Search results for: date seed powder (DSP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2701

Search results for: date seed powder (DSP)

361 Methodologies for Deriving Semantic Technical Information Using an Unstructured Patent Text Data

Authors: Jaehyung An, Sungjoo Lee

Abstract:

Patent documents constitute an up-to-date and reliable source of knowledge for reflecting technological advance, so patent analysis has been widely used for identification of technological trends and formulation of technology strategies. But, identifying technological information from patent data entails some limitations such as, high cost, complexity, and inconsistency because it rely on the expert’ knowledge. To overcome these limitations, researchers have applied to a quantitative analysis based on the keyword technique. By using this method, you can include a technological implication, particularly patent documents, or extract a keyword that indicates the important contents. However, it only uses the simple-counting method by keyword frequency, so it cannot take into account the sematic relationship with the keywords and sematic information such as, how the technologies are used in their technology area and how the technologies affect the other technologies. To automatically analyze unstructured technological information in patents to extract the semantic information, it should be transformed into an abstracted form that includes the technological key concepts. Specific sentence structure ‘SAO’ (subject, action, object) is newly emerged by representing ‘key concepts’ and can be extracted by NLP (Natural language processor). An SAO structure can be organized in a problem-solution format if the action-object (AO) states that the problem and subject (S) form the solution. In this paper, we propose the new methodology that can extract the SAO structure through technical elements extracting rules. Although sentence structures in the patents text have a unique format, prior studies have depended on general NLP (Natural language processor) applied to the common documents such as newspaper, research paper, and twitter mentions, so it cannot take into account the specific sentence structure types of the patent documents. To overcome this limitation, we identified a unique form of the patent sentences and defined the SAO structures in the patents text data. There are four types of technical elements that consist of technology adoption purpose, application area, tool for technology, and technical components. These four types of sentence structures from patents have their own specific word structure by location or sequence of the part of speech at each sentence. Finally, we developed algorithms for extracting SAOs and this result offer insight for the technology innovation process by providing different perspectives of technology.

Keywords: NLP, patent analysis, SAO, semantic-analysis

Procedia PDF Downloads 263
360 Nephroprotective Effect of Asparagus falcatus Leaf Extract on Adriamycin Induced Nephrotoxicity in Wistar Rats: A Dose Response Study

Authors: A. M. S. S. Amarasiri, A. P. Attanayake, K. A. P. W. Jayatilaka, L. K. B. Mudduwa

Abstract:

Adriamycin (ADR) is an effective anthracyclin antitumor drug, but its clinical use is limited due to renal toxicity. The leaves of Asparagus falcatus (Family: Liliaceae) have been used in the management of renal diseases since antiquity. In the present investigation, the aqueous leaf extract of A. falcatus was evaluated for acute nephroprotective activity in ADR induced nephrotoxic rats. Nephrotoxicity was induced in healthy male Wistar rats by intraperitoneal administration of ADR 20 mg/kg. The lyophilized powder of the aqueous refluxed (4h) leaf extract of A. falcatus was administered orally at three selected doses; 200, 400 and 600 mg/kg for three consecutive days. Fosinopril sodium (0.09 mg/kg) was used as the standard drug. Administration of the plant extract and the standard drug was commenced 24 hours after the induction of nephrotoxicity to rats. The nephroprotective effect was determined by selected biochemical parameters and by the assessment of histopathology on H and E stained kidney sections. The results were compared to a group of control rats with ADR induced nephrotoxicity. A group of rats administered with the equivalent volume of normal saline served as the healthy control. Administration of ADR 20 mg/kg produced a significant increase in the concentrations of serum creatinine (61%) and urine protein (73%) followed by a significant decrease in serum total protein (21%) and albumin (44%) of the plant extract treated animals compared to the healthy control group (p < 0.05). The aqueous extract of Asparagus falcatus at the three doses; 200, 400 and 600 mg/kg and the standard drug were found to decrease the elevation of concentrations of serum creatinine (33%, 51%, 54% and 42%) and urine protein (8%, 63%, 80% and 86%) respectively. The serum concentrations of total protein (12%, 17%, 29% and 12%) and albumin (3%, 17%, 17% and 16%) were significantly increased compared to the nephrotoxic control group respectively. Assessment of histopathology on H and E stained kidney sections demonstrated that ADR induced renal injury, as evidenced by loss of brush border, cytoplasmic vacuolization, pyknosis in renal tubular epithelial cells, haemorrhages, glomerular congestion and presence of hyaline casts. Treatment with the plant extract and the standard drug resulted in attenuation of the morphological destruction in rats. The results of the present study revealed that the aqueous leaf extract of A. falcatus possesses significant nephroprotective activity against adriamycin induced acute nephrotoxicity. The improved kidney functions were supported with the results of selected biochemical parameters and histological changes observed on H and E stained sections of the kidney tissues in Wistar rats.

Keywords: adriamycin induced nephrotoxicity, asparagus falcatus, biochemical assessment, histopathological assessment, nephroprotective activity

Procedia PDF Downloads 166
359 Correlation between Defect Suppression and Biosensing Capability of Hydrothermally Grown ZnO Nanorods

Authors: Mayoorika Shukla, Pramila Jakhar, Tejendra Dixit, I. A. Palani, Vipul Singh

Abstract:

Biosensors are analytical devices with wide range of applications in biological, chemical, environmental and clinical analysis. It comprises of bio-recognition layer which has biomolecules (enzymes, antibodies, DNA, etc.) immobilized over it for detection of analyte and transducer which converts the biological signal into the electrical signal. The performance of biosensor primarily the depends on the bio-recognition layer and therefore it has to be chosen wisely. In this regard, nanostructures of metal oxides such as ZnO, SnO2, V2O5, and TiO2, etc. have been explored extensively as bio-recognition layer. Recently, ZnO has the attracted attention of researchers due to its unique properties like high iso-electric point, biocompatibility, stability, high electron mobility and high electron binding energy, etc. Although there have been many reports on usage of ZnO as bio-recognition layer but to the authors’ knowledge, none has ever observed correlation between optical properties like defect suppression and biosensing capability of the sensor. Here, ZnO nanorods (ZNR) have been synthesized by a low cost, simple and low-temperature hydrothermal growth process, over Platinum (Pt) coated glass substrate. The ZNR have been synthesized in two steps viz. initially a seed layer was coated over substrate (Pt coated glass) followed by immersion of it into nutrient solution of Zinc nitrate and Hexamethylenetetramine (HMTA) with in situ addition of KMnO4. The addition of KMnO4 was observed to have a profound effect over the growth rate anisotropy of ZnO nanostructures. Clustered and powdery growth of ZnO was observed without addition of KMnO4, although by addition of it during the growth, uniform and crystalline ZNR were found to be grown over the substrate. Moreover, the same has resulted in suppression of defects as observed by Normalized Photoluminescence (PL) spectra since KMnO4 is a strong oxidizing agent which provides an oxygen rich growth environment. Further, to explore the correlation between defect suppression and biosensing capability of the ZNR Glucose oxidase (Gox) was immobilized over it, using physical adsorption technique followed by drop casting of nafion. Here the main objective of the work was to analyze effect of defect suppression over biosensing capability, and therefore Gox has been chosen as model enzyme, and electrochemical amperometric glucose detection was performed. The incorporation of KMnO4 during growth has resulted in variation of optical and charge transfer properties of ZNR which in turn were observed to have deep impact on biosensor figure of merits. The sensitivity of biosensor was found to increase by 12-18 times, due to variations introduced by addition of KMnO4 during growth. The amperometric detection of glucose in continuously stirred buffer solution was performed. Interestingly, defect suppression has been observed to contribute towards the improvement of biosensor performance. The detailed mechanism of growth of ZNR along with the overall influence of defect suppression on the sensing capabilities of the resulting enzymatic electrochemical biosensor and different figure of merits of the biosensor (Glass/Pt/ZNR/Gox/Nafion) will be discussed during the conference.

Keywords: biosensors, defects, KMnO4, ZnO nanorods

Procedia PDF Downloads 283
358 How Does Spirituality Manifest in the Lives of Jordanian Patients in End Stage Renal Failure: A Phenomenological Study

Authors: A. Tamimi, S. Greatrex-White, A. Narayanasamy

Abstract:

Background: Spirituality has been increasingly acknowledged in the nursing literature as an important element of holistic patient care. To date there have been numerous studies investigating the meaning of spirituality in Western cultures. Spirituality in Middle Eastern countries however remains under-researched. We will present a study which aimed to address this gap. Aim: The study aimed to explore how spirituality manifests in the lives of Jordanian End Stage Renal Failure (ESRF) patients. Methodology and Method: A hermeneutic phenomenological approach was adopted informed by the philosophy of Martin Heidegger. Participants (n=27) were recruited from four different dialysis units: in a public hospital, a private hospital, an educational hospital and a refugee’s hospital in Jordan. Data was collected through in-depth unstructured interviews. Data Analysis: Analysis was guided by the tenets of hermeneutic phenomenology namely: gaining immediate sense of what was said both during and after each interview, transcribing data verbatim, translating interviews into the English language, intensive reading and re-reading, seeking meaning units by line to line coding, developing situated structures (how spirituality was manifest in each text), developing a general structure from the individual situated structures (how the phenomenon ‘spirituality’ comes into being). Findings: Three major themes emerged from analysis: Religion, Relationships and Desperation. We will argue that a ‘secular’ concept of spirituality had no meaning for the participants in the study. Spirituality is fundamentally part of religion and vice versa. Discussion: The findings may have consequences for the use of spirituality in multi-cultural settings in Western countries. Additionally, findings highlighted an important emphasis on the practice of spirituality, often underestimated in previous literature for Arab-Muslim Jordanian patients. Conclusion: The study findings contribute to the existing gap in knowledge regarding how Arab-Muslim Jordanian ESRF patients experience spirituality during their illness. It provides valuable insights into the importance of spirituality for this patient group and suggests how nurses, educators and policy makers might help address ESRF patients’ spiritual needs and provide appropriate spiritual care. We suggest the findings may have relevance beyond the Jordanian context in educating nurses’ on the importance of appreciating the religious dimension of spirituality.

Keywords: spirituality, nursing, muslim, Jordan

Procedia PDF Downloads 447
357 Geographical Location and the Global Airline Industry: A Delphi Study into the Future of Home Base Requirements

Authors: Darren J. Ellis

Abstract:

This paper investigates the key industry-level consequences and future prospects for the global airline industry of the requirement for airlines to have a home base. This industry context results in geographical location playing a central role in determining how and where international airlines can operate, and the extent to which their international networks can develop. Data from a five stage mixed-methods Delphi study into the global airline industry’s likely future trajectory conducted in 2013 and 2014 are utilized to better understand the likelihood and consequences of home base requirements changing in future. Expert views and forecasts were collected to gauge core industry trends over a ten year timeframe. Attempts to change or bypass this industry requirement have not been successful to date outside of the European single air market. Europe remains the only prominent exception to the general rule in this regard. Most of the industry is founded on air space sovereignty, the nationality rule, and the bilateral system of traffic rights. Europe’s exceptionalism has seen it evolve into a single air market with characteristics similar to a nation-state, rather than to become a force for wider industry change and regional multilateralism. Europe has indeed become a key actor in global aviation, but Europe seems to now be part of the industry’s status quo, not a vehicle for substantially wider multilateralism around the world. The findings from this research indicate that the bilateral system is not viewed by most study experts as disappearing or substantially weakening in the foreseeable future. However, regional multilateralism was also viewed as progressively taking hold in the industry in future, demonstrating that for most industry experts the two are not seen as mutually exclusive but rather as being able to co-exist with each other. This reality ensures that geographical location will continue to play an important role in the global airline industry in future and that, home base requirements will not disappear any time soon either. Even moves in some aviation jurisdictions to dilute nationality requirements for airlines, and instead replace ownership and control restrictions with principal place of business tests, do not ultimately free airlines from their home base. Likewise, an expansion of what constitutes home base to include a regional grouping of countries – again, a currently uncommon reality in global aviation – does not fundamentally weaken the continued relevance of geographical location to the global industry’s future growth and development realities and prospects.

Keywords: airline industry, air space sovereignty, geographical location, home base

Procedia PDF Downloads 137
356 Response Surface Methodology for the Optimization of Radioactive Wastewater Treatment with Chitosan-Argan Nutshell Beads

Authors: Fatima Zahra Falah, Touria El. Ghailassi, Samia Yousfi, Ahmed Moussaif, Hasna Hamdane, Mouna Latifa Bouamrani

Abstract:

The management and treatment of radioactive wastewater pose significant challenges to environmental safety and public health. This study presents an innovative approach to optimizing radioactive wastewater treatment using a novel biosorbent: chitosan-argan nutshell beads. By employing Response Surface Methodology (RSM), we aimed to determine the optimal conditions for maximum removal efficiency of radioactive contaminants. Chitosan, a biodegradable and non-toxic biopolymer, was combined with argan nutshell powder to create composite beads. The argan nutshell, a waste product from argan oil production, provides additional adsorption sites and mechanical stability to the biosorbent. The beads were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) to confirm their structure and composition. A three-factor, three-level Box-Behnken design was utilized to investigate the effects of pH (3-9), contact time (30-150 minutes), and adsorbent dosage (0.5-2.5 g/L) on the removal efficiency of radioactive isotopes, primarily focusing on cesium-137. Batch adsorption experiments were conducted using synthetic radioactive wastewater with known concentrations of these isotopes. The RSM analysis revealed that all three factors significantly influenced the adsorption process. A quadratic model was developed to describe the relationship between the factors and the removal efficiency. The model's adequacy was confirmed through analysis of variance (ANOVA) and various diagnostic plots. Optimal conditions for maximum removal efficiency were pH 6.8, a contact time of 120 minutes, and an adsorbent dosage of 0.8 g/L. Under these conditions, the experimental removal efficiency for cesium-137 was 94.7%, closely matching the model's predictions. Adsorption isotherms and kinetics were also investigated to elucidate the mechanism of the process. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption behavior, indicating a monolayer adsorption process on a homogeneous surface. This study demonstrates the potential of chitosan-argan nutshell beads as an effective and sustainable biosorbent for radioactive wastewater treatment. The use of RSM allowed for the efficient optimization of the process parameters, potentially reducing the time and resources required for large-scale implementation. Future work will focus on testing the biosorbent's performance with real radioactive wastewater samples and investigating its regeneration and reusability for long-term applications.

Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology

Procedia PDF Downloads 40
355 Development of Special Education in Moldova: Paradoxes of Inclusion

Authors: Liya Kalinnikova Magnusson

Abstract:

The present and ongoing research investigation are focusing on special educational origins in Moldova for children with disabilities and its development towards inclusion. The research is coordinated with related research on inclusion in Ukraine and other countries. The research interest in these issues in Moldova is caused by several reasons. The first one is based upon one of the intensive processes of deconstruction of special education institutions in Moldova since 1989. A large number of children with disabilities have been dropping out of these institutions: from 11400 students in 1989 to 5800 students in 1996, corresponding to 1% of all school-age Moldovan learners. Despite the fact that a huge number of students was integrated into regular schools and the dynamics of this data across the country was uneven (the opposite, the dynamics of exclusion was raised in Trans-Dniester on the border of Moldova), the volume of the change was evident and traditional special educational provision was under stable decline. The second reason is tied to transitional challenges, which Moldova met under the force to economic liberalisation that led the country to poverty. Deinstitutionalization of the entire state system took place in the situation of economic polarization of the society. The level of social benefits was dramatically diminished, increasing inequality. The most vulnerable from the comprehensive income consideration were families with many children, children with disabilities, children with health problems, etc.: each third child belonged to the poorest population. In 2000-2001: 87,4% of all families with children had incomes below the minimum wage. The research question raised based upon these considerations has been addressed to the investigation of particular patterns of the origins of special education and its development towards inclusion in Moldova from 1980 until the present date: what is the pattern of special education origins and what are particular arrangements of special education development towards inclusion against inequality? This is a qualitative study, with relevant peer review resources connected to the research question and national documents of educational reforms towards inclusion retrospectively and contemporary, analysed by a content analysis approach. This study utilises long term statistics completed by the respective international agencies as a result of regular monitoring of the implementation of educational reforms. The main findings were composed in three big themes: adoption of the Soviet pattern of special education, ‘endemic stress’ of breaking the pattern, and ‘paradoxes of resolution’.

Keywords: special education, statistics, educational reforms, inclusion, children with disabilities, content analysis

Procedia PDF Downloads 169
354 Effect of Term of Preparation on Performance of Cool Chamber Stored White Poplar Hardwood Cuttings in Nursery

Authors: Branislav Kovačević, Andrej Pilipović, Zoran Novčić, Marina Milović, Lazar Kesić, Milan Drekić, Saša Pekeč, Leopold Poljaković Pajnik, Saša Orlović

Abstract:

Poplars present one of the most important tree species used for phytoremediation in the northern hemisphere. They can be used either as direct “cleaners” of the contaminated soils or as buffer zones preventing the contaminant plume to the surrounding environment. In order to produce appropriate planting material for this purpose, there is a long process of the breeding of the most favorable candidates. Although the development of the poplar propagation technology has been evolving for decades, white poplar nursery production, as well as the establishment of short-rotation coppice plantations, still considerably depends on the success of hardwood cuttings’ survival. This is why easy rooting is among the most desirable properties in white poplar breeding. On the other hand, there are many opportunities for the optimization of the technological procedures in order to meet the demands of particular genotype (clonal technology). In this study the effect of the term of hardwood cuttings’ preparation of four white poplar clones on their survival and further growth of rooted cuttings in nursery conditions were tested. There were three terms of cuttings’ preparation: the beginning of February (2nd Feb 2023), the beginning of March (3rd Mar 2023) and the end of March (21nd Mar 2023), which is regarded as the standard term. The cuttings were stored in cool chamber at 2±2°C. All cuttings were planted on the same date (11th Apr 2023), in soil prepared with rotary tillage, and then cultivated by usual nursey procedures. According to the results obtained after the bud set (29th Sept 2023) there were significant differences in the survival and growth of rooted cuttings between examined terms of cutting preparation. Also, there were significant differences in the reaction of examined clones on terms of cutting preparation. In total, the best results provided cuttings prepared at the first term (2nd Feb 2023) (survival rate of 39.4%), while performance after two later preparation terms was significantly poorer (20.5% after second and 16.5% after third term). These results stress the significance of dormancy preservation in cuttings of examined white poplar clones for their survival, which could be especially important in context of climate change. Differences in clones’ reaction to term of cutting preparation suggest necessity of adjustment of the technology to the needs of particular clone i.e. design of clone specific technology.

Keywords: rooting, Populus alba, nursery, clonal technology

Procedia PDF Downloads 67
353 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada

Authors: Bilel Chalghaf, Mathieu Varin

Abstract:

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.

Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR

Procedia PDF Downloads 138
352 Teaching Material, Books, Publications versus the Practice: Myths and Truths about Installation and Use of Downhole Safety Valve

Authors: Robson da Cunha Santos, Caio Cezar R. Bonifacio, Diego Mureb Quesada, Gerson Gomes Cunha

Abstract:

The paper is related to the safety of oil wells and environmental preservation on the planet, because they require great attention and commitment from oil companies and people who work with these equipments. This must occur from drilling the well until it is abandoned in order to safeguard the environment and prevent possible damage. The project had as main objective the constitution resulting from comparatives made among books, articles and publications with information gathered in technical visits to operational bases of Petrobras. After the visits, the information from methods of utilization and present managements, which were not available before, became available to the general audience. As a result, it is observed a huge flux of incorrect and out-of-date information that comprehends not only bibliographic archives, but also academic resources and materials. During the gathering of more in-depth information on the manufacturing, assembling, and use aspects of DHSVs, several issues that were previously known as correct, customary issues were discovered to be uncertain and outdated. Information of great importance resulted in affirmations about subjects as the depth of the valve installation that was before installed to 30 meters from the seabed (mud line). Despite this, the installation should vary in conformity to the ideal depth to escape from area with the biggest tendency to hydrates formation according to the temperature and pressure. Regarding to valves with nitrogen chamber, in accordance with books, they have their utilization linked to water line ≥ 700 meters, but in Brazilian exploratory fields, their use occurs from 600 meters of water line. The valves used in Brazilian fields are able to be inserted to the production column and self-equalizing, but the use of screwed valve in the column of production and equalizing is predominant. Although these valves are more expensive to acquire, they are more reliable, efficient, with a bigger shelf life and they do not cause restriction to the fluid flux. It follows that based on researches and theoretical information confronted to usual forms used in fields, the present project is important and relevant. This project will be used as source of actualization and information equalization that connects academic environment and real situations in exploratory situations and also taking into consideration the enrichment of precise and easy to understand information to future researches and academic upgrading.

Keywords: down hole safety valve, security devices, installation, oil-wells

Procedia PDF Downloads 275
351 Properties Optimization of Keratin Films Produced by Film Casting and Compression Moulding

Authors: Mahamad Yousif, Eoin Cunningham, Beatrice Smyth

Abstract:

Every year ~6 million tonnes of feathers are produced globally. Due to feathers’ low density and possible contamination with pathogens, their disposal causes health and environmental problems. The extraction of keratin, which represents >90% of feathers’ dry weight, could offer a solution due to its wide range of applications in the food, medical, cosmetics, and biopolymer industries. One of these applications is the production of biofilms which can be used for packaging, edible films, drug delivery, wound healing etc. Several studies in the last two decades investigated keratin film production and its properties. However, the effects of many parameters on the properties of the films remain to be investigated including the extraction method, crosslinker type and concentration, and the film production method. These parameters were investigated in this study. Keratin was extracted from chicken feathers using two methods, alkaline extraction with 0.5 M NaOH at 80 °C or sulphitolysis extraction with 0.5 M sodium sulphite, 8 M urea, and 0.25-1 g sodium dodecyl sulphate (SDS) at 100 °C. The extracted keratin was mixed with different types and concentrations of plasticizers (glycerol and polyethylene glycol) and crosslinkers (formaldehyde (FA), glutaraldehyde, cinnamaldehyde, glyoxal, and 1,4-Butanediol diglycidyl ether (BDE)). The mixtures were either cast in a mould or compression moulded to produce films. For casting, keratin powder was initially dissolved in water to form a 5% keratin solution and the mixture was dried in an oven at 60 °C. For compression moulding, 10% water was added and the compression moulding temperature and pressure were in the range of 60-120 °C and 10-30 bar. Finally, the tensile properties, solubility, and transparency of the films were analysed. The films prepared using the sulphitolysis keratin had superior tensile properties to the alkaline keratin and formed successfully with lower plasticizer concentrations. Lowering the SDS concentration from 1 to 0.25 g/g feathers improved all the tensile properties. All the films prepared without crosslinkers were 100% water soluble but adding crosslinkers reduced solubility to as low as 21%. FA and BDE were found to be the best crosslinkers increasing the tensile strength and elongation at break of the films. Higher compression moulding temperature and pressure lowered the tensile properties of the films; therefore, 80 °C and 10 bar were considered to be the optimal compression moulding temperature and pressure. Nevertheless, the films prepared by casting had higher tensile properties than compression moulding but were less transparent. Two optimal films, prepared by film casting, were identified and their compositions were: (a) Sulphitolysis keratin, 20% glycerol, 10% FA, and 10% BDE. (b) Sulphitolysis keratin, 20% glycerol, and 10% BDE. Their tensile strength, elongation at break, Young’s modulus, solubility, and transparency were: (a) 4.275±0.467 MPa, 86.12±4.24%, 22.227±2.711 MPa, 21.34±1.11%, and 8.57±0.94* respectively. (b) 3.024±0.231 MPa, 113.65±14.61%, 10±1.948 MPa, 25.03±5.3%, and 4.8±0.15 respectively. A higher value indicates that the film is less transparent. The extraction method, film composition, and production method had significant influence on the properties of keratin films and should therefore be tailored to meet the desired properties and applications.

Keywords: compression moulding, crosslinker, film casting, keratin, plasticizer, solubility, tensile properties, transparency

Procedia PDF Downloads 38
350 Improving Student Retention: Enhancing the First Year Experience through Group Work, Research and Presentation Workshops

Authors: Eric Bates

Abstract:

Higher education is recognised as being of critical importance in Ireland and has been linked as a vital factor to national well-being. Statistics show that Ireland has one of the highest rates of higher education participation in Europe. However, student retention and progression, especially in Institutes of Technology, is becoming an issue as rates on non-completion rise. Both within Ireland and across Europe student retention is seen as a key performance indicator for higher education and with these increasing rates the Irish higher education system needs to be flexible and adapt to the situation it now faces. The author is a Programme Chair on a Level 6 full time undergraduate programme and experience to date has shown that the first year undergraduate students take some time to identify themselves as a group within the setting of a higher education institute. Despite being part of a distinct class on a specific programme some individuals can feel isolated as he or she take the first step into higher education. Such feelings can contribute to students eventually dropping out. This paper reports on an ongoing initiative that aims to accelerate the bonding experience of a distinct group of first year undergraduates on a programme which has a high rate of non-completion. This research sought to engage the students in dynamic interactions with their peers to quickly evolve a group sense of coherence. Two separate modules – a Research Module and a Communications module - delivered by the researcher were linked across two semesters. Students were allocated into random groups and each group was given a topic to be researched. There were six topics – essentially the six sub-headings on the DIT Graduate Attribute Statement. The research took place in a computer lab and students also used the library. The output from this was a document that formed part of the submission for the Research Module. In the second semester the groups then had to make a presentation of their findings where each student spoke for a minimum amount of time. Presentation workshops formed part of that module and students were given the opportunity to practice their presentation skills. These presentations were video recorded to enable feedback to be given. Although this was a small scale study preliminary results found a strong sense of coherence among this particular cohort and feedback from the students was very positive. Other findings indicate that spreading the initiative across two semesters may have been an inhibitor. Future challenges include spreading such Initiatives College wide and indeed sector wide.

Keywords: first year experience, student retention, group work, presentation workshops

Procedia PDF Downloads 233
349 (Mis) Communication across the Borders: Politics, Media, and Public Opinion in Turkey

Authors: Banu Baybars Hawks

Abstract:

To date, academic attention in social sciences remains inadequate with regard to research and analysis of public opinion in Turkey. Most of the existing research has assessed the public opinion during political election periods. Therefore, it is of great interest to find out what the public thinks about current issues in Turkey, and how to interpret the results to be able to reveal whether they may have any reflections on social, political, and cultural structure of the country. Accordingly, the current study seeks to fill the gap in the social sciences literature in English regarding Turkey’s social and political stand which may be perceived to be very different by other nations. Without timely feedback from public surveys, various programs for improving different services and institutions functioning in the country might not achieve their expected goal, nor can decisions about which programs to implement be made rationally. Additionally, the information gathered may not only yield important insights into public’s opinion regarding current agenda in Turkey, but also into the correlates shaping public policies. Agenda-setting studies including agenda-building, agenda melding, reversed agenda-setting and information diffusion studies will be used to explain the roles of factors and actors in the formation of public opinion in Turkey. Knowing the importance of public agenda in the agenda setting and building process, this paper aims to reveal the social and political tendencies of the Turkish public. For that purpose, a survey will be carried out in December of 2014 to determine the social and political trends in Turkey for that same year. The subjects for the study, which utilize a questionairre in one-on-one interviews, will include 1,000 individuals aged 18 years and older from 26 cities representing general population. A stratified random sampling frame will be used. The topics covered by the survey include: The most important current problem in Turkey; the Economy; Terror; Approaches to the Kurdish Issue; Evaluations of the Government and Opposition Parties; Evaluations of Institutional Efficiency; Foreign Policy; the Judicial System/Constitution; Democracy and the Media; and, Social Relations/Life in Turkey. Since the beginning of the 21st century, Turkey has been undergoing a rapid transformation. The reflections of the changes can be seen in all areas from economics to politics. It is my hope that findings of this study may shed light on the important aspects of institutions, variables setting the agenda, and formation process of public opinion in Turkey.

Keywords: public opinion, media, agenda setting, information diffusion, government, freedom, Turkey

Procedia PDF Downloads 469
348 iPSCs More Effectively Differentiate into Neurons on PLA Scaffolds with High Adhesive Properties for Primary Neuronal Cells

Authors: Azieva A. M., Yastremsky E. V., Kirillova D. A., Patsaev T. D., Sharikov R. V., Kamyshinsky R. A., Lukanina K. I., Sharikova N. A., Grigoriev T. E., Vasiliev A. L.

Abstract:

Adhesive properties of scaffolds, which predominantly depend on the chemical and structural features of their surface, play the most important role in tissue engineering. The basic requirements for such scaffolds are biocompatibility, biodegradation, high cell adhesion, which promotes cell proliferation and differentiation. In many cases, synthetic polymers scaffolds have proven advantageous because they are easy to shape, they are tough, and they have high tensile properties. The regeneration of nerve tissue still remains a big challenge for medicine, and neural stem cells provide promising therapeutic potential for cell replacement therapy. However, experiments with stem cells have their limitations, such as low level of cell viability and poor control of cell differentiation. Whereas the study of already differentiated neuronal cell culture obtained from newborn mouse brain is limited only to cell adhesion. The growth and implantation of neuronal culture requires proper scaffolds. Moreover, the polymer scaffolds implants with neuronal cells could demand specific morphology. To date, it has been proposed to use numerous synthetic polymers for these purposes, including polystyrene, polylactic acid (PLA), polyglycolic acid, and polylactide-glycolic acid. Tissue regeneration experiments demonstrated good biocompatibility of PLA scaffolds, despite the hydrophobic nature of the compound. Problem with poor wettability of the PLA scaffold surface could be overcome in several ways: the surface can be pre-treated by poly-D-lysine or polyethyleneimine peptides; roughness and hydrophilicity of PLA surface could be increased by plasma treatment, or PLA could be combined with natural fibers, such as collagen or chitosan. This work presents a study of adhesion of both induced pluripotent stem cells (iPSCs) and mouse primary neuronal cell culture on the polylactide scaffolds of various types: oriented and non-oriented fibrous nonwoven materials and sponges – with and without the effect of plasma treatment and composites with collagen and chitosan. To evaluate the effect of different types of PLA scaffolds on the neuronal differentiation of iPSCs, we assess the expression of NeuN in differentiated cells through immunostaining. iPSCs more effectively differentiate into neurons on PLA scaffolds with high adhesive properties for primary neuronal cells.

Keywords: PLA scaffold, neurons, neuronal differentiation, stem cells, polylactid

Procedia PDF Downloads 87
347 Integrated Management System of Plant Genetic Resources: Collection, Conservation, Regeneration and Characterization of Cucurbitaceae and Solanaceae of DOA Genebank, Thailand

Authors: Kunyaporn Pipithsangchan, Alongkorn Korntong, Assanee Songserm, Phatchara Piriyavinit, Saowanee Dechakampoo

Abstract:

The Kingdom of Thailand is one of the South East Asian countries. From its area of 514,000 square kilometers (51 million ha), at least 18,000 plant species (8% of the world total) have been estimated to be found in the country. As a result, the conservation of plant genetic diversity, particularly food crops, is becoming important and is an assurance for the national food security. Department of Agriculture Genebank or DOA Genebank, Thailand is responsible for the conservation of plant germplasm by participating and accomplishing several collaborative projects both at national and international levels. Integrated Management System of Plant Genetic Resources or IMPGR is one of the most outstandingly successful cooperation. It is a multilateral project under the Asian Food and Agriculture Cooperation Initiative (AFACI) supported by the Rural Development Administration (RDA) of South Korea. The member countries under the project consist of 11 nations namely Bangladesh, Cambodia, Indonesia, Laos PDR, Mongolia, Nepal, Philippines, Sri Lanka, Thailand, Vietnam and South Korea. The project enabled the members to jointly address the global issues in plant genetic resource (PGR) conservation and strengthen their network in this aspect. The 1st phase of IMPGR project, entitled 'Collection, Conservation, Regeneration and Characterization of Cucurbitaceae and Solanaceae 2012-2014', comprises three main objectives that are: 1) To improve management in storage facilities, collection, and regeneration, 2) To improve linkage between Genebank and material sources (for regeneration), and 3) To improve linkage between Genebank and other field crop or/and horticultural research centers. The project was done for three years from 2012 to 2014. The activities of the project can be described as following details: In the 1st year, there were 9 target provinces for completing plant genetic resource survey and collection. 108 accessions of PGR were collected. In the 2nd year, PGR were continuously surveyed and collected from 9 provinces. The total number of collection was 140 accessions. In addition, the process of regeneration of 237 accessions collected from 1st and 2nd year was started at several sites namely Biotechnology Research and Development Office, Sukothai Horticultural Research Center, Tak Research, and Development Center and Nakhon Ratchasima Research and Development Center. In the 3rd year, besides survey and collection of 115 accessions from 9 target provinces, PGR characterization and evaluation were done for 206 accessions. Moreover, safety duplication of 253 PGR at the World Seed Vault, RDA, was also done according to Standard Agreement on Germplasm Safety Duplication between Department of Agriculture, Ministry of Agriculture and Cooperatives, the Kingdom of Thailand and the National Agrobiodiversity Center, Rural Development Administration of the Republic of Korea. The success of the 1st phase project led to the second phase which entitled 'Collection and Characterization for Effective Conservation of Local Capsicum spp., Solanum spp. and Lycopersicon spp. in Thailand 2015-2017'.

Keywords: characterization, conservation, DOA genebank, plant genetic resources

Procedia PDF Downloads 176
346 Characteristics of Pore Pressure and Effective Stress Changes in Sandstone Reservoir Due to Hydrocarbon Production

Authors: Kurniawan Adha, Wan Ismail Wan Yusoff, Luluan Almanna Lubis

Abstract:

Preventing hazardous events during oil and gas operation is an important contribution of accurate pore pressure data. The availability of pore pressure data also contribute in reducing the operation cost. Suggested methods in pore pressure estimation were mostly complex by the many assumptions and hypothesis used. Basic properties which may have significant impact on estimation model are somehow being neglected. To date, most of pore pressure determinations are estimated by data model analysis and rarely include laboratory analysis, stratigraphy study or core check measurement. Basically, this study developed a model that might be applied to investigate the changes of pore pressure and effective stress due to hydrocarbon production. In general, this paper focused velocity model effect of pore pressure and effective stress changes due to hydrocarbon production with illustrated by changes in saturation. The core samples from Miri field from Sarawak Malaysia ware used in this study, where the formation consists of sandstone reservoir. The study area is divided into sixteen (16) layers and encompassed six facies (A-F) from the outcrop that is used for stratigraphy sequence model. The experimental work was firstly involving data collection through field study and developing stratigraphy sequence model based on outcrop study. Porosity and permeability measurements were then performed after samples were cut into 1.5 inch diameter core samples. Next, velocity was analyzed using SONIC OYO and AutoLab 500. Three (3) scenarios of saturation were also conducted to exhibit the production history of the samples used. Results from this study show the alterations of velocity for different saturation with different actions of effective stress and pore pressure. It was observed that sample with water saturation has the highest velocity while dry sample has the lowest value. In comparison with oil to samples with oil saturation, water saturated sample still leads with the highest value since water has higher fluid density than oil. Furthermore, water saturated sample exhibits velocity derived parameters, such as poisson’s ratio and P-wave velocity over S-wave velocity (Vp/Vs) The result shows that pore pressure value ware reduced due to the decreasing of fluid content. The decreasing of pore pressure result may soften the elastic mineral frame and have tendency to possess high velocity. The alteration of pore pressure by the changes in fluid content or saturation resulted in alteration of velocity value that has proportionate trend with the effective stress.

Keywords: pore pressure, effective stress, production, miri formation

Procedia PDF Downloads 292
345 Bioconversion of Antifungal Antibiotic Derived from Aspergillus Nidulans

Authors: Savitha Janakiraman, Shivakumar M. C

Abstract:

Anidulafungin, an advanced class of antifungal agent used for the treatment of chronic fungal infections, is derived from Echinocandin B nucleus, an intermediate metabolite of Echinocandin B produced by Aspergillus nidulans. The enzyme acylase derived from the fermentation broth of Actinoplanes utahensis (NRRL 12052) plays a key role in the bioconversion of echinocandin B to echinocandin B nucleus. The membrane-bound nature of acylase and low levels of expression contributes to the rate-limiting process of enzymatic deacylation, hence low yields of ECB nucleus and anidulafungin. In the present study, this is addressed through novel genetic engineering approaches of overexpression and heterologous expression studies, immobilization of whole cells of Actinoplanes utahensis (NRRL 12052) and Co-cultivation studies. Overexpression of the acylase gene in Actinoplanes utahensis (NRRL 12052) was done by increasing the gene copy number to increase the echinocandin B nucleus production. Echinocandin B acylase gene, under the control of a PermE* promoter, was cloned in pSET152 vector and introduced into Actinoplanes utahensis (NRRL12052) by a ɸC31-directed site-specific recombination method. The resultant recombinant strain (C2-18) showed a 3-fold increase in acylase expression, which was confirmed by HPLC analysis. Pichia pastoris is one of the most effective and versatile host systems for the production of heterologous proteins. The ECB acylase gene was cloned into pPIC9K vector with AOX1 promoter and was transformed into Pichia pastoris (GS115). The acylase expression was confirmed by protein expression and bioconversion studies. The heterologous expression of acylase in Pichia pastoris, is a milestone in the development of antifungals. Actively growing cells of Actinoplanes utahensis (NRRL 12052) were immobilized and tested for bioconversion ability which showed >90% conversion in each cycle. The stability of immobilized cell beads retained the deacylation ability up to 60 days and reusability was confirmed up to 4 cycles. The significant findings from the study have revealed that immobilization of whole cells of Actinoplanes utahensis (NRRL 12052) could be an alternative option for bioconversion of echinocandin B to echinocandin B nucleus, which has not been reported to date. The concept of co-cultivation of Aspergillus nidulans and Actinoplanes utahensis strains for the production of the echinocandin B nucleus was also carried out in order to produce echinocandin B nucleus. The process completely reduced the ECB purification step and, therefore, could be recommended as an ingenious method to improve the yield of the ECB nucleus.

Keywords: acylase, anidulafungin, antifungals, Aspergillus nidulans

Procedia PDF Downloads 111
344 Purification of Bacillus Lipopeptides for Diverse Applications

Authors: Vivek Rangarajan, Kim G. Clarke

Abstract:

Bacillus lipopeptides are biosurfactants with wide ranging applications in the medical, food, agricultural, environmental and cosmetic industries. They are produced as a mix of three families, surfactin, iturin and fengycin, each comprising a large number of homologues of varying functionalities. Consequently, the method and degree of purification of the lipopeptide cocktail becomes particularly important if the functionality of the lipopeptide end-product is to be maximized for the specific application. However, downstream processing of Bacillus lipopeptides is particularly challenging due to the subtle variations observed in the different lipopeptide homologues and isoforms. To date, the most frequently used lipopeptide purification operations have been acid precipitation, solvent extraction, membrane ultrafiltration, adsorption and size exclusion. RP-HPLC (reverse phase high pressure liquid chromatography) also has potential for fractionation of the lipopeptide homologues. In the studies presented here, membrane ultrafiltration and RP-HPLC were evaluated for lipopeptide purification to different degrees of purities for maximum functionality. Batch membrane ultrafiltration using 50 kDa polyether sulphone (PES) membranes resulted in lipopeptide recovery of about 68% for surfactin and 82 % for fengycin. The recovery was further improved to 95% by using size-conditioned lipopeptide micelles. The conditioning of lipopeptides with Ca2+ ions resulted in uniformly sized micelles with average size of 96.4 nm and a polydispersity index of 0.18. The size conditioning also facilitated removal of impurities (molecular weight ranging between 2335-3500 Da) through operation of the system under dia-filtration mode, in a way similar to salt removal from protein by dialysis. The resultant purified lipopeptide was devoid of macromolecular impurities and could ideally suit applications in the cosmetic and food industries. Enhanced purification using RP-HPLC was carried out in an analytical C18 column, with the aim to fractionate lipopeptides into their constituent homologues. The column was eluted with mobile phase comprising acetonitrile and water over an acetonitrile gradient, 35% - 80%, over 70 minutes. The gradient elution program resulted in as many as 41 fractions of individual lipopeptide homologues. The efficacy test of these fractions against fungal phytopathogens showed that first 21 fractions, identified to be homologues of iturins and fengycins, displayed maximum antifungal activities, suitable for biocontrol in the agricultural industry. Thus, in the current study, the downstream processing of lipopeptides leading to tailor-made products for selective applications was demonstrated using two major downstream unit operations.

Keywords: bacillus lipopeptides, membrane ultrafiltration, purification, RP-HPLC

Procedia PDF Downloads 209
343 Developing Curricula for Signaling and Communication Course at Malaysia Railway Academy (MyRA) through Industrial Collaboration Program

Authors: Mohd Fairus Humar, Ibrahim Sulaiman, Pedro Cruz, Hasry Harun

Abstract:

This paper presents the propose knowledge transfer program on railway signaling and communication by Original Equipment Manufacturer (OEM) Thales Portugal. The fundamental issue is that there is no rail related course offered by local universities and colleges in Malaysia which could be an option to pursue student career path. Currently, dedicated trainings related to the rail technology are provided by in-house training academies established by the respective rail operators such as Malaysia Railway Academy (MyRA) and Rapid Rail Training Centre. In this matter, the content of training and facilities need to be strengthened to keep up-to-date with the dynamic evolvement of the rail technology. This is because rail products have evolved to be more sophisticated and embedded with high technology components which no longer exist in the mechanical form alone but combined with electronics, information technology and others. These demand for a workforce imbued with knowledge, multi-skills and competency to deal with specialized technical areas. Talent is needed to support sustainability in Southeast Asia. Keeping the above factors in mind, an Industrial Collaboration Program (ICP) was carried out to transfer knowledge on curricula of railway signaling and communication to a selected railway operators and tertiary educational institution in Malaysia. In order to achieve the aim, a partnership was formed between Technical Depository Agency (TDA), Thales Portugal and MyRA for two years with three main stages of program implementation comprising of: i) training on basic railway signaling and communication for 1 month with Thales in Malaysia; ii) training on advance railway signaling and communication for 4 months with Thales in Portugal and; iii) a series of workshop. Two workshops were convened to develop and harmonize curricula of railway signaling and communication course and were followed by one training for installation equipment of railway signaling and Controlled Train Centre (CTC) system from Thales Portugal. With active involvement from Technical Depository Agency (TDA), railway operators, universities, and colleges, in planning, executing, monitoring, control and closure, the program module of railway signaling and communication course with a lab railway signaling field equipment and CTC simulator were developed. Through this program, contributions from various parties help to build committed societies to engage important issues in relation to railway signaling and communication towards creating a sustainable future.

Keywords: knowledge transfer program, railway signaling and communication, curricula, module and teaching aid simulator

Procedia PDF Downloads 193
342 A Comparative Study to Evaluate Changes in Intraocular Pressure with Thiopentone Sodium and Etomidate in Patients Undergoing Surgery for Traumatic Brain Injury

Authors: Vasudha Govil, Prashant Kumar, Ishwar Singh, Kiranpreet Kaur

Abstract:

Traumatic brain injury leads to elevated intracranial pressure. Intraocular pressure (IOP) may also be affected by intracranial pressure. Increased venous pressure in the cavernous sinus is transmitted to the episcleral veins, resulting in an increase in IOP. All drugs used in anesthesia induction can change IOP. Irritation of the gag reflex after usage of the endotracheal tube can also increase IOP; therefore, the administration of anesthetic drugs, which make the lowest change in IOP, is important, while cardiovascular depression must also be avoided. Thiopentone decreases IOP by 40%, whereas etomidate decreases IOP by 30-60% for up to 5 minutes. Hundred patients (age 18-55 years) who underwent emergency craniotomy for TBI are selected for the study. Patients are randomly assigned to two groups of 50 patients each accord¬ing to the drugs used for induction: group T was given thiopentone sodium (5mg kg-1) and group E was given etomi¬date (0.3mg kg-1). Preanaesthesia intraocular pressure (IOP) was measured using Schiotz tonometer. Induction of anesthesia was achieved with etomidate (0.3mg kg-1) or thiopentone (5mg kg-1) along with fentanyl (2 mcg kg-1). Intravenous rocuronium (0.9mg kg-1) was given to facilitate intubation. Intraocular pressure was measured after 1 minute of induction agent administration and 5 minutes after intubation. Maintainance of anesthesia was done with isoflurane in 50% nitrous oxide with fresh gas flow of 5 litres. At the end of the surgery, the residual neuromuscular block was reversed and the patient was shifted to ward/ICU. Patients in both groups were comparable in terms of demographic profile. There was no significant difference between the groups for the hemody¬namic and respiratory variables prior to thiopentone or etomidate administration. Intraocular pressure in thiopentone group in left eye and right eye before induction was 14.97±3.94 mmHg and 14.72±3.75 mmHg respectively and for etomidate group was 15.28±3.69 mmHg and 15.54±4.46 mmHg respectively. After induction IOP decreased significantly in both the eyes (p<0.001) in both the groups. After 5 min of intubation IOP was significantly less than the baseline in both the eyes but it was more than the IOP after induction with the drug. It was found that there was no statistically significant difference in IOP between the two groups at any point of time. Both the drugs caused a significant decrease in IOP after induction and after 5 minutes of endotracheal intubation. The mechanism of decrease in IOP by intravenous induction agents is debatable. Systemic hypotension after the induction of anaesthesia has been shown to cause a decrease in intra-ocular pressure. A decrease in the tone of the extra-ocular muscles can also result in a decrease in intra-ocular pressure. We observed that it is appropriate to use etomidate as an induction agent when elevation of intra-ocular pressure is undesirable owing to the cardiovascular stability it confers in the patients.

Keywords: etomidate, intraocular pressure, thiopentone, traumatic

Procedia PDF Downloads 127
341 Ultrasonic Irradiation Synthesis of High-Performance Pd@Copper Nanowires/MultiWalled Carbon Nanotubes-Chitosan Electrocatalyst by Galvanic Replacement toward Ethanol Oxidation in Alkaline Media

Authors: Majid Farsadrouh Rashti, Amir Shafiee Kisomi, Parisa Jahani

Abstract:

The direct ethanol fuel cells (DEFCs) are contemplated as a promising energy source because, In addition to being used in portable electronic devices, it is also used for electric vehicles. The synthesis of bimetallic nanostructures due to their novel optical, catalytic and electronic characteristic which is precisely in contrast to their monometallic counterparts is attracting extensive attention. Galvanic replacement (sometimes is named to as cementation or immersion plating) is an uncomplicated and effective technique for making nanostructures (such as core-shell) of different metals, semiconductors, and their application in DEFCs. The replacement of galvanic does not need any external power supply compared to electrodeposition. In addition, it is different from electroless deposition because there is no need for a reducing agent to replace galvanizing. In this paper, a fast method for the palladium (Pd) wire nanostructures synthesis with the great surface area through galvanic replacement reaction utilizing copper nanowires (CuNWS) as a template by the assistance of ultrasound under room temperature condition is proposed. To evaluate the morphology and composition of Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan, emission scanning electron microscopy, energy dispersive X-ray spectroscopy were applied. In order to measure the phase structure of the electrocatalysts were performed via room temperature X-ray powder diffraction (XRD) applying an X-ray diffractometer. Various electrochemical techniques including chronoamperometry and cyclic voltammetry were utilized for the electrocatalytic activity of ethanol electrooxidation and durability in basic solution. Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst demonstrated substantially enhanced performance and long-term stability for ethanol electrooxidation in the basic solution in comparison to commercial Pd/C that demonstrated the potential in utilizing Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan as efficient catalysts towards ethanol oxidation. Noticeably, the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan presented excellent catalytic activities with a peak current density of 320.73 mAcm² which was 9.5 times more than in comparison to Pd/C (34.2133 mAcm²). Additionally, activation energy thermodynamic and kinetic evaluations revealed that the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst has lower compared to Pd/C which leads to a lower energy barrier and an excellent charge transfer rate towards ethanol oxidation.

Keywords: core-shell structure, electrocatalyst, ethanol oxidation, galvanic replacement reaction

Procedia PDF Downloads 149
340 Application of Forensic Entomology to Estimate the Post Mortem Interval

Authors: Meriem Taleb, Ghania Tail, Fatma Zohra Kara, Brahim Djedouani, T. Moussa

Abstract:

Forensic entomology has grown immensely as a discipline in the past thirty years. The main purpose of forensic entomology is to establish the post mortem interval or PMI. Three days after the death, insect evidence is often the most accurate and sometimes the only method of determining elapsed time since death. This work presents the estimation of the PMI in an experiment to test the reliability of the accumulated degree days (ADD) method and the application of this method in a real case. The study was conducted at the Laboratory of Entomology at the National Institute for Criminalistics and Criminology of the National Gendarmerie, Algeria. The domestic rabbit Oryctolagus cuniculus L. was selected as the animal model. On 08th July 2012, the animal was killed. Larvae were collected and raised to adulthood. Estimation of oviposition time was calculated by summing up average daily temperatures minus minimum development temperature (also specific to each species). When the sum is reached, it corresponds to the oviposition day. Weather data were obtained from the nearest meteorological station. After rearing was accomplished, three species emerged: Lucilia sericata, Chrysomya albiceps, and Sarcophaga africa. For Chrysomya albiceps species, a cumulation of 186°C is necessary. The emergence of adults occured on 22nd July 2012. A value of 193.4°C is reached on 9th August 2012. Lucilia sericata species require a cumulation of 207°C. The emergence of adults occurred on 23rd, July 2012. A value of 211.35°C is reached on 9th August 2012. We should also consider that oviposition may occur more than 12 hours after death. Thus, the obtained PMI is in agreement with the actual time of death. We illustrate the use of this method during the investigation of a case of a decaying human body found on 03rd March 2015 in Bechar, South West of Algerian desert. Maggots were collected and sent to the Laboratory of Entomology. Lucilia sericata adults were identified on 24th March 2015 after emergence. A sum of 211.6°C was reached on 1st March 2015 which corresponds to the estimated day of oviposition. Therefore, the estimated date of death is 1st March 2015 ± 24 hours. The estimated PMI by accumulated degree days (ADD) method seems to be very precise. Entomological evidence should always be used in homicide investigations when the time of death cannot be determined by other methods.

Keywords: forensic entomology, accumulated degree days, postmortem interval, diptera, Algeria

Procedia PDF Downloads 296
339 A Review of Atomization Mechanisms Used for Spray Flash Evaporation: Their Effectiveness and Proposal of Rotary Bell Atomizer for Flashing Application

Authors: Murad A. Channa, Mehdi Khiadani. Yasir Al-Abdeli

Abstract:

Considering the severity of water scarcity around the world and its widening at an alarming rate, practical improvements in desalination techniques need to be engineered at the earliest. Atomization is the major aspect of flashing phenomena, yet it has been paid less attention to until now. There is a need to test efficient ways of atomization for the flashing process. Flash evaporation together with reverse osmosis is also a commercially matured desalination technique commonly famous as Multi-stage Flash (MSF). Even though reverse osmosis is massively practical, it is not economical or sustainable compared to flash evaporation. However, flashing evaporation has its drawbacks as well such as lower efficiency of water production per higher consumption of power and time. Flash evaporation is simply the instant boiling of a subcooled liquid which is introduced as droplets in a well-maintained negative environment. This negative pressure inside the vacuum increases the temperature of the liquid droplets far above their boiling point, which results in the release of latent heat, and the liquid droplets turn into vapor which is collected to be condensed back into an impurity-free liquid in a condenser. Atomization is the main difference between pool and spray flash evaporation. Atomization is the heart of the flash evaporation process as it increases the evaporating surface area per drop atomized. Atomization can be categorized into many levels depending on its drop size, which again becomes crucial for increasing the droplet density (drop count) per given flow rate. This review comprehensively summarizes the selective results relating to the methods of atomization and their effectiveness on the evaporation rate from earlier works to date. In addition, the reviewers propose using centrifugal atomization for the flashing application, which brings several advantages viz ultra-fine droplets, uniform droplet density, and the swirling geometry of the spray with kinetically more energetic sprays during their flight. Finally, several challenges of using rotary bell atomizer (RBA) and RBA Sprays inside the chamber have been identified which will be explored in detail. A schematic of rotary bell atomizer (RBA) integration with the chamber has been designed. This powerful centrifugal atomization has the potential to increase potable water production in commercial multi-stage flash evaporators, where it would be preferably advantageous.

Keywords: atomization, desalination, flash evaporation, rotary bell atomizer

Procedia PDF Downloads 86
338 The Impact of Climate Change on Sustainable Aquaculture Production

Authors: Peyman Mosberian-Tanha, Mona Rezaei

Abstract:

Aquaculture sector is the fastest growing food sector with annual growth rate of about 10%. The sustainability of aquaculture production, however, has been debated mainly in relation to the feed ingredients used for farmed fish. The industry has been able to decrease its dependency on marine-based ingredients in line with policies for more sustainable production. As a result, plant-based ingredients have increasingly been incorporated in aquaculture feeds, especially in feeds for popular carnivorous species, salmonids. The effect of these ingredients on salmonids’ health and performance has been widely studied. In most cases, plant-based diets are associated with varying degrees of health and performance issues across salmonids, partly depending on inclusion levels of plant ingredients and the species in question. However, aquaculture sector is facing another challenge of concern. Environmental challenges in association with climate change is another issue the aquaculture sector must deal with. Data from trials in salmonids subjected to environmental challenges of various types show adverse physiological responses, partly in relation to stress. To date, there are only a limited number of studies reporting the interactive effects of adverse environmental conditions and dietary regimens on salmonids. These studies have shown that adverse environmental conditions exacerbate the detrimental effect of plant-based diets on digestive function and health in salmonids. This indicates an additional challenge for the aquaculture sector to grow in a sustainable manner. The adverse environmental conditions often studied in farmed fish is the change in certain water quality parameters such as oxygen and/or temperature that are typically altered in response to climate change and, more specifically, global warming. In a challenge study, we observed that the in the fish fed a plant-based diet, the fish’s ability to absorb dietary energy was further reduced when reared under low oxygen level. In addition, gut health in these fish was severely impaired. Some other studies also confirm the adverse effect of environmental challenge on fish’s gut health. These effects on the digestive function and gut health of salmonids may result in less resistance to diseases and weaker performance with significant economic and ethical implications. Overall, various findings indicate the multidimensional negative effects of climate change, as a major environmental issue, in different sectors, including aquaculture production. Therefore, a comprehensive evaluation of different ways to cope with climate change is essential for planning more sustainable strategies in aquaculture sector.

Keywords: aquaculture, climate change, sustainability, salmonids

Procedia PDF Downloads 190
337 Carbon Nanofibers as the Favorite Conducting Additive for Mn₃O₄ Catalysts for Oxygen Reactions in Rechargeable Zinc-Air Battery

Authors: Augustus K. Lebechi, Kenneth I. Ozoemena

Abstract:

Rechargeable zinc-air batteries (RZABs) have been described as one of the most viable next-generation ‘beyond-the-lithium-ion’ battery technologies with great potential for renewable energy storage. It is safe, with a high specific energy density (1086 Wh/kg), environmentally benign, and low-cost, especially in resource-limited African countries. For widespread commercialization, the sluggish oxygen reaction kinetics pose a major challenge that impedes the reversibility of the system. Hence, there is a need for low-cost and highly active bifunctional electrocatalysts. Manganese oxide catalysts on carbon conducting additives remain the best couple for the realization of such low-cost RZABs. In this work, hausmannite Mn₃O₄ nanoparticles were synthesized through the annealing method from commercial electrolytic manganese dioxide (EMD), multi-walled carbon nanotubes (MWCNTs) were synthesized via the chemical vapor deposition (CVD) method and carbon nanofibers (CNFs) were synthesized via the electrospinning process with subsequent carbonization. Both Mn₃O₄ catalysts and the carbon conducting additives (MWCNT and CNF) were thoroughly characterized using X-ray powder diffraction spectroscopy (XRD), scanning electron microscopy (SEM), thermogravimetry analysis (TGA) and X-ray photoelectron spectroscopy (XPS). Composite electrocatalysts (Mn₃O₄/CNT and Mn₃O₄/CNF) were investigated for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in an alkaline medium. Using the established electrocatalytic modalities for evaluating the electrocatalytic performance of materials (including double layer, electrochemical active surface area, roughness factor, specific current density, and catalytic stability), CNFs proved to be the most efficient conducting additive material for the Mn₃O₄ catalyst. From the DFT calculations, the higher performance of the CNFs over the MWCNTs is related to the ability of the CNFs to allow for a more favorable distribution of the d-electrons of the manganese (Mn) and enhanced synergistic effect with Mn₃O₄ for weaker adsorption energies of the oxygen intermediates (O*, OH* and OOH*). In a proof-of-concept, Mn₃O₄/CNF was investigated as the air cathode for rechargeable zinc-air battery (RZAB) in a micro-3D-printed cell configuration. The RZAB showed good performance in terms of open circuit voltage (1.77 V), maximum power density (177.5 mW cm-2), areal-discharge energy and cycling stability comparable to Pt/C (20 wt%) + IrO2. The findings here provide fresh physicochemical perspectives on the future design and utility of CNFs for developing manganese-based RZABs.

Keywords: bifunctional electrocatalyst, oxygen evolution reaction, oxygen reduction reactions, rechargeable zinc-air batteries.

Procedia PDF Downloads 66
336 An Analysis of Gamification in the Post-Secondary Classroom

Authors: F. Saccucci

Abstract:

Gamification has now started to take root in the post-secondary classroom. Educators have learned much about gamification to date but there is still a great deal to learn. One definition of gamification is the ability to engage post-secondary students with games that are fun and correlate to class room curriculum. There is no shortage of literature illustrating the advantages of gamification in the class room. This study is an extension of similar thought as well as an extension of a previous study where in class testing proved with the used of paired T-test that gamification did significantly improve the students’ understanding of subject material. Gamification itself in the class room can range from high end computer simulated software to paper based games of which both have advantages and disadvantages. This analysis used a paper based game to highlight certain qualitative advantages of gamification. The paper based game in this analysis was inexpensive, required low preparation time for the faculty member and consumed approximately 20 minutes of class room time. Data for the study was collected through in class student feedback surveys and narrative from the faculty member moderating the game. Students were randomly selected into groups of four. Qualitative advantages identified in this analysis included: 1. Students had a chance to meet, connect and know other students. 2. Students enjoyed the gamification process given there was a sense of fun and competition. 3. The post assessment that followed the simulation game was not part of their grade calculation therefore it was an opportunity to participate in a low risk activity whereby students could subsequently self-assess their understanding of the subject material. 4. In the view of the student, content knowledge did increase after the gamification process. These qualitative advantages identified in this analysis contribute to the argument that there should be an attempt to use gamification in today’s post-secondary class room. The analysis also highlighted that eighty (80) percent of the respondents believe twenty minutes devoted to the gamification process was appropriate, however twenty (20) percentage of respondents believed that rather than scheduling a gamification process and its post quiz in the last week, a review for the final exam may have been more useful. An additional study to this hopes to determine if the scheduling of the gamification had any correlation to a percentage of the students not wanting to be engaged in the process. As well, the additional study hopes to determine at what incremental level of time invested in class room gamification produce no material incremental benefits to the student as well as determine if any correlation exist between respondents preferring not to have it at the end of the semester to students not believing the gamification process added to the increase of their curricular knowledge.

Keywords: gamification, inexpensive, non-quantitative advantages, post-secondary

Procedia PDF Downloads 214
335 Detection of Acrylamide Using Liquid Chromatography-Tandem Mass Spectrometry and Quantitative Risk Assessment in Selected Food from Saudi Market

Authors: Sarah A. Alotaibi, Mohammed A. Almutairi, Abdullah A. Alsayari, Adibah M. Almutairi, Somaiah K. Almubayedh

Abstract:

Concerns over the presence of acrylamide in food date back to 2002, when Swedish scientists stated that, in carbohydrate-rich foods, amounts of acrylamide were formed when cooked at high temperatures. Similar findings were reported by other researchers which, consequently, caused major international efforts to investigate dietary exposure and the subsequent health complications in order to properly manage this issue. Due to this issue, in this work, we aim to determine the acrylamide level in different foods (coffee, potato chips, biscuits, and baby food) commonly consumed by the Saudi population. In a total of forty-three samples, acrylamide was detected in twenty-three samples at levels of 12.3 to 2850 µg/kg. In reference to the food groups, the highest concentration of acrylamide was found in coffee samples (<12.3-2850 μg/kg), followed by potato chips (655-1310 μg/kg), then biscuits (23.5-449 μg/kg), whereas the lowest acrylamide level was observed in baby food (<14.75 – 126 μg/kg). Most coffee, biscuits and potato chips products contain high amount of acrylamide content and also the most commonly consumed product. Saudi adults had a mean exposure of acrylamide for coffee, potato, biscuit, and cereal (0.07439, 0.04794, 0.01125, 0.003371 µg/kg-b.w/day), respectively. On the other hand, exposure to acrylamide in Saudi infants and children to the same types of food was (0.1701, 0.1096, 0.02572, 0.00771 µg/kg-b.w/day), respectively. Most groups have a percentile that exceeds the tolerable daily intake (TDI) cancer value (2.6 µg/kg-b.w/day). Overall, the MOE results show that the Saudi population is at high risk of acrylamide-related disease in all food types, and there is a chance of cancer risk in all age groups (all values ˂10,000). Furthermore, it was found that in non-cancer risks, the acrylamide in all tested foods was within the safe limit (˃125), except for potato chips, in which there is a risk for diseases in the population. With potato and coffee as raw materials, additional studies were conducted to assess different factors, including temperature, cocking time, and additives affecting the acrylamide formation in fried potato and roasted coffee, by systematically varying processing temperatures and time values, a mitigation of acrylamide content was achieved when lowering the temperature and decreasing the cooking time. Furthermore, it was shown that the combination of the addition of chitosan and NaCl had a large impact on the formation.

Keywords: risk assessment, dietary exposure, MOA, acrylamide, hazard

Procedia PDF Downloads 59
334 A Sustainable Pt/BaCe₁₋ₓ₋ᵧZrₓGdᵧO₃ Catalyst for Dry Reforming of Methane-Derived from Recycled Primary Pt

Authors: Alessio Varotto, Lorenzo Freschi, Umberto Pasqual Laverdura, Anastasia Moschovi, Davide Pumiglia, Iakovos Yakoumis, Marta Feroci, Maria Luisa Grilli

Abstract:

Dry reforming of Methane (DRM) is considered one of the most valuable technologies for green-house gas valorization thanks to the fact that through this reaction, it is possible to obtain syngas, a mixture of H₂ and CO in an H₂/CO ratio suitable for utilization in the Fischer-Tropsch process of high value-added chemicals and fuels. Challenges of the DRM process are the reduction of costs due to the high temperature of the process and the high cost of precious metals of the catalyst, the metal particles sintering, and carbon deposition on the catalysts’ surface. The aim of this study is to demonstrate the feasibility of the synthesis of catalysts using a leachate solution containing Pt coming directly from the recovery of spent diesel oxidation catalysts (DOCs) without further purification. An unusual perovskite support for DRM, the BaCe₁₋ₓ₋ᵧZrₓGdᵧO₃ (BCZG) perovskite, has been chosen as the catalyst support because of its high thermal stability and capability to produce oxygen vacancies, which suppress the carbon deposition and enhance the catalytic activity of the catalyst. BCZG perovskite has been synthesized by a sol-gel modified Pechini process and calcinated in air at 1100 °C. BCZG supports have been impregnated with a Pt-containing leachate solution of DOC, obtained by a mild hydrometallurgical recovery process, as reported elsewhere by some of the authors of this manuscript. For comparison reasons, a synthetic solution obtained by digesting commercial Pt-black powder in aqua regia was used for BCZG support impregnation. Pt nominal content was 2% in both BCZG-based catalysts formed by real and synthetic solutions. The structure and morphology of catalysts were characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Thermogravimetric Analysis (TGA) was used to study the thermal stability of the catalyst’s samples. Brunauer-Emmett-Teller (BET) analysis provided a high surface area of the catalysts. H₂-TPR (Temperature Programmed Reduction) analysis was used to study the consumption of hydrogen for reducibility, and it was associated with H₂-TPD characterization to study the dispersion of Pt on the surface of the support and calculate the number of active sites used by the precious metal. Dry reforming of methane (DRM) reaction, carried out in a fixed bed reactor, showed a high conversion efficiency of CO₂ and CH4. At 850°C, CO₂ and CH₄ conversion were close to 100% for the catalyst obtained with the aqua regia-based solution of commercial Pt-black, and ~70% (for CH₄) and ~80 % (for CO₂) in the case of real HCl-based leachate solution. H₂/CO ratios were ~0.9 and ~0.70 in the first and latter cases, respectively. As far as we know, this is the first pioneering work in which a BCGZ catalyst and a real Pt-containing leachate solution were successfully employed for DRM reaction.

Keywords: dry reforming of methane, perovskite, PGM, recycled Pt, syngas

Procedia PDF Downloads 42
333 A Seven Year Single-Centre Study of Dental Implant Survival in Head and Neck Oncology Patients

Authors: Sidra Suleman, Maliha Suleman, Stephen Brindley

Abstract:

Oral rehabilitation of head and neck cancer patients plays a crucial role in the quality of life for such individuals post-treatment. Placement of dental implants or implant-retained prostheses can help restore oral function and aesthetics, which is often compromised following surgery. Conventional prosthodontic techniques can be insufficient in rehabilitating such patients due to their altered anatomy and reduced oral competence. Hence, there is a strong clinical need for the placement of dental implants. With an increasing incidence of head and neck cancer patients, the demand for such treatment is rising. Aim: The aim of the study was to determine the survival rate of dental implants in head and neck cancer patients placed at the Restorative and Maxillofacial Department, Royal Stoke University Hospital (RSUH), United Kingdom. Methodology: All patients who received dental implants between January 1, 2013 to December 31, 2020 were identified. Patients were excluded based on three criteria: 1) non-head and neck cancer patients, 2) no outpatient follow-up post-implant placement 3) provision of non-dental implants. Scanned paper notes and electronic records were extracted and analyzed. Implant survival was defined as fixtures that had remained in-situ / not required removal. Sample: Overall, 61 individuals were recruited from the 143 patients identified. The mean age was 64.9 years, with a range of 35 – 89 years. The sample included 37 (60.7%) males and 24 (39.3%) females. In total, 211 implants were placed, of which 40 (19.0%) were in the maxilla, 152 (72.0%) in the mandible and 19 (9.0%) in autogenous bone graft sites. Histologically 57 (93.4%) patients had squamous cell carcinoma, with 43 (70.5%) patients having either stage IVA or IVB disease. As part of treatment, 42 (68.9%) patients received radiotherapy, which was carried out post-operatively for 29 (69.0%) cases. Whereas 21 (34.4%) patients underwent chemotherapy, 13 (61.9%) of which were post-operative. The Median follow-up period was 21.9 months with a range from 0.9 – 91.4 months. During the study, 23 (37.7%) patients died and their data was censored beyond the date of death. Results: In total, four patients who had received radiotherapy had one implant failure each. Two mandibular implants failed secondary to osteoradionecrosis, and two maxillary implants did not survive as a result of failure to osseointegrate. The overall implant survival rates were 99.1% at three years and 98.1% at both 5 and 7 years. Conclusions: Although this data shows that implant failure rates are low, it highlights the difficulty in predicting which patients will be affected. Future studies involving larger cohorts are warranted to further analyze factors affecting outcomes.

Keywords: oncology, dental implants, survival, restorative

Procedia PDF Downloads 236
332 An Integrated Approach to Handle Sour Gas Transportation Problems and Pipeline Failures

Authors: Venkata Madhusudana Rao Kapavarapu

Abstract:

The Intermediate Slug Catcher (ISC) facility was built to process nominally 234 MSCFD of export gas from the booster station on a day-to-day basis and to receive liquid slugs up to 1600 m³ (10,000 BBLS) in volume when the incoming 24” gas pipelines are pigged following upsets or production of non-dew-pointed gas from gathering centers. The maximum slug sizes expected are 812 m³ (5100 BBLS) in winter and 542 m³ (3400 BBLS) in summer after operating for a month or more at 100 MMSCFD of wet gas, being 60 MMSCFD of treated gas from the booster station, combined with 40 MMSCFD of untreated gas from gathering center. The water content is approximately 60% but may be higher if the line is not pigged for an extended period, owing to the relative volatility of the condensate compared to water. In addition to its primary function as a slug catcher, the ISC facility will receive pigged liquids from the upstream and downstream segments of the 14” condensate pipeline, returned liquids from the AGRP, pigged through the 8” pipeline, and blown-down fluids from the 14” condensate pipeline prior to maintenance. These fluids will be received in the condensate flash vessel or the condensate separator, depending on the specific operation, for the separation of water and condensate and settlement of solids scraped from the pipelines. Condensate meeting the colour and 200 ppm water specifications will be dispatched to the AGRP through the 14” pipeline, while off-spec material will be returned to BS-171 via the existing 10” condensate pipeline. When they are not in operation, the existing 24” export gas pipeline and the 10” condensate pipeline will be maintained under export gas pressure, ready for operation. The gas manifold area contains the interconnecting piping and valves needed to align the slug catcher with either of the 24” export gas pipelines from the booster station and to direct the gas to the downstream segment of either of these pipelines. The manifold enables the slug catcher to be bypassed if it needs to be maintained or if through-pigging of the gas pipelines is to be performed. All gas, whether bypassing the slug catcher or returning to the gas pipelines from it, passes through black powder filters to reduce the level of particulates in the stream. These items are connected to the closed drain vessel to drain the liquid collected. Condensate from the booster station is transported to AGRP through 14” condensate pipeline. The existing 10” condensate pipeline will be used as a standby and for utility functions such as returning condensate from AGRP to the ISC or booster station or for transporting off-spec fluids from the ISC back to booster station. The manifold contains block valves that allow the two condensate export lines to be segmented at the ISC, thus facilitating bi-directional flow independently in the upstream and downstream segments, which ensures complete pipeline integrity and facility integrity. Pipeline failures will be attended to with the latest technologies by remote techno plug techniques, and repair activities will be carried out as needed. Pipeline integrity will be evaluated with ili pigging to estimate the pipeline conditions.

Keywords: integrity, oil & gas, innovation, new technology

Procedia PDF Downloads 76