SiO2 particles, suitable for obtaining of composite anticorrosive coating on steel, is described. Electrokinetic data as a function of pH are presented, showing that the zeta potentials of the PANI-SiO2 particles are governed primarily by the charged groups at the silica oxide surface. Electrosteric stabilization of the PANI-SiO2 particles’ suspension against aggregation is realized at pH>5.5 (EB form of PANI) by adsorption of positively charged polyelectrolyte molecules onto negatively charged PANI-SiO2 particles. The PANI-SiO2 particles are incorporated by electrodeposition into the metal matrix of zinc in order to obtain composite (hybrid) coatings. The latter are aimed to ensure sacrificial protection of steel mainly in aggressive media leading to local corrosion damages. The surface morphology of the composite zinc coatings is investigated with SEM. The influence of PANI-SiO2 particles on the cathodic and anodic processes occurring in the starting electrolyte for obtaining of the coatings is followed with cyclic voltammetry. The electrochemical and corrosion behavior is evaluated with potentiodynamic polarization curves and polarization resistance measurements. The beneficial effect of the stabilized PANI-SiO2 particles for the increased protective ability of the composites is commented and discussed.Keywords: corrosion, polyaniline-silica particles, zinc, protective ability
Procedia PDF Downloads 1721530 The Characteristics of Quantity Operation for 2nd and 3rd Grade Mathematics Slow Learners
Authors: Pi-Hsia Hung
Abstract:
The development of mathematical competency has individual benefits as well as benefits to the wider society. Children who begin school behind their peers in their understanding of number, counting, and simple arithmetic are at high risk of staying behind throughout their schooling. The development of effective strategies for improving the educational trajectory of these individuals will be contingent on identifying areas of early quantitative knowledge that influence later mathematics achievement. A computer-based quantity assessment was developed in this study to investigate the characteristics of 2nd and 3rd grade slow learners in quantity. The concept of quantification involves understanding measurements, counts, magnitudes, units, indicators, relative size, and numerical trends and patterns. Fifty-five tasks of quantitative reasoning—such as number sense, mental calculation, estimation and assessment of reasonableness of results—are included as quantity problem solving. Thus, quantity is defined in this study as applying knowledge of number and number operations in a wide variety of authentic settings. Around 1000 students were tested and categorized into 4 different performance levels. Students’ quantity ability correlated higher with their school math grade than other subjects. Around 20% students are below basic level. The intervention design implications of the preliminary item map constructed are discussed.Keywords: mathematics assessment, mathematical cognition, quantity, number sense, validity
Procedia PDF Downloads 2471529 Comparison of Different Techniques to Estimate Surface Soil Moisture
Authors: S. Farid F. Mojtahedi, Ali Khosravi, Behnaz Naeimian, S. Adel A. Hosseini
Abstract:
Land subsidence is a gradual settling or sudden sinking of the land surface from changes that take place underground. There are different causes of land subsidence; most notably, ground-water overdraft and severe weather conditions. Subsidence of the land surface due to ground water overdraft is caused by an increase in the intergranular pressure in unconsolidated aquifers, which results in a loss of buoyancy of solid particles in the zone dewatered by the falling water table and accordingly compaction of the aquifer. On the other hand, exploitation of underground water may result in significant changes in degree of saturation of soil layers above the water table, increasing the effective stress in these layers, and considerable soil settlements. This study focuses on estimation of soil moisture at surface using different methods. Specifically, different methods for the estimation of moisture content at the soil surface, as an important term to solve Richard’s equation and estimate soil moisture profile are presented, and their results are discussed through comparison with field measurements obtained from Yanco1 station in south-eastern Australia. Surface soil moisture is not easy to measure at the spatial scale of a catchment. Due to the heterogeneity of soil type, land use, and topography, surface soil moisture may change considerably in space and time.Keywords: artificial neural network, empirical method, remote sensing, surface soil moisture, unsaturated soil
Procedia PDF Downloads 3591528 The Role of Microbe-Microplastics Associations in Marine Nematode Feeding Behaviors
Abstract:
Microplastics (MPs; < 5 mm) have been cited as exceptionally detrimental to marine organisms and ocean health. They can carry other pollutants and abundant microbes that can serve as food for other organisms. Their small particle size and high abundance means that non-discriminatory feeders may ingest MPs involuntarily and microbial colonization of the particles (a niche coined ‘Plastisphere’) could facilitate particle ingestion. To assess how marine nematodes, the most abundant member of the meiofauna (32-500 um), are affected by microbe-MP associations, an experiment was conducted with three MP concentrations (low, medium, and expected high values of MPs in a local bay system), and two levels of microbe-MP associations (absence or presence). MPs were introduced into sediment microcosms and treatments were removed at three distinct time points (0, 3, and 7 days) to measure mean MP consumption/individual nematode. The quantitative results from this work should inform on microbial facilitation of MP ingestion and MP effects on seafloor ecology. As most MP feeding experiments use straight-from-package or sterile MPs, this work represents an important step in realizing the effects of MPs and their plastispheres in coastal sediments where they likely accumulate microbial biofilms prior to their ingestion by marine metazoans. Furthermore, the results here convey realistic effects of MPs on faunal behaviors, as the MP concentrations used are based on field measurements rather than artificially high levels.Keywords: ecosystem function, microbeads, plastisphere, pollution, polyethylene
Procedia PDF Downloads 981527 An Intelligent Controller Augmented with Variable Zero Lag Compensation for Antilock Braking System
Authors: Benjamin Chijioke Agwah, Paulinus Chinaenye Eze
Abstract:
Antilock braking system (ABS) is one of the important contributions by the automobile industry, designed to ensure road safety in such way that vehicles are kept steerable and stable when during emergency braking. This paper presents a wheel slip-based intelligent controller with variable zero lag compensation for ABS. It is required to achieve a very fast perfect wheel slip tracking during hard braking condition and eliminate chattering with improved transient and steady state performance, while shortening the stopping distance using effective braking torque less than maximum allowable torque to bring a braking vehicle to a stop. The dynamic of a vehicle braking with a braking velocity of 30 ms⁻¹ on a straight line was determined and modelled in MATLAB/Simulink environment to represent a conventional ABS system without a controller. Simulation results indicated that system without a controller was not able to track desired wheel slip and the stopping distance was 135.2 m. Hence, an intelligent control based on fuzzy logic controller (FLC) was designed with a variable zero lag compensator (VZLC) added to enhance the performance of FLC control variable by eliminating steady state error, provide improve bandwidth to eliminate the effect of high frequency noise such as chattering during braking. The simulation results showed that FLC- VZLC provided fast tracking of desired wheel slip, eliminate chattering, and reduced stopping distance by 70.5% (39.92 m), 63.3% (49.59 m), 57.6% (57.35 m) and 50% (69.13 m) on dry, wet, cobblestone and snow road surface conditions respectively. Generally, the proposed system used effective braking torque that is less than the maximum allowable braking torque to achieve efficient wheel slip tracking and overall robust control performance on different road surfaces.Keywords: ABS, fuzzy logic controller, variable zero lag compensator, wheel slip tracking
Procedia PDF Downloads 1471526 Effects of Transtheoretical Model in Obese and Overweight Women Nutritional Behavior Change and Lose Weight
Authors: Abdmohammad Mousavi, Mohsen Shams, Mehdi Akbartabar Toori, Ali Mousavizadeh, Mohammad Ali Morowatisharifabad
Abstract:
The effectiveness of Transtheoretical Model (TTM) on nutritional behavior change and lose weight has been subject to questions by some studies. The objective of this study was to determine the effect of nutritional behavior change and lose weight interventions based on TTM in obese and overweight women. This experimental study that was a 8 months trial nutritional behavior change and weight loss program based on TTM with two conditions and pre–post intervention measurements weight mean. 299 obese and overweight 20-44 years old women were selected from two health centers include training (142) and control (157) groups in Yasuj, a city in south west of Iran. Data were analyzed using paired T-test and One–Way ANOVA tests. In baseline, adherence with nutritional healthy behavior in training group(9.4%) compare with control(38.8%) were different significantly(p=.003), weight mean of training(Mean=78.02 kg, SD=11.67) compared with control group(Mean=77.23 kg, SD=10.25) were not (P=.66). In post test, adherence with nutritional healthy behavior in training group(70.1%) compare with control (37.4%) were different significantly (p=.000), weight mean of training (Mean=74.65 kg, SD=10.93, p=.000) compare with pre test were different significantly and control (Mean=77.43 kg, SD=10.43, p=.411) were not. The training group has lost 3.37 kg weight, whereas the control group has increased .2 kg weight. These results supported the applicability of the TTM for women weight lose intervention.Keywords: nutritional behavior, Transtheoretical Model, weight lose, women
Procedia PDF Downloads 4841525 Estimation of Heritability and Repeatability for Pre-Weaning Body Weights of Domestic Rabbits Raised in Derived Savanna Zone of Nigeria
Authors: Adewale I. Adeolu, Vivian U. Oleforuh-Okoleh, Sylvester N. Ibe
Abstract:
Heritability and repeatability estimates are needed for the genetic evaluation of livestock populations and consequently for the purpose of upgrading or improvement. Pooled data on 604 progeny from three consecutive parities of purebred rabbit breeds (Chinchilla, Dutch and New Zealand white) raised in Derived Savanna Zone of Nigeria were used to estimate heritability and repeatability for pre-weaning body weights between 1st and 8th week of age. Traits studied include Individual kit weight at birth (IKWB), 2nd week (IK2W), 4th week (IK4W), 6th week (IK6W) and 8th week (IK8W). Nested random effects analysis of (Co)variances as described by Statistical Analysis System (SAS) were employed in the estimation. Respective heritability estimates from the sire component (h2s) and repeatability (R) as intra-class correlations of repeated measurements from the three parties for IKWB, IK2W, IK4W and IK8W are 0.59±0.24, 0.55±0.24, 0.93±0.31, 0.28±0.17, 0.64±0.26 and 0.12±0.14, 0.05±0.14, 0.58±0.02, 0.60±0.11, 0.20±0.14. Heritability and repeatability (except R for IKWB and IK2W) estimates are moderate to high. In conclusion, since pre-weaning body weights in the present study tended to be moderately to highly heritable and repeatable, improvement of rabbits raised in derived savanna zone can be realized through genetic selection criterions.Keywords: heritability, nested design, parity, pooled data, repeatability
Procedia PDF Downloads 1471524 Development and Validation of Work Movement Task Analysis: Part 1
Authors: Mohd Zubairy Bin Shamsudin
Abstract:
Work-related Musculoskeletal Disorder (WMSDs) is one of the occupational health problems encountered by workers over the world. In Malaysia, there is increasing in trend over the years, particularly in the manufacturing sectors. Current method to observe workplace WMSDs is self-report questionnaire, observation and direct measurement. Observational method is most frequently used by the researcher and practitioner because of the simplified, quick and versatile when it applies to the worksite. However, there are some limitations identified e.g. some approach does not cover a wide spectrum of biomechanics activity and not sufficiently sensitive to assess the actual risks. This paper elucidates the development of Work Movement Task Analysis (WMTA), which is an observational tool for industrial practitioners’ especially untrained personnel to assess WMSDs risk factors and provide a basis for suitable intervention. First stage of the development protocol involved literature reviews, practitioner survey, tool validation and reliability. A total of six themes/comments were received in face validity stage. New revision of WMTA consisted of four sections of postural (neck, back, shoulder, arms, and legs) and associated risk factors; movement, load, coupling and basic environmental factors (lighting, noise, odorless, heat and slippery floor). For inter-rater reliability study shows substantial agreement among rater with K = 0.70. Meanwhile, WMTA validation shows significant association between WMTA score and self-reported pain or discomfort for the back, shoulder&arms and knee&legs with p<0.05. This tool is expected to provide new workplace ergonomic observational tool to assess WMSDs for the next stage of the case study.Keywords: assessment, biomechanics, musculoskeletal disorders, observational tools
Procedia PDF Downloads 4691523 Ground Response Analyses in Budapest Based on Site Investigations and Laboratory Measurements
Authors: Zsolt Szilvágyi, Jakub Panuska, Orsolya Kegyes-Brassai, Ákos Wolf, Péter Tildy, Richard P. Ray
Abstract:
Near-surface loose sediments and local ground conditions in general have a major influence on seismic response of structures. It is a difficult task to model ground behavior in seismic soil-structure-foundation interaction problems, fully account for them in seismic design of structures, or even properly consider them in seismic hazard assessment. In this study, we focused on applying seismic soil investigation methods, used for determining soil stiffness and damping properties, to response analysis used in seismic design. A site in Budapest, Hungary was investigated using Multichannel Analysis of Surface Waves, Seismic Cone Penetration Tests, Bender Elements, Resonant Column and Torsional Shear tests. Our aim was to compare the results of the different test methods and use the resulting soil properties for 1D ground response analysis. Often in practice, there are little-to no data available on dynamic soil properties and estimated parameters are used for design. Therefore, a comparison is made between results based on estimated parameters and those based on detailed investigations. Ground response results are also compared to Eurocode 8 design spectra.Keywords: MASW, resonant column test, SCPT, site response analysis, torsional shear test
Procedia PDF Downloads 4001522 Sizing and Thermal Analysis of Mechanically Pumped Fluid Loop Thermal Control Technique for Small Satellite Scientific Applications
Authors: Shanmugasundaram Selvadurai, Amal Chandran
Abstract:
Small satellites have become an alternative low-cost solution for several missions to accomplish specific missions such as Earth imaging, Technology demonstration, Education, and other commercial purposes. Small satellite missions focusing on Infrared imaging applications require lower temperature for scientific instruments and such low temperature can be achieved only using external cryocoolers but the disadvantage is that they generate a large amount of waste heat. Existing passive thermal control techniques are not capable to handle such large thermal loads and hence one of the traditional active Thermal Control System (TCS) is studied for a small satellite configuration. This work aims to downscale the existing Mechanically Pumped Fluid Loop (MPFL) TCS to a 27U CubeSat platform for an imaginary scientific instrument. The temperature-sensitive detector in the instrument considered to be maintained between 130K and 150K to reduce dark current noise and increase the data quality. A Single-Phase fluid based MPFL is chosen for this system-level study and this TCS consists of a microfluid pump, a micro-cryocooler, a fluid accumulator, external heaters, flow regulators, and sensors. This work also explains the thermal control system architecture with a conceptual design, arrangement of all the components, and thermal analysis for different low orbit conditions. Sizing and extensive trade studies for the components are conducted and the results have shown that the Single-phase MPFL system is able to handle the given thermal loads and maintain the satellite’s interface temperature within the desired limit.Keywords: active thermal control system, satellite thermal, mechanically pumped fluid loop system, cryogenics, cryocooler
Procedia PDF Downloads 2611521 ADA Tool for Satellite InSAR-Based Ground Displacement Analysis: The Granada Region
Authors: M. Cuevas-González, O. Monserrat, A. Barra, C. Reyes-Carmona, R.M. Mateos, J. P. Galve, R. Sarro, M. Cantalejo, E. Peña, M. Martínez-Corbella, J. A. Luque, J. M. Azañón, A. Millares, M. Béjar, J. A. Navarro, L. Solari
Abstract:
Geohazard prone areas require continuous monitoring to detect risks, understand the phenomena occurring in those regions and prevent disasters. Satellite interferometry (InSAR) has come to be a trustworthy technique for ground movement detection and monitoring in the last few years. InSAR based techniques allow to process large areas providing high number of displacement measurements at low cost. However, the results provided by such techniques are usually not easy to interpret by non-experienced users hampering its use for decision makers. This work presents a set of tools developed in the framework of different projects (Momit, Safety, U-Geohaz, Riskcoast) and an example of their use in the Granada Coastal area (Spain) is shown. The ADA (Active Displacement Areas) tool have been developed with the aim of easing the management, use and interpretation of InSAR based results. It provides a semi-automatic extraction of the most significant ADAs through the application ADAFinder tool. This tool aims to support the exploitation of the European Ground Motion Service (EU-GMS), which will provide consistent, regular and reliable information regarding natural and anthropogenic ground motion phenomena all over Europe.Keywords: ground displacements, InSAR, natural hazards, satellite imagery
Procedia PDF Downloads 2191520 Correlation between Dynamic Knee Valgus with Isometric Hip Abductors Strength during Single-Leg Landing
Authors: Ahmed Fawzy, Khaled Ayad, Gh. M. Koura, W. Reda
Abstract:
The knee joint complex is one of the most commonly injured areas of the body in athletes. Excessive frontal plane knee excursion is considered a risk factor for multiple knee pathologies such as anterior cruciate ligament and patellofemoral joint injuries, however, little is known about the biomechanical factors that contribute to this loading pattern. Objectives: The purpose of this study was to investigate if there is a relationship between hip abductors isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Methods: One hundred (male) subjects free from lower extremity injuries for at least six months ago participated in this study. Their mean age was (23.25 ± 2.88) years, mean weight was (74.76 ± 13.54) (Kg), mean height was (174.23 ± 6.56) (Cm). The knee frontal plane projection angle was measured by digital video camera using single leg landing task. Hip abductors isometric strength were assessed by portable hand-held dynamometer. Muscle strength had been normalized to the body weight to obtain more accurate measurements. Results: The results demonstrated that there was no significant relationship between hip abductors isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Conclusion: It can be concluded that there is no relationship between hip abductors isometric strength and the value of FPPA during functional activities in normal male subjects.Keywords: 2-dimensional motion analysis, hip strength, kinematics, knee injuries
Procedia PDF Downloads 2481519 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 591518 A Biomechanical Perfusion System for Microfluidic 3D Bioprinted Structure
Authors: M. Dimitri, M. Ricci, F. Bigi, M. Romiti, A. Corvi
Abstract:
Tissue engineering has reached a significant milestone with the integration of 3D printing for the creation of complex bioconstructs equipped with vascular networks, crucial for cell maintenance and growth. This study aims to demonstrate the effectiveness of a portable microperfusion system designed to adapt dynamically to the evolving conditions of cell growth within 3D-printed bioconstructs. The microperfusion system was developed to provide a constant and controlled flow of nutrients and oxygen through the integrated vessels in the bioconstruct, replicating in vivo physiological conditions. Through a series of preliminary experiments, we evaluated the system's ability to maintain a favorable environment for cell proliferation and differentiation. Measurements of cell density and viability were performed to monitor the health and functionality of the tissue over time. Preliminary results indicate that the portable microperfusion system not only supports but optimizes cell growth, effectively adapting to changes in metabolic needs during the bioconstruct maturation process. This research opens perspectives in tissue engineering, demonstrating that a portable microperfusion system can be successfully integrated into 3D-printed bioconstructs, promoting sustainable and uniform cell growth. The implications of this study are far-reaching, with potential applications in regenerative medicine and pharmacological research, providing a platform for the development of functional and complex tissues.Keywords: biofabrication, microfluidic perfusion system, 4D bioprinting
Procedia PDF Downloads 301517 Real-World PM, PN and NOx Emission Differences among DOC+CDPF Retrofit Diesel-, Diesel- And Natural Gas-Fueled Bus
Authors: Zhiwen Yang, Jingyuan Li, Zhenkai Xie, Jian Ling, Jiguang Wang, Mengliang Li
Abstract:
To reflect the effects of different emission control strategies, such as retrofitting after-treatment system and replacing with natural gas-fueled vehicles, on particle number (PN), particle mass (PM) and nitrogen oxides (NOx) emissions emitted by urban bus, a portable emission measurement system (PEMS) was employed herein to conduct real-world driving emission measurements on a diesel oxidation catalytic converter (DOC) and catalyzed diesel particulate filter (CDPF) retrofitting China IV diesel bus, a China IV diesel bus, and a China V natural gas bus. The results show that both tested diesel buses possess markedly advantages in NOx emission control when compared to the lean-burn natural gas bus equipped without any NOx after-treatment system. As to PN and PM, only the DOC+CDPF retrofitting diesel bus exhibits enormous benefits on emission control relate to the natural gas bus, especially the normal diesel bus. Meanwhile, the differences in PM and PN emissions between retrofitted and normal diesel buses generally increase with the increase in vehicle-specific power (VSP). Furthermore, the differences in PM emissions, especially those in the higher VSP ranges, are more significant than those in PN. In addition, the maximum peak PN particle size (32 nm) of the retrofitted diesel bus was significantly lower than that of the normal diesel bus (100 nm). These phenomena indicate that the CDPF retrofitting can effectively reduce diesel bus exhaust particle emissions, especially those with large particle sizes.Keywords: CDPF, diesel, natural gas, real-world emissions
Procedia PDF Downloads 2971516 Quantitative Assessment of Soft Tissues by Statistical Analysis of Ultrasound Backscattered Signals
Authors: Da-Ming Huang, Ya-Ting Tsai, Shyh-Hau Wang
Abstract:
Ultrasound signals backscattered from the soft tissues are mainly depending on the size, density, distribution, and other elastic properties of scatterers in the interrogated sample volume. The quantitative analysis of ultrasonic backscattering is frequently implemented using the statistical approach due to that of backscattering signals tends to be with the nature of the random variable. Thus, the statistical analysis, such as Nakagami statistics, has been applied to characterize the density and distribution of scatterers of a sample. Yet, the accuracy of statistical analysis could be readily affected by the receiving signals associated with the nature of incident ultrasound wave and acoustical properties of samples. Thus, in the present study, efforts were made to explore such effects as the ultrasound operational modes and attenuation of biological tissue on the estimation of corresponding Nakagami statistical parameter (m parameter). In vitro measurements were performed from healthy and pathological fibrosis porcine livers using different single-element ultrasound transducers and duty cycles of incident tone burst ranging respectively from 3.5 to 7.5 MHz and 10 to 50%. Results demonstrated that the estimated m parameter tends to be sensitively affected by the use of ultrasound operational modes as well as the tissue attenuation. The healthy and pathological tissues may be characterized quantitatively by m parameter under fixed measurement conditions and proper calibration.Keywords: ultrasound backscattering, statistical analysis, operational mode, attenuation
Procedia PDF Downloads 3231515 Eliminating Arm, Neck and Leg Fatigue of United Asia International Plastics Corporation Workers through Rapid Entire Body Assessment
Authors: John Cheferson R. De Belen, John Paul G. Elizares, Ronald John G. Raz, Janina Elyse A. Reyes, Charie G. Salengua, Aristotle L. Soriano
Abstract:
Plastic is a type of synthetic or man-made polymer that can readily be molded into a variety of products. Its usage over the past century has enabled society to make huge technological advances. The workers of United Asia International Plastics Corporation (UAIPC), a plastic manufacturing company performs manual packaging which causes fatigue and stress on their arm, neck, and legs due to extended periods of standing and repetitive motions. With the use of the Fishbone Diagram, Five-Why Analysis, Rapid Entire Body Assessment (REBA), and Anthropometry, the stressful tasks and activities were identified and analyzed. Given the anthropometric measurements obtained from the workers, improved dimensions for the tables and chairs should be used and provide a new packaging machine. The validation of this proposal shall follow after its implementation. By eliminating fatigue during working hours in the production, the workers will be at ease at performing their work properly; productivity will increase that will lead to more profit. Further areas for study include measurement and comparison of the worker’s anthropometric measurement with the industry standard.Keywords: anthropometry, fishbone diagram, five-why analysis, rapid entire body assessment
Procedia PDF Downloads 2641514 Numerical Analysis of Wire Laser Additive Manufacturing for Low Carbon Steels+
Authors: Juan Manuel Martinez Alvarez, Michele Chiumenti
Abstract:
This work explores the benefit of the thermo-metallurgical simulation to tackle the Wire Laser Additive Manufacturing (WLAM) of low-carbon steel components. The Finite Element Analysis is calibrated by process monitoring via thermal imaging and thermocouples measurements, to study the complex thermo-metallurgical behavior inherent to the WLAM process of low carbon steel parts.A critical aspect is the analysis of the heterogeneity in the resulting microstructure. This heterogeneity depends on both the thermal history and the residual stresses experienced during the WLAM process. Because of low carbon grades are highly sensitive to quenching, a high-gradient microstructure often arises due to the layer-by-layer metal deposition in WLAM. The different phases have been identified by scanning electron microscope. A clear influence of the heterogeneities on the final mechanical performance has been established by the subsequent mechanical characterization. The thermo-metallurgical analysis has been used to determine the actual thermal history and the corresponding thermal gradients during the printing process. The correlation between the thermos-mechanical evolution, the printing parameters and scanning sequence has been established. Therefore, an enhanced printing strategy, including optimized process window has been used to minimize the microstructure heterogeneity at ArcelorMittal.Keywords: additive manufacturing, numerical simulation, metallurgy, steel
Procedia PDF Downloads 711513 3D Carbon Structures (Globugraphite) with Hierarchical Pore Morphology for the Application in Energy Storage Systems
Authors: Hubert Beisch, Janik Marx, Svenja Garlof, Roman Shvets, Ivan Grygorchak, Andriy Kityk, Bodo Fiedler
Abstract:
Three-dimensional carbon materials can be used as electrode materials for energy storage systems such as batteries and supercapacitors. Fast charging and discharging times are realizable without reducing the performance due to aging processes. Furthermore high specific surface area (SSA) of three-dimensional carbon structures leads to high specific capacities. One newly developed carbon foam is Globugraphite. This interconnected globular carbon morphology with statistically distributed hierarchical pores is manufactured by a chemical vapor deposition (CVD) process from ceramic templates resulting from a sintering process. Via scanning electron (SEM) and transmission electron microscopy (TEM), the morphology is characterized. Moreover, the SSA was measured by the Brunauer–Emmett–Teller (BET) theory. Measurements of Globugraphite in an organic and inorganic electrolyte show high energy densities and power densities resulting from ion absorption by forming an electrochemical double layer. A comparison of the specific values is summarized in a Ragone diagram. Energy densities up to 48 Wh/kg and power densities to 833 W/kg could be achieved for an SSA from 376 m²/g to 859 m²/g. For organic electrolyte, a specific capacity of 100 F/g at a density of 20 mg/cm³ was achieved.Keywords: BET, carbon foam, CVD process, electrochemical cell, Ragone diagram, SEM, TEM
Procedia PDF Downloads 2341512 Quality Control Assessment of X-Ray Equipment in Hospitals of Katsina State, Nigeria
Authors: Aminu Yakubu Umar
Abstract:
X-ray is the major contributor to the effective dose of both the patient and the personnel. Because of the radiological risks involved, it is usually recommended that dose to patient from X-ray be kept as low as reasonably achievable (ALARA) with adequate image quality. The implementation of quality assurance in diagnostic radiology can help greatly in achieving that, as it is a technique designed to reduce X-ray doses to patients undergoing radiological examination. In this study, quality control was carried out in six hospitals, which involved KVp test, evaluation of total filtration, test for constancy of radiation output, and check for mA linearity. Equipment used include KVp meter, Rad-check meter, aluminum sheets (0.1–1.0 mm) etc. The results of this study indicate that, the age of the X-ray machines in the hospitals ranges from 3-13 years, GHI and GH2 being the oldest and FMC being the newest. In the evaluation of total filtration, the HVL of the X-ray machines in the hospitals varied, ranging from 2.3-5.2 mm. The HVL was found to be highest in AHC (5.2 mm), while it was lowest in GH3 (2.3 mm). All HVL measurements were done at 80 KVp. The variation in voltage accuracy in the hospitals ranges from 0.3%-127.5%. It was only in GH1 that the % variation was below the allowed limit. The test for constancy of radiation output showed that, the coefficient of variation ranges from 0.005–0.550. In GH3, FMC and AHC, the coefficient of linearity were less than the allowed limit, while in GH1, GH2 and GH4 the coefficient of linearity had exceeded the allowed limit. As regard to mA linearity, FMC and AHC had their coefficients of linearity as 0.12 and 0.10 respectively, which were within the accepted limit, while GH1, GH3 and GH4 had their coefficients as 0.16, 0.69 and 0.98 respectively, which exceeded the allowed limit.Keywords: radiation, X-ray output, quality control, half-value layer, mA linearity, KVp variation
Procedia PDF Downloads 6091511 Effect of Birks Constant and Defocusing Parameter on Triple-to-Double Coincidence Ratio Parameter in Monte Carlo Simulation-GEANT4
Authors: Farmesk Abubaker, Francesco Tortorici, Marco Capogni, Concetta Sutera, Vincenzo Bellini
Abstract:
This project concerns with the detection efficiency of the portable triple-to-double coincidence ratio (TDCR) at the National Institute of Metrology of Ionizing Radiation (INMRI-ENEA) which allows direct activity measurement and radionuclide standardization for pure-beta emitter or pure electron capture radionuclides. The dependency of the simulated detection efficiency of the TDCR, by using Monte Carlo simulation Geant4 code, on the Birks factor (kB) and defocusing parameter has been examined especially for low energy beta-emitter radionuclides such as 3H and 14C, for which this dependency is relevant. The results achieved in this analysis can be used for selecting the best kB factor and the defocusing parameter for computing theoretical TDCR parameter value. The theoretical results were compared with the available ones, measured by the ENEA TDCR portable detector, for some pure-beta emitter radionuclides. This analysis allowed to improve the knowledge of the characteristics of the ENEA TDCR detector that can be used as a traveling instrument for in-situ measurements with particular benefits in many applications in the field of nuclear medicine and in the nuclear energy industry.Keywords: Birks constant, defocusing parameter, GEANT4 code, TDCR parameter
Procedia PDF Downloads 1481510 Impact of Meteorological Events and Sand Excavation on Turbidity and Total Suspended Solids Levels of Imo River
Authors: Ihejirika Chinedu Emeka, Njoku John Didacus, Obenade Moses
Abstract:
This study was aimed at determining the impact of meteorological events (seasonal variations) and sand excavation activities on turbidity and Total Suspended Solids (TSS) of Imo River, Southeastern Nigeria. In-situ measurements of the parameters were carried out at the peaks of two consecutive seasons–dry and rainy season at seven major points of sand excavation along the river, under standard analytical methods. There were significant variations in seasons (P<0.05) for turbidity and TSS at all locations. The average turbidity concentration of locations were 36.71 NTU, during the rainy season, and 17 NTU in a dry season, while the average TSS concentration were 27.14 mg/L, during the rainy season, and 8.86mg/L in a dry season. Turbidity correlated positively (strongly) with TSS (r=0.956) at R–Square=0.91. Turbidity and TSS values were higher during the rainy season than the dry season. Turbidity increased when Total Suspended Solids increased. Sand excavation increased turbidity and TSS values of Imo River. The river had moderate water quality during the rainy season and unimpaired water quality during a dry season. The river was not very clear in both seasons, but clearer in a dry season than in rainy season. The increase in turbidity and TSS can lead to the destruction of aquatic biodiversity and stagnation of ecosystem processes. Exposure of aquatic animals to the recorded turbidity level in a rainy season can lead to stress.Keywords: biodiversity destruction, meteorological events, pollution, sand excavation
Procedia PDF Downloads 4941509 A Structural and Magnetic Investigation of the Inversion Degree in Spinel NiFe2O4, ZnFe2O4 and Ni0.5Zn0.5Fe2O4 Ferrites Prepared by Soft Mechanochemical Synthesis
Authors: Z. Ž. Lazarević, D. L. Sekulić, V. N. Ivanovski, N. Ž. Romčević
Abstract:
NiFe2O4 (nickel ferrite), ZnFe2O4 (zinc ferrite) and Ni0.5Zn0.5Fe2O4 (nickel-zinc ferrite) were prepared by mechanochemical route in a planetary ball mill starting from mixture of the appropriate quantities of the Ni(OH)2/Fe(OH)3, Zn(OH)2/Fe(OH)3 and Ni(OH)2/Zn(OH)2/Fe(OH)3 hydroxide powders. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 25 h, 18 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), IR, Raman and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase ferrite samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. It is obvious that all samples have more than 5 Raman active modes predicted by group theory in the normal spinel structure. Deconvolution of measured spectra allows one to conclude that all complex bands in the spectra are made of individual peaks with the intensities that vary from spectrum to spectrum. The deconvolution of Raman spectra allows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.Keywords: ferrites, Raman spectroscopy, IR spectroscopy, Mössbauer measurements
Procedia PDF Downloads 4541508 Vegetables and Fruits Solar Tunnel Dryer for Small-Scale Farmers in Kassala
Authors: Sami Mohamed Sharif
Abstract:
The current study focuses on the design and construction of a solar tunnel dryer intended for small-scale farmers in Kassala, Sudan. To determine the appropriate dimensions of the dryer, the heat and mass balance equations are used, taking into account factors such as the target agricultural product, climate conditions, solar irradiance, and desired drying time. In Kassala, a dryer with a width of 88 cm, length of 600 cm, and height of 25 cm has been built, capable of drying up to 40 kg of vegetables or fruits. The dryer is divided into two chambers of different lengths. The air passing through is heated to the desired drying temperature in a separate heating chamber that is 200 cm long. From there, the heated air enters the drying chamber, which is 400 cm long. In this section, the agricultural product is placed on a slightly elevated net. The tunnel dryer was constructed using materials from the local market. The paper also examines the solar irradiance in Kassala, finding an average of 23.6 MJ/m2/day, with a maximum of 26.6 MJ/m2/day in April and a minimum of 20.2 MJ/m2/day in December. A DC fan powered by a 160Wp solar panel is utilized to circulate air within the tunnel. By connecting the fan and three 12V, 60W bulbs in series, four different speeds can be achieved using a speed controller. Temperature and relative humidity measurements were taken hourly over three days, from 10:00 a.m. to 3:00 p.m. The results demonstrate the promising technology and sizing techniques of solar tunnel dryers, which can significantly increase the temperature within the tunnel by more than 90%.Keywords: tunnel dryer, solar drying, moisture content, fruits drying modeling, open sun drying
Procedia PDF Downloads 551507 Surface Modified Polyvinylidene Fluoride Membranes for Potential Use in Membrane Distillation
Authors: Lebea Nthunya, Arne Verliefde, Bhekie Mamba, Sabelo Mhlanga
Abstract:
A study aimed at developing membrane distillation (MD) processes that can be used for brackish/saline water purification will be presented. MD is a membrane-based technology that presents a possibility to counteract challenges associated with pressure driven membranes at high separation efficiencies. Membrane distillation membranes (MDM) are affected by wettability and fouling. Wetting inside the pores of the membrane is elevated by the hydrophilic characteristic of the membrane, while fouling is mostly induced by the hydrophobic-hydrophobic interaction of pollutants and the surface of the hydrophobic membranes, hence block the pores of the membranes. These properties are not desirable. As such, a carefully designed polyvinylidene fluoride (PVDF) MDM composed of a super-hydrophobic modified backbone and a super-hydrophilic thin layer has been developed to concurrently overcome these challenges. The membranes were characterized using contact angle measurements to confirm their hydrophobicity/hydrophilicity. SEM and SAXS were used to study the morphology and pore distribution on the surface of the membrane. The contact angles of the active surface ≤ 30º and that of the backbone ≥ 140º has thus revealed that the active surface was highly hydrophilic while the backbone was highly hydrophobic. The SEM and the SAXS results have also confirmed that the membranes are highly porous. These materials demonstrated a potential to remove salts from water at high efficiencies.Keywords: membrane distillation, modification, energy efficiency, desalination
Procedia PDF Downloads 2531506 Impact Assessment of Phosphogypsum on the Groundwater of Sfax-Agareb Aquifer, in Southeast of Tunisia
Authors: Samira Melki, Moncef Gueddari
Abstract:
In Tunisia, solid wastes storage continue to be uncontrolled. It is eliminated by land raising without any protection measurement against water table and soil contamination. Several industries are located in Sfax area, especially those of the Tunisian Chemical Group (TCG) for the enrichment and transformation of phosphate. The activity of the TCG focuses primarily on the production of chemical fertilizers and phosphoric acid, by transforming natural phosphates. This production generates gaseous emissions, liquid discharges and huge amounts of phosphogypsum (PG) stored directly on the soil surface. Groundwater samples were collected from Tunisian Chemical Group (TCG) site, to assess the effects of phosphogypsum leatchate on groundwater quality. The measurements of various physicochemical parameters including heavy metals (Al, Fe, Zn and F) and stable isotopes of the water molecule (¹⁸O, ²H) were determined in groundwater samples and are reported. The moderately high concentrations of SO₄⁼, Ortho-P, NH₄⁺ Al and F⁻ in groundwater particularly near to the phosphogypsum storage site, likely indicate that groundwater quality is being significantly affected by leachate percolation. The effect of distance of the piezometers from the pollution source was also investigated. The isotopic data of water molecule, showed that the waters of the Sfax-Agreb aquifer amount to recent-evaporation induced rainfall.Keywords: phosphogypsum leatchate, groundwater quality, pollution, stable isotopes, Sfax-Agareb, Tunisia
Procedia PDF Downloads 2021505 Effect of Micaceous Iron Oxide and Nanocrystalline Al on the Electrochemical Behavior of Aliphatic Amine Cured Epoxy Coating
Authors: Asiful H. Seikh, Jabair A. Mohammed, Ubair A. Samad, Mohammad A. Alam, Saeed M. Al-Zahrani, El-Sayed M. Sherif
Abstract:
Three coating formulations were fabricated by incorporating different percentages of MIO (micaceous iron oxide ) (1, 2, and wt%) with ball-milled nanocrystalline Al (2 wt%) particles, which was optimized earlier. These coatings were characterized by means of different methods, namely, SEM, TGA, pendulum hardness, scratch test, and nano-indentation. The EIS measurements were carried out to report the effect of adding MIO powder in fabricated coatings on their corrosion behavior in 3.5 wt% NaCl solutions. In order to report the effect of immersion time on the corrosion and degradation of the prepared coatings, the EIS data were also acquired after various exposure periods of time, i.e., 1 h, 7 d, 14 d, 21 d, and 30 d in the test chloride solution. It has been found that the obtained EIS data for the fabricated coatings proved that the presence of 2% MIO provided the highest corrosion resistance amongst all coatings and that effect was recorded after all immersion periods of time. But, the MIO-incorporated coatings have less corrosion resistance than Al based epoxy coatings. It was also shown that with prolonged immersion, the resistance to corrosion declined after 7d, then with a longer period of immersion, i.e. 14 d, 21 d, and 30 d increases the resistance to corrosion by forming oxide products on the coatings surface. The results obtained from both mechanical and electrochemical testing confirmed that the fabricated coating with 2 wt% Al exhibited better hardness and higher resistance to corrosion as compared to coatings with 1 wt% Al and 3 wt% Al.Keywords: epoxy coatings, nanomaterials, corrosion resistance, EIS, nanoindentation
Procedia PDF Downloads 72