Search results for: module based teaching and learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33452

Search results for: module based teaching and learning

31112 Learning Academic Skills through Movement: A Case Study in Evaluation

Authors: Y. Salfati, D. Sharef Bussel, J. Zamir

Abstract:

In this paper, we present an Evaluation Case Study implementing the eight principles of Collaborative Approaches to Evaluation (CAE) as designed by Brad Cousins in the past decade. The focus of this paper is sharing a rich experience in which we achieved two main goals. The first was the development of a valuable and meaningful new teacher training program, and the second was a successful implementation of the CAE principles. The innovative teacher training program is based on the idea of including physical movement during the process of teaching and learning academic themes. The program is called Learning through Movement. This program is a response to a call from the Ministry of Education, claiming that today children sit in front of screens and do not exercise any physical activity. In order to contribute to children’s health, physical, and cognitive development, the Ministry of Education promotes learning through physical activities. Research supports the idea that sports and physical exercise improve academic achievements. The Learning through Movement program is operated by Kaye Academic College. Students in the Elementary School Training Program, together with students in the Physical Education Training Program, implement the program in collaboration with two mentors from the College. The program combines academic learning with physical activity. The evaluation began at the beginning of the program. During the evaluation process, data was collected by means of qualitative tools, including interviews with mentors, observations during the students’ collaborative planning, class observations at school and focus groups with students, as well as the collection of documentation related to the teamwork and to the program itself. The data was analyzed using content analysis and triangulation. The preliminary results show outcomes relating to the Teacher Training Programs, the student teachers, the pupils in class, the role of Physical Education teachers, and the evaluation. The Teacher Training Programs developed a collaborative approach to lesson planning. The students' teachers demonstrated a change in their basic attitudes towards the idea of integrating physical activities during the lessons. The pupils indicated higher motivation through full participation in classes. These three outcomes are indicators of the success of the program. An additional significant outcome of the program relates to the status and role of the physical education teachers, changing their role from marginal to central in the school. Concerning evaluation, a deep sense of trust and confidence was achieved, between the evaluator and the whole team. The paper includes the perspectives and challenges of the heads and mentors of the two programs as well as the evaluator’s conclusions. The evaluation unveils challenges in conducting a CAE evaluation in such a complex setting.

Keywords: collaborative evaluation, training teachers, learning through movement

Procedia PDF Downloads 149
31111 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids

Authors: Niklas Panten, Eberhard Abele

Abstract:

This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.

Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control

Procedia PDF Downloads 201
31110 Usage and Benefits of Handheld Devices as Educational Tools in Higher Institutions of Learning in Lagos State, Nigeria

Authors: Abiola A. Sokoya

Abstract:

Handheld devices are now in use as educational tools for learning in most of the higher institutions, because of the features and functions which can be used in an academic environment. This study examined the usage and the benefits of handheld devices as learning tools. A structured questionnaire was used to collect data, while the data collected was analyzed using simple percentage. It was, however, observed that handheld devices offer numerous functions and application for learning, which could improve academic performance of students. Students are now highly interested in using handheld devices for mobile learning apart from making and receiving calls. The researchers recommended that seminars be organized for students on functions of some common handheld devices that can aid learning for academic purposes. It is also recommended that management of each higher institution should make appropriate policies in-line with the usage of handheld technologies to enhance mobile learning. Government should ensure that appropriate policies and regulations are put in place for the importation of high quality handheld devices into the country, Nigeria being a market place for the technologies. By this, using handheld devices for mobile learning will be enhanced.

Keywords: handheld devices, educational tools, mobile e- learning, usage, benefits

Procedia PDF Downloads 232
31109 Information Communication Technology in Early Childhood Education: An Assessment of the Quality of ICT in the New Mega Primary Schools in Ondo State, Southwestern Nigeria

Authors: Oluyemi Christianah Ojo

Abstract:

This study seeks to investigate the quality of ICT provided in the new Caring Heart schools in Ondo State, Nigeria. The population for the study was all caring Heart Mega Schools in Ondo State, Nigeria. Research questions were generated; two instruments CCCMS and TQCUC were used to elicit information from the schools and the teachers. The study adopts descriptive survey approach. The studies revealed and concluded that ICT components were available and adequate in these schools, Charts showing ICT components and other forms of computer devices used as instructional materials were available but were not adequate; teachers teaching computer studies are competent in the delivery of instructions and in handling computer gadgets in the laboratory. The study recommended the provision of steady electricity, uninterrupted internet facilities and provision of adequate ICT components and charts for effective teaching delivery and learning.

Keywords: facilities, information communication technology, mega primary school, primary education

Procedia PDF Downloads 299
31108 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: data augmentation, mutex task generation, meta-learning, text classification.

Procedia PDF Downloads 99
31107 Comparing the Sequence and Effectiveness of Teaching the Four Basic Operations and Mathematics in Primary Schools

Authors: Abubakar Sadiq Mensah, Hassan Usman

Abstract:

The study compared the effectiveness of Audition, Multiplication, subtraction and Division (AMSD) and Addition, subtraction, Multiplication and Division (ASMD), sequence of teaching these four basic operations in mathematics to primary one pupil’s in Katsina Local Government, Katsina State. The study determined the sequence that was more effective and mostly adopted by teachers of the operations. One hundred (100) teachers and sixty pupils (60) from primary one were used for the study. The pupils were divided into two equal groups. The researcher taught these operations to each group separately for four weeks (4 weeks). Group one was taught using the ASMD sequence, while group two was taught using ASMD sequence. In order to generate the needed data for the study, questionnaires and tests were administered on the samples. Data collected were analyzed and major findings were arrived at: (i) Two primary mathematics text books were used in all the primary schools in the area; (ii) Each of the textbooks contained the ASMD sequence; (iii) 73% of the teachers sampled adopted the ASMD sequence of teaching these operations; and (iv) Group one of the pupils (taught using AMSD sequence) performed significantly better than their counter parts in group two (taught using AMSD sequence). On the basis of this, the researcher concluded that the AMSD sequence was more effective in teaching the operations than the ASMD sequence. Consequently, the researcher concluded that primary schools teachers, authors of primary mathematics textbooks, and curriculum planner should adopt the AMSD sequence of teaching these operations.

Keywords: matematic, high school, four basic operations, effectiveness of teaching

Procedia PDF Downloads 257
31106 The Relationship between Organization Culture and Organization Learning in Three Different Types of Companies

Authors: Mahmoud Timar, Javad Joukar Borazjani

Abstract:

A dynamic organization helps the management to overcome both internal and external uncertainties and complexities of the organization with more confidence and efficiency. Regarding this issue, in this paper, the influence of organizational culture factors over organizational learning components, which both of them are considered as important characteristics of a dynamic organization, has been studied in three subsidiary companies (production, consultation and service) of National Iranian Oil Company, and moreover we also tried to identify the most dominant culture in these three subsidiaries. Analysis of 840 received questionnaires by SPSS shows that there is a significant relationship between the components of organizational culture and organizational learning; however the rate of relationship between these two factors was different among the examined companies. By the use of Regression, it has been clarified that in the servicing company the highest relationship is between mission and learning environment, while in production division, there is a significant relationship between adaptability and learning needs satisfaction and however in consulting company the highest relationship is between involvement and applying learning in workplace.

Keywords: denison model, culture, leaning, organizational culture, organizational learning

Procedia PDF Downloads 379
31105 Effect of Semantic Relational Cues in Action Memory Performance over School Ages

Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf, Kamal Kharazi

Abstract:

Research into long-term memory has demonstrated that the richness of the knowledge base cues in memory tasks improves retrieval process, which in turn influences learning and memory performance. The present research investigated the idea that adding cues connected to knowledge can affect memory performance in the context of action memory in children. In action memory studies, participants are instructed to learn a series of verb–object phrases as verbal learning and experience-based learning (learning by doing and learning by observation). It is well established that executing action phrases is a more memorable way to learn than verbally repeating the phrases, a finding called enactment effect. In the present study, a total of 410 students from four grade groups—2nd, 4th, 6th, and 8th—participated in this study. During the study, participants listened to verbal action phrases (VTs), performed the phrases (SPTs: subject-performed tasks), and observed the experimenter perform the phrases (EPTs: experimenter-performed tasks). During the test phase, cued recall test was administered. Semantic relational cues (i.e., well-integrated vs. poorly integrated items) were manipulated in the present study. In that, the participants were presented two lists of action phrases with high semantic integration between verb and noun, e.g., “write with the pen” and with low semantic integration between verb and noun, e.g., “pick up the glass”. Results revealed that experience-based learning had a better results than verbal learning for both well-integrated and poorly integrated items, though manipulations of semantic relational cues can moderate the enactment effect. In addition, children of different grade groups outperformed for well- than poorly integrated items, in flavour of older children. The results were discussed in relation to the effect of knowledge-based information in facilitating retrieval process in children.

Keywords: action memory, enactment effect, knowledge-based cues, school-aged children, semantic relational cues

Procedia PDF Downloads 279
31104 How Students Use WhatsApp to Access News

Authors: Emmanuel Habiyakare

Abstract:

The COVID-19 pandemic has highlighted the significance of educational technologies in teaching and learning. The global pandemic led to the closure of educational institutions worldwide, prompting the widespread implementation of online learning as a substitute method for delivering curricula. The communication platform is known as WhatsApp has gained widespread adoption and extensive utilisation within the realm of education. The primary aims of this literature review are to examine the utilisation patterns and obstacles linked to the implementation of WhatsApp in the realm of education, assess the advantages and possibilities that students and facilitators can derive from utilising this platform for educational purposes, and comprehend the hindrances and restrictions that arise when employing WhatsApp in an academic environment. The literature was acquired through the utilisation of keywords that are linked to both WhatsApp and education from diverse databases. Having a thorough comprehension of current trends, potential advantages, obstacles, and gains linked to the use of WhatsApp is imperative for lecturers and administrators. Scholarly investigations have revealed a noticeable trend of lecturers and students increasingly utilising WhatsApp as a means of communication and collaboration. The objective of this literature review is to make a noteworthy contribution to the domain of education and technology through an investigation of the potential of WhatsApp as a learning tool. Additionally, this review seeks to offer valuable insights on how to effectively incorporate WhatsApp into pedagogical practices. The article underscores the significance of taking into account privacy and security concerns while utilising WhatsApp for educational objectives and puts forth recommendations for additional investigation.

Keywords: tool, COVID-19, opportunities, challenges, learning, WhatsApp

Procedia PDF Downloads 36
31103 Socio-Cultural Adaptation Approach to Enhance Intercultural Collaboration and Learning

Authors: Fadoua Ouamani, Narjès Bellamine Ben Saoud, Henda Hajjami Ben Ghézala

Abstract:

In the last few years and over the last decades, there was a growing interest in the development of Computer Supported Collaborative Learning (CSCL) environments. However, the existing systems ignore the variety of learners and their socio-cultural differences, especially in the case of distant and networked learning. In fact, within such collaborative learning environments, learners from different socio-cultural backgrounds may interact together. These learners evolve within various cultures and social contexts and acquire different socio-cultural values and behaviors. Thus, they should be assisted while communicating and collaborating especially in an intercultural group. Besides, the communication and collaboration tools provided to each learner must depend on and be adapted to her/his socio-cultural profile. The main goal of this paper is to present the proposed socio-cultural adaptation approach based on and guided by ontologies to adapt CSCL environments to the socio-cultural profiles of its users (learners or others).

Keywords: CSCL, socio-cultural profile, adaptation, ontology

Procedia PDF Downloads 366
31102 On the Problems of Human Concept Learning within Terminological Systems

Authors: Farshad Badie

Abstract:

The central focus of this article is on the fact that knowledge is constructed from an interaction between humans’ experiences and over their conceptions of constructed concepts. Logical characterisation of ‘human inductive learning over human’s constructed concepts’ within terminological systems and providing a logical background for theorising over the Human Concept Learning Problem (HCLP) in terminological systems are the main contributions of this research. This research connects with the topics ‘human learning’, ‘epistemology’, ‘cognitive modelling’, ‘knowledge representation’ and ‘ontological reasoning’.

Keywords: human concept learning, concept construction, knowledge construction, terminological systems

Procedia PDF Downloads 328
31101 A Fresh Approach to Learn Evidence-Based Practice, a Prospective Interventional Study

Authors: Ebtehal Qulisy, Geoffrey Dougherty, Kholoud Hothan, Mylene Dandavino

Abstract:

Background: For more than 200 years, journal clubs (JCs) have been used to teach the fundamentals of critical appraisal and evidence-based practice (EBP). However, JCs curricula face important challenges, including poor sustainability, insufficient time to prepare for and conduct the activities, and lack of trainee skills and self-efficacy with critical appraisal. Andragogy principles and modern technology could help EBP be taught in more relevant, modern, and interactive ways. Method: We propose a fresh educational activity to teach EBP. Educational sessions are designed to encourage collaborative and experiential learning and do not require advanced preparation by the participants. Each session lasts 60 minutes and is adaptable to in-person, virtual, or hybrid contexts. Sessions are structured around a worksheet and include three educational objectives: “1. Identify a Clinical Conundrum”, “2. Compare and Contrast Current Guidelines”, and “3. Choose a Recent Journal Article”. Sessions begin with a short presentation by a facilitator of a clinical scenario highlighting a “grey-zone” in pediatrics. Trainees are placed in groups of two to four (based on the participants’ number) of varied training levels. The first task requires the identification of a clinical conundrum (a situation where there is no clear answer but only a reasonable solution) related to the scenario. For the second task, trainees must identify two or three clinical guidelines. The last task requires trainees to find a journal article published in the last year that reports an update regarding the scenario’s topic. Participants are allowed to use their electronic devices throughout the session. Our university provides full-text access to major journals, which facilitated this exercise. Results: Participants were a convenience sample of trainees in the inpatient services at the Montréal Children’s Hospital, McGill University. Sessions were conducted as a part of an existing weekly academic activity and facilitated by pediatricians with experience in critical appraisal. There were 28 participants in 4 sessions held during Spring 2022. Time was allocated at the end of each session to collect participants’ feedback via a self-administered online survey. There were 22 responses, were 41%(n=9) pediatric residents, 22.7%(n=5) family medicine residents, 31.8%(n=7) medical students, and 4.5%(n=1) nurse practitioner. Four respondents participated in more than one session. The “Satisfied” rates were 94.7% for session format, 100% for topic selection, 89.5% for time allocation, and 84.3% for worksheet structure. 60% of participants felt that including the sessions during the clinical ward rotation was “Feasible.” As per self-efficacy, participants reported being “Confident” for the tasks as follows: 89.5% for the ability to identify a relevant conundrum, 94.8% for the compare and contrast task, and 84.2% for the identification of a published update. The perceived effectiveness to learn EBP was reported as “Agreed” by all participants. All participants would recommend this session for further teaching. Conclusion: We developed a modern approach to teach EBP, enjoyed by all levels of participants, who also felt it was a useful learning experience. Our approach addresses known JCs challenges by being relevant to clinical care, fostering active engagement but not requiring any preparation, using available technology, and being adaptable to hybrid contexts.

Keywords: medical education, journal clubs, post-graduate teaching, andragogy, experiential learning, evidence-based practice

Procedia PDF Downloads 119
31100 Prevalence of Oral Mucosal Lesions in Malaysia: A Teaching Hospital Based Study

Authors: Renjith George Pallivathukal, Preethy Mary Donald

Abstract:

Asymptomatic oral lesions are often ignored by the patients and usually will be identified only in advanced stages. Early detection of precancerous lesions is important for better prognosis. It is also important for the oral health care person to be aware of the regional prevalence of oral lesions in order to provide early care for the same. We conducted a retrospective study to assess the prevalence of oral lesions based on the information available from patient records in a teaching dental school. Dental records of patients who attended the department of Oral medicine and diagnosis between September 2014 and September 2016 were retrieved and verified for oral lesions. Results: The ages of the patients ranged from 13 to 38 years with a mean age of 21.8 years. The lesions were classified as white (40.5%), red (23%), ulcerated (10.5%), pigmented (15.2%) and soft tissue enlargements (10.8%). 52% of the patients were unaware of the oral lesions before the dental visit. Overall, the prevalence of lesions in dental patients lower to national estimates, but the prevalence of some lesions showed variations.

Keywords: oral mucosal lesion, pre-cancer, prevalence, soft tissue lesion

Procedia PDF Downloads 352
31099 Two-Step Patterning of Microfluidic Structures in Paper by Laser Cutting and Wax Printing for Mass Fabrication of Biosensor

Authors: Bong Keun Kang, Sung Suk Oh, Jeong-Woo Sohn, Jong-Ryul Choi, Young Ho Kim

Abstract:

In this paper, we describe two-step micro-pattering by using laser cutting and wax printing. Wax printing is performed only on the bridges for hydrophobic barriers. We prepared 405nm blue-violet laser module and wax pencil module. And, this two modules combine x-y plot. The hollow microstructure formed by laser patterning define the hydrophilic flowing paths. However, bridges are essential to avoid the cutting area being the island. Through the support bridges, microfluidic solution spread out to the unnecessary areas. Chromatography blotting paper was purchased from Whatman. We used 20x20 cm and 46x57 cm of chromatography blotting paper. Axis moving speed of x-y plot was the main parameter of optimization. For aligning between the two patterning, the paper sheet was taped at the bottom. After the two-step patterning, temperature curing step was done at 110-130 °C. The resolution of the fabrication and the potential of the multiplex detection were investigated.

Keywords: µPADs, microfluidic, biosensor, mass-fabrication

Procedia PDF Downloads 469
31098 Pragmatic Competence in Pakistani English Language Learners

Authors: Ghazala Kausar

Abstract:

This study investigates Pakistani first year university students’ perception of the role of pragmatics in their general approach to learning English. The research is triggered by National Curriculum’s initiative to provide holistic opportunities to the students for language development and to equip them with competencies to use English language in academic and social contexts (New English National Curriculum for I-XII). The traditional grammar translation and examination oriented method is believed to reduce learners to silent listener (Zhang, 2008: Zhao 2009). This lead to the inability of the students to interpret discourse by relating utterances to their meaning, understanding the intentions of the users and how language is used in specific setting (Bachman & Palmer, 1996, 2010). Pragmatic competence is a neglected area as far as teaching and learning English in Pakistan is concerned. This study focuses on the different types of pragmatic knowledge, learners perception of such knowledge and learning strategies employed by different learners to process the learning in general and pragmatic in particular. This study employed three data collecting tools; a questionnaire, discourse completion task and interviews to elicit data from first year university students regarding their perception of pragmatic competence. Results showed that Pakistani first year university learners have limited pragmatic knowledge. Although they acknowledged the importance of linguistic knowledge for linguistic competence in the students but argued that insufficient English proficiency, limited knowledge of pragmatics, insufficient language material and tasks were major reasons of pragmatic failure.

Keywords: pragmatic competence, Pakistani college learners, linguistic competence

Procedia PDF Downloads 744
31097 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic

Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato

Abstract:

Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.

Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security

Procedia PDF Downloads 373
31096 Data Model to Predict Customize Skin Care Product Using Biosensor

Authors: Ashi Gautam, Isha Shukla, Akhil Seghal

Abstract:

Biosensors are analytical devices that use a biological sensing element to detect and measure a specific chemical substance or biomolecule in a sample. These devices are widely used in various fields, including medical diagnostics, environmental monitoring, and food analysis, due to their high specificity, sensitivity, and selectivity. In this research paper, a machine learning model is proposed for predicting the suitability of skin care products based on biosensor readings. The proposed model takes in features extracted from biosensor readings, such as biomarker concentration, skin hydration level, inflammation presence, sensitivity, and free radicals, and outputs the most appropriate skin care product for an individual. This model is trained on a dataset of biosensor readings and corresponding skin care product information. The model's performance is evaluated using several metrics, including accuracy, precision, recall, and F1 score. The aim of this research is to develop a personalised skin care product recommendation system using biosensor data. By leveraging the power of machine learning, the proposed model can accurately predict the most suitable skin care product for an individual based on their biosensor readings. This is particularly useful in the skin care industry, where personalised recommendations can lead to better outcomes for consumers. The developed model is based on supervised learning, which means that it is trained on a labeled dataset of biosensor readings and corresponding skin care product information. The model uses these labeled data to learn patterns and relationships between the biosensor readings and skin care products. Once trained, the model can predict the most suitable skin care product for an individual based on their biosensor readings. The results of this study show that the proposed machine learning model can accurately predict the most appropriate skin care product for an individual based on their biosensor readings. The evaluation metrics used in this study demonstrate the effectiveness of the model in predicting skin care products. This model has significant potential for practical use in the skin care industry for personalised skin care product recommendations. The proposed machine learning model for predicting the suitability of skin care products based on biosensor readings is a promising development in the skin care industry. The model's ability to accurately predict the most appropriate skin care product for an individual based on their biosensor readings can lead to better outcomes for consumers. Further research can be done to improve the model's accuracy and effectiveness.

Keywords: biosensors, data model, machine learning, skin care

Procedia PDF Downloads 101
31095 Miller’s Model for Developing Critical Thinking Skill of Pre-Service Teachers at Suan Sunandha Rajabhat University

Authors: Suttipong Boonphadung, Thassanant Unnanantn

Abstract:

The research study aimed to (1) compare the critical thinking of the teacher students of Suan Sunandha Rajabhat University before and after applying Miller’s Model learning activities and (2) investigate the students’ opinions towards Miller’s Model learning activities for improving the critical thinking. The participants of this study were purposively selected. They were 3 groups of teacher students: (1) fourth year 33 student teachers majoring in Early Childhood Education and enrolling in semester 1 of academic year 2013 (2) third year 28 student teachers majoring in English and enrolling in semester 2 of academic year 2013 and (3) third year 22 student teachers majoring in Thai and enrolling in semester 2 of academic year 2013. The research instruments were (1) lesson plans where the learning activities were settled based on Miller’s Model (2) critical thinking assessment criteria and (3) a questionnaire on opinions towards Miller’s Model based learning activities. The statistical treatment was mean, deviation, different scores and T-test. The result unfolded that (1) the critical thinking of the students after the assigned activities was better than before and (2) the students’ opinions towards the critical thinking improvement activities based on Miller’s Model ranged from the level of high to highest.

Keywords: critical thinking, Miller’s model, opinions, pre-service teachers

Procedia PDF Downloads 478
31094 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination

Authors: Gilberto Goracci, Fabio Curti

Abstract:

This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.

Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field

Procedia PDF Downloads 110
31093 Impact of Blended Learning in Interior Architecture Programs in Academia: A Case Study of Arcora Garage Academy from Turkey

Authors: Arzu Firlarer, Duygu Gocmen, Gokhan Uysal

Abstract:

There is currently a growing trend among universities towards blended learning. Blended learning is becoming increasingly important in higher education, with the aims of better accomplishing course learning objectives, meeting students’ changing needs and promoting effective learning both in a theoretical and practical dimension like interior architecture discipline. However, the practical dimension of the discipline cannot be supported in the university environment. During the undergraduate program, the practical training which is tried to be supported by two different internship programs cannot fully meet the requirements of the blended learning. The lack of education program frequently expressed by our graduates and employers is revealed in the practical knowledge and skills dimension of the profession. After a series of meetings for curriculum studies, interviews with the chambers of profession, meetings with interior architects, a gap between the theoretical and practical training modules is seen as a problem in all interior architecture departments. It is thought that this gap can be solved by a new education model which is formed by the cooperation of University-Industry in the concept of blended learning. In this context, it is considered that theoretical and applied knowledge accumulation can be provided by the creation of industry-supported educational environments at the university. In the application process of the Interior Architecture discipline, the use of materials and technical competence will only be possible with the cooperation of industry and participation of students in the production/manufacture processes as observers and practitioners. Wood manufacturing is an important part of interior architecture applications. Wood productions is a sustainable structural process where production details, material knowledge, and process details can be observed in the most effective way. From this point of view, after theoretical training about wooden materials, wood applications and production processes are given to the students, practical training for production/manufacture planning is supported by active participation and observation in the processes. With this blended model, we aimed to develop a training model in which theoretical and practical knowledge related to the production of wood works will be conveyed in a meaningful, lasting way by means of university-industry cooperation. The project is carried out in Ankara with Arcora Architecture and Furniture Company and Başkent University Department of Interior Design where university-industry cooperation is realized. Within the scope of the project, every week the video of that week’s lecture is recorded and prepared to be disseminated by digital medias such as Udemy. In this sense, the program is not only developed by the project participants, but also other institutions and people who are trained and practiced in the field of design. Both academicians from University and at least 15-year experienced craftsmen in the wood metal and dye sectors are preparing new training reference documents for interior architecture undergraduate programs. These reference documents will be a model for other Interior Architecture departments of the universities and will be used for creating an online education module.

Keywords: blended learning, interior design, sustainable training, effective learning.

Procedia PDF Downloads 137
31092 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.

Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text

Procedia PDF Downloads 118
31091 Investigating the Factors Affecting the Innovation of Firms in Metropolitan Regions: The Case of Mashhad Metropolitan Region, Iran

Authors: Hashem Dadashpoor, Sadegh Saeidi Shirvan

Abstract:

While with the evolution of the economy towards a knowledge-based economy, innovation is a requirement for metropolitan regions, the adoption of an open innovation strategy is an option and a requirement for many industrial firms in these regions. Studies show that investing in research and development units cannot alone increase innovation. Within the framework of the theory of learning regions, this gap, which scholars call it the ‘innovation gap’, is filled with regional features of firms. This paper attempts to investigate the factors affecting the open innovation of firms in metropolitan regions, and it searches for these in territorial innovation models and, in particular, the theory of learning regions. In the next step, the effect of identified factors which is considered as regional learning factors in this research is analyzed on the innovation of sample firms by SPSS software using multiple linear regression. The case study of this research is constituted of industrial enterprises from two groups of food industry and auto parts in Toos industrial town in Mashhad metropolitan region. For data gathering of this research, interviews were conducted with managers of industrial firms using structured questionnaires. Based on this study, the effect of factors such as size of firms, inter-firm competition, the use of local labor force and institutional infrastructures were significant in the innovation of the firms studied, and 44% of the changes in the firms’ innovation occurred as a result of the change in these factors.

Keywords: regional knowledge networks, learning regions, interactive learning, innovation

Procedia PDF Downloads 181
31090 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: building energy management, machine learning, operation planning, simulation-based optimization

Procedia PDF Downloads 326
31089 The Convergence between Science Practical Work and Scientific Discourse: Lessons Learnt from Using a Practical Activity to Encourage Student Discourse

Authors: Abraham Motlhabane

Abstract:

In most practical-related science lessons, the focus is on completing the experimental procedure as directed by the teacher. However, the scientific discourse among learners themselves and teacher–learner discourse about scientific processes, scientific inquiry and the nature of science should play an important role in the teaching and learning of science. This means the incorporation of inquiry-based activities aimed at sparking debates about scientific concepts. This article analyses a science lesson presented by a teacher to his colleagues acting as learners. Six lessons were presented and transcribed. One of the lessons has been used for this study as the basis for the events as they unfolded during the lesson. Data was obtained through direct observations and the use of a predetermined observation schedule. Field notes were compiled during teacher preparations and the presentation of the lessons.

Keywords: discourse, inquiry, practical work, science, scientific

Procedia PDF Downloads 497
31088 Performance Evaluation of Different Technologies of PV Modules in Algeria

Authors: Amira Balaska, Ali Tahri, Amine Boudghene Stambouli, Takashi Oozeki

Abstract:

This paper is dealing with the evaluation of photovoltaic modules as part of the Sahara Solar Breeder project (SSB), five different photovoltaic module technologies which are: m-si, CIS, HIT, Back Contact, a-si_μc -si and a weather station recently installed at the University of Saida (Tahar Moulay) in Saida city located at the gate of the great southern Algeria’s Sahara. The objective of the present work is the study of solar photovoltaic capacity and performance parameters of each PV module technology. The goal of the study is to compare the five different PV technologies in order to find which technologies are suitable for the climate conditions of Algeria’s desert. Measurements of various parameters as irradiance, temperature, humidity and so on by the weather station and I-V curves were performed outdoors at the location without shadow. Finally performance parameters as performance ratio, energy yield and temperature losses are given and analyzed.

Keywords: photovoltaic modules, performance ratio, energy yield, sahara solar breeder, outdoor conditions

Procedia PDF Downloads 663
31087 Participation of Students and Lecturers in Social Networking for Teaching and Learning in Public Universities in Rivers State, Nigeria

Authors: Nkeiruka Queendarline Nwaizugbu

Abstract:

The use of social media and mobile devices has become acceptable in virtually all areas of today’s world. Hence, this study is a survey that was carried out to find out if students and lecturers in public universities in Rivers State use social networking for educational purposes. The sample of the study comprised of 240 students and 99 lecturers from the University of Port Harcourt and the Rivers State University of science and Technology. The study had five research questions, two hypotheses and the instrument for data collection was a 4-point Likert-type rating scale questionnaire. The data was analysed using mean, standard deviation and z-test. The findings gotten from the analysed data shows that students participate in social networking using different types of web applications but they hardly use them for educational purposes. Some recommendations were also made.

Keywords: internet access, mobile learning, participation, social media, social networking, technology

Procedia PDF Downloads 426
31086 Inter-Communication-Management in Cases with Disabled Children (ICDC)

Authors: Dena A. Hussain

Abstract:

The objective of this project is to design an Information and Communication Technologies (ICT) tool based on a standardized platform to assist the work-integrated learning process of caretakers of disabled children. The tool should assist the intercommunication between caretakers and improve the learning process through knowledge bridging between all involved caretakers. Some children are born with disabilities while others have special needs after an illness or accident. Special needs children often need help in their learning process and require tools and services in a different way. In some cases the child has multiple disabilities that affect several capabilities in different ways. These needs are to be transformed into different learning techniques that the staff or personal (called caretakers in this project) caring for the child needs to learn and adapt. The caretakers involved are also required to learn new learning or training techniques and utilities specialized for the child’s needs. In many cases the number of people caring for the child’s development is rather large; the parents, specialist pedagogues, teachers, therapists, psychologists, personal assistants, etc. Each group of specialists has different objectives and in some cases the merge between theses specifications is very unique. This makes the synchronization between different caretakers difficult, resulting often in low level cooperation. By better intercommunication between professions both the child’s development could be improved but also the caretakers’ methods and knowledge of each other’s work processes and their own profession. This introduces a unique work integrated learning environment for all personnel involve, merging learning and knowledge in the work environment and at the same time assist the children’s development process. Creating an iterative process generates a unique learning experience for all involved. Using a work integrated platform will help encourage and support the process of all the teams involved in the process.We believe that working with children who have special needs is a continues learning/working process that is always integrated to achieve one main goal, which is to make a better future for all children.

Keywords: information and communication technologies (ICT), work integrated learning (WIL), sustainable learning, special needs children

Procedia PDF Downloads 298
31085 DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations

Authors: Xiao Zhou, Jianlin Cheng

Abstract:

A single amino acid mutation can have a significant impact on the stability of protein structure. Thus, the prediction of protein stability change induced by single site mutations is critical and useful for studying protein function and structure. Here, we presented a deep learning network with the dropout technique for predicting protein stability changes upon single amino acid substitution. While using only protein sequence as input, the overall prediction accuracy of the method on a standard benchmark is >85%, which is higher than existing sequence-based methods and is comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results demonstrate that deep learning is a promising technique for protein stability prediction. The good performance of this sequence-based method makes it a valuable tool for predicting the impact of mutations on most proteins whose experimental structures are not available. Both the downloadable software package and the user-friendly web server (DNpro) that implement the method for predicting protein stability changes induced by amino acid mutations are freely available for the community to use.

Keywords: bioinformatics, deep learning, protein stability prediction, biological data mining

Procedia PDF Downloads 473
31084 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment

Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang

Abstract:

2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn  features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.

Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks

Procedia PDF Downloads 214
31083 Assessing Gender Mainstreaming Practices in the Philippine Basic Education System

Authors: Michelle Ablian Mejica

Abstract:

Female drop-outs due to teenage pregnancy and gender-based violence in schools are two of the most contentious and current gender-related issues faced by the Department of Education (DepEd) in the Philippines. The country adopted gender mainstreaming as the main strategy to eliminate gender inequalities in all aspects of the society including education since 1990. This research examines the extent and magnitude by which gender mainstreaming is implemented in the basic education from the national to the school level. It seeks to discover the challenges faced by the central and field offices, particularly by the principals who served as decision-makers in the schools where teaching and learning take place and where opportunities that may aggravate, conform and transform gender inequalities and hierarchies exist. The author conducted surveys and interviews among 120 elementary and secondary principals in the Division of Zambales as well as selected gender division and regional focal persons within Region III- Central Luzon. The study argues that DepEd needs to review, strengthen and revitalize its gender mainstreaming because the efforts do not penetrate the schools and are not enough to lessen or eliminate gender inequalities within the schools. The study found out some of the major challenges in the implementation of gender mainstreaming as follows: absence of a national gender-responsive education policy framework, lack of gender responsive assessment and monitoring tools, poor quality of gender and development related training programs and poor data collection and analysis mechanism. Furthermore, other constraints include poor coordination mechanism among implementing agencies, lack of clear implementation strategy, ineffective or poor utilization of GAD budget and lack of teacher and learner centered GAD activities. The paper recommends the review of the department’s gender mainstreaming efforts to align with the mandate of the agency and provide gender responsive teaching and learning environment. It suggests that the focus must be on formulation of gender responsive policies and programs, improvement of the existing mechanism and conduct of trainings focused on gender analysis, budgeting and impact assessment not only for principals and GAD focal point system but also to parents and other school stakeholders.

Keywords: curriculum and instruction, gender analysis, gender budgeting, gender impact assessment

Procedia PDF Downloads 353