Search results for: bit error rate (BER)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9487

Search results for: bit error rate (BER)

7147 Risk-Sharing Financing of Islamic Banks: Better Shielded against Interest Rate Risk

Authors: Mirzet SeHo, Alaa Alaabed, Mansur Masih

Abstract:

In theory, risk-sharing-based financing (RSF) is considered a corner stone of Islamic finance. It is argued to render Islamic banks more resilient to shocks. In practice, however, this feature of Islamic financial products is almost negligible. Instead, debt-based instruments, with conventional like features, have overwhelmed the nascent industry. In addition, the framework of present-day economic, regulatory and financial reality inevitably exposes Islamic banks in dual banking systems to problems of conventional banks. This includes, but is not limited to, interest rate risk. Empirical evidence has, thus far, confirmed such exposures, despite Islamic banks’ interest-free operations. This study applies system GMM in modeling the determinants of RSF, and finds that RSF is insensitive to changes in interest rates. Hence, our results provide support to the “stability” view of risk-sharing-based financing. This suggests RSF as the way forward for risk management at Islamic banks, in the absence of widely acceptable Shariah compliant hedging instruments. Further support to the stability view is given by evidence of counter-cyclicality. Unlike debt-based lending that inflates artificial asset bubbles through credit expansion during the upswing of business cycles, RSF is negatively related to GDP growth. Our results also imply a significantly strong relationship between risk-sharing deposits and RSF. However, the pass-through of these deposits to RSF is economically low. Only about 40% of risk-sharing deposits are channeled to risk-sharing financing. This raises questions on the validity of the industry’s claim that depositors accustomed to conventional banking shun away from risk sharing and signals potential for better balance sheet management at Islamic banks. Overall, our findings suggest that, on the one hand, Islamic banks can gain ‘independence’ from conventional banks and interest rates through risk-sharing products, the potential for which is enormous. On the other hand, RSF could enable policy makers to improve systemic stability and restrain excessive credit expansion through its countercyclical features.

Keywords: Islamic banks, risk-sharing, financing, interest rate, dynamic system GMM

Procedia PDF Downloads 314
7146 Sensorless Controller of Induction Motor Using Backstepping Approach and Fuzzy MRAS

Authors: Ahmed Abbou

Abstract:

This paper present a sensorless controller designed by the backstepping approach for the speed control of induction motor. In this strategy of control, we also combined the method Fuzzy MRAS to estimate the rotor speed and the observer type Luenburger to observe Rotor flux. The control model involves a division by the flux variable that may lead to unbounded solutions. Such a risk is avoided by basing the controller design on Lyapunov function that accounts for the model singularity. On the other hand, this mixed method gives better results in Sensorless operation and especially at low speed. The response time at 5% of the flux is 20ms while the error between the speed with sensor and the estimated speed remains in the range of ±0.8 rad/s for the rated functioning and ±1.5 rad/s for low speed.

Keywords: backstepping approach, fuzzy logic, induction motor, luenburger observer, sensorless MRAS

Procedia PDF Downloads 370
7145 Reaction Kinetics for the Pyrolysis of Urea Phosphate

Authors: P. A. Broodryk, A. F. Van Der Merwe, H. W. J. P. Neomagus

Abstract:

The production of the clear liquid fertilizer ammonium polyphosphate (APP) is best achieved by the pyrolysis of urea phosphate, as it produces a product that is free from any of the impurities present in the raw phosphoric acid it was made from. This is a multiphase, multi-step reaction that produces carbon dioxide and ammonia as gasses and ammonium polyphosphate as liquid products. The polyphosphate chain length affects the solubility and thus the applicability of the product as liquid fertiliser, thus proper control of the reaction conditions is thus required for the use of this reaction in the production of fertilisers. This study investigates the reaction kinetics of the aforementioned reaction, describing a mathematical model for the kinetics of the reaction along with the accompanying rate constants. The reaction is initially exothermic, producing only carbon dioxide as a gas product and ammonium diphosphate, at higher temperatures the reaction becomes endothermic, producing ammonia gas as an additional by-product and longer chain polyphosphates, which when condensed too far becomes highly water insoluble. The aim of this study was to (i) characterise the pyrolysis reaction of urea phosphate by determining the mechanisms and the associated kinetic constants, and (ii) to determine the optimum conditions for ammonium diphosphate production. A qualitative investigation was also done to find the rate of hydrolysis of APP as this provides an estimate of the shelf life of an APP clear liquid fertiliser solution.

Keywords: ammonium polyphosphate, kinetics, pyrolysis, urea phosphate

Procedia PDF Downloads 151
7144 Comparative Assessment of MRR, TWR, and Surface Integrity in Rotary and Stationary Tool EDM for Machining AISI D3 Tool Steel

Authors: Anand Prakash Dwivedi, Sounak Kumar Choudhury

Abstract:

Electric Discharge Machining (EDM) is a well-established and one of the most primitive unconventional manufacturing processes, that is used world-wide for the machining of geometrically complex or hard and electrically conductive materials which are extremely difficult to cut by any other conventional machining process. One of the major flaws, over all its advantages, is its very slow Material Removal Rate (MRR). In order to eradicate this slow machining rate, various researchers have proposed various methods like; providing rotational motion to the tool or work-piece or to both, mixing of conducting additives (such as SiC, Cr, Al, graphite etc) powders in the dielectric, providing vibrations to the tool or work-piece or to both etc. Present work is a comparative study of Rotational and Stationary Tool EDM, which deals with providing rotational motion to the copper tool for the machining of AISI D3 Tool Steel and the results have been compared with stationary tool EDM. It has been found that the tool rotation substantially increases the MRR up to 28%. The average surface finish increases around 9-10% by using the rotational tool EDM. The average tool wear increment is observed to be around 19% due to the tool rotation. Apart from this, the present work also focusses on the recast layer analysis, which are being re-deposited on the work-piece surface during the operation. The recast layer thickness is less in case of Rotational EDM and more for Stationary Tool EDM. Moreover, the cracking on the re-casted surface is also more for stationary tool EDM as compared with the rotational EDM.

Keywords: EDM, MRR, Ra, TWR

Procedia PDF Downloads 314
7143 Vagal Nerve Stimulator as a Treatment Approach in CHARGE Syndrome: A Case Report

Authors: Roya Vakili, Lekaa Elhajjmoussa, Barzin Omidi-Shal, Kim Blake

Abstract:

Objective: The purpose of this case report is to highlight the successful treatment of a patient with Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness, (CHARGE syndrome) using a vagal nerve stimulator (VNS). Background: This is the first documented case report, to the authors' best knowledge, for a patient with CHARGE syndrome, epilepsy, autism, and postural orthostatic tachycardia syndrome (POTS) that was successfully treated with an implanted VNS therapeutic device. Methodology: The study is a case report. Results: This is the case of a 24-year-old female patient with CHARGE syndrome (non-random association of anomalies Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness) and several other comorbidities including refractory epilepsy, Patent Ductus Arteriosus (PDA) and POTS who had significant improvement of her symptoms after VNS implantation. She was a VNS candidate given her longstanding history of drug-resistant epilepsy and current disposition secondary to CHARGE syndrome. Prior to VNS implantation, she experienced three generalized seizures a year and daily POTS-related symptoms. She was having frequent lightheadedness and syncope spells due to a rapid heart rate and low blood pressure. The VNS device was set to detect a rapid heart rate and send appropriate stimulation anytime the heart rate exceeded 20% of the patient’s normal baseline. The VNS device demonstrated frequent elevated heart rates and concurrent VNS release every 8 minutes in addition to the programmed events. Following VNS installation, the patient became more active, alert, and communicative and was able to verbally communicate with words she was unable to say prior. Her GI symptoms also improved, as she was able to tolerate food better orally in addition to her G and J tube, likely another result of the vagal nerve stimulation. Additionally, the patient’s seizures and POTS-related cardiac events appeared to be well controlled. She had prolonged electroencephalogram (EEG) testing, showing no significant change in epileptiform activity. Improvements in the patient’s disposition are believed to be secondary to parasympathetic stimulation, adequate heart rate control, and GI stimulation, in addition to behavioral changes and other benefits via her implanted VNS. Conclusion: VNS showed promising results in improving the patient's quality of life and managing her diverse symptoms, including dysautonomia, POTs, gastrointestinal mobility, cognitive functioning as well seizure control.

Keywords: autism, POTs, CHARGE, VNS

Procedia PDF Downloads 81
7142 Mean Velocity Modeling of Open-Channel Flow with Submerged Vegetation

Authors: Mabrouka Morri, Amel Soualmia, Philippe Belleudy

Abstract:

Vegetation affects the mean and turbulent flow structure. It may increase flood risks and sediment transport. Therefore, it is important to develop analytical approaches for the bed shear stress on vegetated bed, to predict resistance caused by vegetation. In the recent years, experimental and numerical models have both been developed to model the effects of submerged vegetation on open-channel flow. In this paper, different analytic models are compared and tested using the criteria of deviation, to explore their capacity for predicting the mean velocity and select the suitable one that will be applied in real case of rivers. The comparison between the measured data in vegetated flume and simulated mean velocities indicated, a good performance, in the case of rigid vegetation, whereas, Huthoff model shows the best agreement with a high coefficient of determination (R2=80%) and the smallest error in the prediction of the average velocities.

Keywords: analytic models, comparison, mean velocity, vegetation

Procedia PDF Downloads 272
7141 Characteristics of Children Heart Rhythm Regulation with Acute Respiratory Diseases

Authors: D. F. Zeynalov, T. V. Kartseva, O. V. Sorokin

Abstract:

Currently, approaches to assess cardiointervalography are based on the calculation of data variance intervals RR. However, they do not allow the evaluation of features related to a period of the cardiac cycle, so how electromechanical phenomena during cardiac subphase are characterized by differently directed changes. Therefore, we have proposed a method of subphase analysis of the cardiac cycle, developed in the department of hominal physiology Novosibirsk State Medical University to identify the features of the dispersion subphase of the cardiac cycle. In the present paper we have examined the 5-minute intervals cardiointervalography (CIG) to isolate RR-, QT-, ST-ranges in healthy children and children with acute respiratory diseases (ARD) in comparison. It is known that primary school-aged children suffer at ARD 5-7 times per year. Consequently, it is one of the most relevant problems in pediatrics. It is known that the spectral indices and indices of temporal analysis of heart rate variability are highly sensitive to the degree of intoxication during immunological process. We believe that the use of subphase analysis of heart rate will allow more thoroughly evaluate responsiveness of the child organism during the course of ARD. The study involved 60 primary school-aged children (30 boys and 30 girls). In order to assess heart rhythm regulation, the record CIG was used on the "VNS-Micro" device of Neurosoft Company (Ivanovo) for 5 minutes in the supine position and 5 minutes during active orthostatic test. Subphase analysis of variance QT-interval and ST-segment was performed on the "KardioBOS" software Biokvant Company (Novosibirsk). In assessing the CIG in the supine position and in during orthostasis of children with acute respiratory diseases only RR-intervals are observed typical trend of general biological reactions through pressosensitive compensation mechanisms to lower blood pressure, but compared with healthy children the severity of the changes is different, of sick children are more pronounced indicators of heart rate regulation. But analysis CIG RR-intervals and analysis subphase ST-segment have yielded conflicting trends, which may be explained by the different nature of the intra- and extracardiac influences on regulatory mechanisms that implement the various phases of the cardiac cycle.

Keywords: acute respiratory diseases, cardiointervalography, subphase analysis, cardiac cycle

Procedia PDF Downloads 267
7140 A Study of Effective Stereo Matching Method for Long-Wave Infrared Camera Module

Authors: Hyun-Koo Kim, Yonghun Kim, Yong-Hoon Kim, Ju Hee Lee, Myungho Song

Abstract:

In this paper, we have described an efficient stereo matching method and pedestrian detection method using stereo types LWIR camera. We compared with three types stereo camera algorithm as block matching, ELAS, and SGM. For pedestrian detection using stereo LWIR camera, we used that SGM stereo matching method, free space detection method using u/v-disparity, and HOG feature based pedestrian detection. According to testing result, SGM method has better performance than block matching and ELAS algorithm. Combination of SGM, free space detection, and pedestrian detection using HOG features and SVM classification can detect pedestrian of 30m distance and has a distance error about 30 cm.

Keywords: advanced driver assistance system, pedestrian detection, stereo matching method, stereo long-wave IR camera

Procedia PDF Downloads 403
7139 Epidemiological Profile of Acute Flaccid Paralysis (PFA), Haiti, 2018-2021

Authors: Sophonie Sarielle Jean Jacques Bertrand

Abstract:

Background: Acute flaccid paralysis (PFA) is the sudden weakness or paralysis of muscles seen in children under 15 years of age. According to the WHO, PFA remains a real public health problem. For Haiti, the PFA represents a national priority. This study aims to describe the epidemiological profile of cases of Acute Flaccid Paralysis (PFA) in Haiti from 2018-2020. Methods: A descriptive cross-sectional study covering the period of 2018-2021 was carried out. epidemiological surveillance data PFA exported to Integrated Monitoring Evaluation Surveillance (MESI) were used. Sociodemographic variables were studied. Prevalence and clinical mortality rate were calculated. Epi Info 7.2 and Excel 2016 were used for data analysis. Results: 76 AFP cases were recorded for the period, or 13 (17%) in 2018, 23 (30%) in 2019, 8 (11%) in 2020 32 (42%) in 2021. Children aged 5-14 years accounted for 36% of cases (n= 26). The M/F sex ratio was 0.52, with a predominance of the female sex. The clinical mortality rate was 2.6%. The prevalence was 1.77/100,000 people. Conclusion: From 2018-2021, 76 cases of PFA cases were recorded in the 10 departments of the country, of which the West department was the most affected. Maintaining high vaccination coverage and a standard acute flaccid paralysis surveillance system are essential for the eradication of this condition. Strengthen epidemiological surveillance of PFA.

Keywords: epidemiology, PFA, Haïti, MESI

Procedia PDF Downloads 80
7138 Capacity Estimation of Hybrid Automated Repeat Request Protocol for Low Earth Orbit Mega-Constellations

Authors: Arif Armagan Gozutok, Alper Kule, Burak Tos, Selman Demirel

Abstract:

Wireless communication chain requires effective ways to keep throughput efficiency high while it suffers location-dependent, time-varying burst errors. Several techniques are developed in order to assure that the receiver recovers the transmitted information without errors. The most fundamental approaches are error checking and correction besides re-transmission of the non-acknowledged packets. In this paper, stop & wait (SAW) and chase combined (CC) hybrid automated repeat request (HARQ) protocols are compared and analyzed in terms of throughput and average delay for the usage of low earth orbit (LEO) mega-constellations case. Several assumptions and technological implementations are considered as well as usage of low-density parity check (LDPC) codes together with several constellation orbit configurations.

Keywords: HARQ, LEO, satellite constellation, throughput

Procedia PDF Downloads 141
7137 Experimental Investigation of the Out-of-Plane Dynamic Behavior of Adhesively Bonded Composite Joints at High Strain Rates

Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Ben Yahia

Abstract:

In this investigation, an experimental technique in which the dynamic response, damage kinetic and heat dissipation are measured simultaneously during high strain rates on adhesively bonded joints materials. The material used in this study is widely used in the design of structures for military applications. It was composed of a 45° Bi-axial fiber-glass mat of 0.286 mm thickness in a Polyester resin matrix. In adhesive bonding, a NORPOL Polyvinylester of 1 mm thickness was used to assemble the composite substrate. The experimental setup consists of a compression Split Hopkinson Pressure Bar (SHPB), a high-speed infrared camera and a high-speed Fastcam rapid camera. For the dynamic compression tests, 13 mm x 13 mm x 9 mm samples for out-of-plane tests were considered from 372 to 1030 s-1. Specimen surface is controlled and monitored in situ and in real time using the high-speed camera which acquires the damage progressive in specimens and with the infrared camera which provides thermal images in time sequence. Preliminary compressive stress-strain vs. strain rates data obtained show that the dynamic material strength increases with increasing strain rates. Damage investigations have revealed that the failure mainly occurred in the adhesive/adherent interface because of the brittle nature of the polymeric adhesive. Results have shown the dependency of the dynamic parameters on strain rates. Significant temperature rise was observed in dynamic compression tests. Experimental results show that the temperature change depending on the strain rate and the damage mode and their maximum exceed 100 °C. The dependence of these results on strain rate indicates that there exists a strong correlation between damage rate sensitivity and heat dissipation, which might be useful when developing damage models under dynamic loading tacking into account the effect of the energy balance of adhesively bonded joints.

Keywords: adhesive bonded joints, Hopkinson bars, out-of-plane tests, dynamic compression properties, damage mechanisms, heat dissipation

Procedia PDF Downloads 208
7136 Experimental Study on Different Load Operation and Rapid Load-change Characteristics of Pulverized Coal Combustion with Self-preheating Technology

Authors: Hongliang Ding, Ziqu Ouyang

Abstract:

Under the basic national conditions that the energy structure is dominated by coal, it is of great significance to realize deep and flexible peak shaving of boilers in pulverized coal power plants, and maximize the consumption of renewable energy in the power grid, to ensure China's energy security and scientifically achieve the goals of carbon peak and carbon neutrality. With the promising self-preheating combustion technology, which had the potential of broad-load regulation and rapid response to load changes, this study mainly investigated the different load operation and rapid load-change characteristics of pulverized coal combustion. Four effective load-stabilization bases were proposed according to preheating temperature, coal gas composition (calorific value), combustion temperature (spatial mean temperature and mean square temperature fluctuation coefficient), and flue gas emissions (CO and NOx concentrations), on the basis of which the load-change rates were calculated to assess the load response characteristics. Due to the improvement of the physicochemical properties of pulverized coal after preheating, stable ignition and combustion conditions could be obtained even at a low load of 25%, with a combustion efficiency of over 97.5%, and NOx emission reached the lowest at 50% load, with the concentration of 50.97 mg/Nm3 (@6%O2). Additionally, the load ramp-up stage displayed higher load-change rates than the load ramp-down stage, with maximum rates of 3.30 %/min and 3.01 %/min, respectively. Furthermore, the driving force formed by high step load was conducive to the increase of load-change rate. The rates based on the preheating indicator attained the highest value of 3.30 %/min, while the rates based on the combustion indicator peaked at 2.71 %/min. In comparison, the combustion indicator accurately described the system’s combustion state and load changes, whereas the preheating indicator was easier to acquire, with a higher load-change rate, hence the appropriate evaluation strategy should depend on the actual situation. This study verified a feasible method for deep and flexible peak shaving of coal-fired power units, further providing basic data and technical supports for future engineering applications.

Keywords: clean coal combustion, load-change rate, peak shaving, self-preheating

Procedia PDF Downloads 66
7135 Sulfate Radicals Applied to the Elimination of Selected Pollutants in Water Matrices

Authors: F. Javier Benitez, Juan L. Acero, Francisco J. Real, Elena Rodriguez

Abstract:

Five selected pollutants which are frequently present in waters and wastewaters have been degraded by the advanced oxidation process constituted by UV radiation activated with the additional presence of persulfate (UV/PS). These pollutants were 1H-benzotriazole (BZ), N,N-diethyl-m-toluamide or DEET (DT), chlorophene (CP), 3-methylindole (ML), and nortriptyline hydrochloride (NH).While UV radiation alone almost not degraded these substances, the addition of PS generated the very reactive and oxidizing sulfate radical SO₄⁻. The kinetic study provided the second order rate constants for the reaction between this radical and each pollutant. An increasing dose of PS led to an increase in the degradation rate, being the highest results obtained at near neutral pH. Several water matrices were tested, and the presence of bicarbonate showed different effects: a decrease in the elimination of DT, BZ, and NH; and an increase in the oxidation of CP and ML. The additional presence of humic acids (AH) decreased this degradation, because of several effects: light screening and radical scavenging. The presence of several natural substances in waters (both types, inorganic and organic matter) usually diminishes the oxidation rates of organic pollutants, but this combination UV/PS process seems to be an efficient solution for the removal of the selected contaminants when are present in contaminated waters.

Keywords: water purification, UV activated persulfate, kinetic study, sulfate radicals

Procedia PDF Downloads 127
7134 Thermal Radiation Effect on Mixed Convection Boundary Layer Flow over a Vertical Plate with Varying Density and Volumetric Expansion Coefficient

Authors: Sadia Siddiqa, Z. Khan, M. A. Hossain

Abstract:

In this article, the effect of thermal radiation on mixed convection boundary layer flow of a viscous fluid along a highly heated vertical flat plate is considered with varying density and volumetric expansion coefficient. The density of the fluid is assumed to vary exponentially with temperature, however; volumetric expansion coefficient depends linearly on temperature. Boundary layer equations are transformed into convenient form by introducing primitive variable formulations. Solutions of transformed system of equations are obtained numerically through implicit finite difference method along with Gaussian elimination technique. Results are discussed in view of various parameters, like thermal radiation parameter, volumetric expansion parameter and density variation parameter on the wall shear stress and heat transfer rate. It is concluded from the present investigation that increase in volumetric expansion parameter decreases wall shear stress and enhances heat transfer rate.

Keywords: thermal radiation, mixed convection, variable density, variable volumetric expansion coefficient

Procedia PDF Downloads 363
7133 Treatment of Septic Tank Effluent Using Moving Bed Biological Reactor

Authors: Fares Almomani, Majeda Khraisheh, Rahul Bhosale, Anand Kumar, Ujjal Gosh

Abstract:

Septic tanks (STs) are very commonly used wastewater collection systems in the world especially in rural areas. In this study, the use of moving bed biological reactors (MBBR) for the treatment of septic tanks effluents (STE) was studied. The study was included treating septic tank effluent from one house hold using MBBRs. Significant ammonia removal rate was observed in all the reactors throughout the 180 days of operation suggesting that the MBBRs were successful in reducing the concentration of ammonia from septic tank effluent. The average ammonia removal rate at 25◦C for the reactor operated at hydraulic retention time of 5.7 hr (R1) was 0.540 kg-N/m3and for the reactor operated at hydraulic retention time of 13.3hr (R2) was 0.279 kg-N/m3. Ammonia removal rates were decreased to 0.3208 kg-N/m3 for R1 and 0.212 kg-N/m3 for R3 as the temperature of reactor was decreased to 8 ◦C. A strong correlation exists between theta model and the rates of ammonia removal for the reactors operated in continuous flow. The average ϴ values for the continuous flow reactors during the temperature change from 8°C to 20 °C were found to be 1.053±0.051. MBBR technology can be successfully used as a polishing treatment for septic tank effluent.

Keywords: septic tanks, wastewater treatment, morphology, moving biological reactors, nitrification

Procedia PDF Downloads 339
7132 An Optimization of Machine Parameters for Modified Horizontal Boring Tool Using Taguchi Method

Authors: Thirasak Panyaphirawat, Pairoj Sapsmarnwong, Teeratas Pornyungyuen

Abstract:

This paper presents the findings of an experimental investigation of important machining parameters for the horizontal boring tool modified to mouth with a horizontal lathe machine to bore an overlength workpiece. In order to verify a usability of a modified tool, design of experiment based on Taguchi method is performed. The parameters investigated are spindle speed, feed rate, depth of cut and length of workpiece. Taguchi L9 orthogonal array is selected for four factors three level parameters in order to minimize surface roughness (Ra and Rz) of S45C steel tubes. Signal to noise ratio analysis and analysis of variance (ANOVA) is performed to study an effect of said parameters and to optimize the machine setting for best surface finish. The controlled factors with most effect are depth of cut, spindle speed, length of workpiece, and feed rate in order. The confirmation test is performed to test the optimal setting obtained from Taguchi method and the result is satisfactory.

Keywords: design of experiment, Taguchi design, optimization, analysis of variance, machining parameters, horizontal boring tool

Procedia PDF Downloads 434
7131 Augmenting Navigational Aids: The Development of an Assistive Maritime Navigation Application

Authors: A. Mihoc, K. Cater

Abstract:

On the bridge of a ship the officers are looking for visual aids to guide navigation in order to reconcile the outside world with the position communicated by the digital navigation system. Aids to navigation include: Lighthouses, lightships, sector lights, beacons, buoys, and others. They are designed to help navigators calculate their position, establish their course or avoid dangers. In poor visibility and dense traffic areas, it can be very difficult to identify these critical aids to guide navigation. The paper presents the usage of Augmented Reality (AR) as a means to present digital information about these aids to support navigation. To date, nautical navigation related mobile AR applications have been limited to the leisure industry. If proved viable, this prototype can facilitate the creation of other similar applications that could help commercial officers with navigation. While adopting a user centered design approach, the team has developed the prototype based on insights from initial research carried on board of several ships. The prototype, built on Nexus 9 tablet and Wikitude, features a head-up display of the navigational aids (lights) in the area, presented in AR and a bird’s eye view mode presented on a simplified map. The application employs the aids to navigation data managed by Hydrographic Offices and the tablet’s sensors: GPS, gyroscope, accelerometer, compass and camera. Sea trials on board of a Navy and a commercial ship revealed the end-users’ interest in using the application and further possibility of other data to be presented in AR. The application calculates the GPS position of the ship, the bearing and distance to the navigational aids; all within a high level of accuracy. However, during testing several issues were highlighted which need to be resolved as the prototype is developed further. The prototype stretched the capabilities of Wikitude, loading over 500 objects during tests in a major port. This overloaded the display and required over 45 seconds to load the data. Therefore, extra filters for the navigational aids are being considered in order to declutter the screen. At night, the camera is not powerful enough to distinguish all the lights in the area. Also, magnetic interference with the bridge of the ship generated a continuous compass error of the AR display that varied between 5 and 12 degrees. The deviation of the compass was consistent over the whole testing durations so the team is now looking at the possibility of allowing users to manually calibrate the compass. It is expected that for the usage of AR in professional maritime contexts, further development of existing AR tools and hardware is needed. Designers will also need to implement a user-centered design approach in order to create better interfaces and display technologies for enhanced solutions to aid navigation.

Keywords: compass error, GPS, maritime navigation, mobile augmented reality

Procedia PDF Downloads 324
7130 Counter-Current Extraction of Fish Oil and Toxic Elements from Fish Waste Using Supercritical Carbon Dioxide

Authors: Parvaneh Hajeb, Shahram Shakibazadeh, Md. Zaidul Islam Sarker

Abstract:

High-quality fish oil for human consumption requires low levels of toxic elements. The aim of this study was to develop a method to extract oil from fish wastes with the least toxic elements contamination. Supercritical fluid extraction (SFE) was applied to detoxify fish oils from toxic elements. The SFE unit used consisted of an intelligent HPLC pump equipped with a cooling jacket to deliver CO2. The freeze-dried fish waste sample was extracted by heating in a column oven. Under supercritical conditions, the oil dissolved in CO2 was separated from the supercritical phase using pressure reduction. The SFE parameters (pressure, temperature, CO2 flow rate, and extraction time) were optimized using response surface methodology (RSM) to extract the highest levels of toxic elements. The results showed that toxic elements in fish oil can be reduced using supercritical CO2 at optimum pressure 40 MPa, temperature 61 ºC, CO2 flow rate 3.8 MPa, and extraction time 4.25 hr. There were significant reductions in the mercury (98.2%), cadmium (98.9%), arsenic (96%), and lead contents (99.2%) of the fish oil. The fish oil extracted using this method contained elements at levels that were much lower than the accepted limits of 0.1 μg/g. The reduction of toxic elements using the SFE method was more efficient than that of the conventional methods due to the high selectivity of supercritical CO2 for non-polar compounds.

Keywords: food safety, toxic elements, fish oil, supercritical carbon dioxide

Procedia PDF Downloads 416
7129 Estimating Estimators: An Empirical Comparison of Non-Invasive Analysis Methods

Authors: Yan Torres, Fernanda Simoes, Francisco Petrucci-Fonseca, Freddie-Jeanne Richard

Abstract:

The non-invasive samples are an alternative of collecting genetic samples directly. Non-invasive samples are collected without the manipulation of the animal (e.g., scats, feathers and hairs). Nevertheless, the use of non-invasive samples has some limitations. The main issue is degraded DNA, leading to poorer extraction efficiency and genotyping. Those errors delayed for some years a widespread use of non-invasive genetic information. Possibilities to limit genotyping errors can be done using analysis methods that can assimilate the errors and singularities of non-invasive samples. Genotype matching and population estimation algorithms can be highlighted as important analysis tools that have been adapted to deal with those errors. Although, this recent development of analysis methods there is still a lack of empirical performance comparison of them. A comparison of methods with dataset different in size and structure can be useful for future studies since non-invasive samples are a powerful tool for getting information specially for endangered and rare populations. To compare the analysis methods, four different datasets used were obtained from the Dryad digital repository were used. Three different matching algorithms (Cervus, Colony and Error Tolerant Likelihood Matching - ETLM) are used for matching genotypes and two different ones for population estimation (Capwire and BayesN). The three matching algorithms showed different patterns of results. The ETLM produced less number of unique individuals and recaptures. A similarity in the matched genotypes between Colony and Cervus was observed. That is not a surprise since the similarity between those methods on the likelihood pairwise and clustering algorithms. The matching of ETLM showed almost no similarity with the genotypes that were matched with the other methods. The different cluster algorithm system and error model of ETLM seems to lead to a more criterious selection, although the processing time and interface friendly of ETLM were the worst between the compared methods. The population estimators performed differently regarding the datasets. There was a consensus between the different estimators only for the one dataset. The BayesN showed higher and lower estimations when compared with Capwire. The BayesN does not consider the total number of recaptures like Capwire only the recapture events. So, this makes the estimator sensitive to data heterogeneity. Heterogeneity in the sense means different capture rates between individuals. In those examples, the tolerance for homogeneity seems to be crucial for BayesN work properly. Both methods are user-friendly and have reasonable processing time. An amplified analysis with simulated genotype data can clarify the sensibility of the algorithms. The present comparison of the matching methods indicates that Colony seems to be more appropriated for general use considering a time/interface/robustness balance. The heterogeneity of the recaptures affected strongly the BayesN estimations, leading to over and underestimations population numbers. Capwire is then advisable to general use since it performs better in a wide range of situations.

Keywords: algorithms, genetics, matching, population

Procedia PDF Downloads 138
7128 Cancellation of Transducer Effects from Frequency Response Functions: Experimental Case Study on the Steel Plate

Authors: P. Zamani, A. Taleshi Anbouhi, M. R. Ashory, S. Mohajerzadeh, M. M. Khatibi

Abstract:

Modal analysis is a developing science in the experimental evaluation of dynamic properties of the structures. Mechanical devices such as accelerometers are one of the sources of lack of quality in measuring modal testing parameters. In this paper, eliminating the accelerometer’s mass effect of the frequency response of the structure is studied. So, a strategy is used for eliminating the mass effect by using sensitivity analysis. In this method, the amount of mass change and the place to measure the structure’s response with least error in frequency correction is chosen. Experimental modal testing is carried out on a steel plate and the effect of accelerometer’s mass is omitted using this strategy. Finally, a good agreement is achieved between numerical and experimental results.

Keywords: accelerometer mass, frequency response function, modal analysis, sensitivity analysis

Procedia PDF Downloads 438
7127 Application of Artificial Immune Systems Combined with Collaborative Filtering in Movie Recommendation System

Authors: Pei-Chann Chang, Jhen-Fu Liao, Chin-Hung Teng, Meng-Hui Chen

Abstract:

This research combines artificial immune system with user and item based collaborative filtering to create an efficient and accurate recommendation system. By applying the characteristic of antibodies and antigens in the artificial immune system and using Pearson correlation coefficient as the affinity threshold to cluster the data, our collaborative filtering can effectively find useful users and items for rating prediction. This research uses MovieLens dataset as our testing target to evaluate the effectiveness of the algorithm developed in this study. The experimental results show that the algorithm can effectively and accurately predict the movie ratings. Compared to some state of the art collaborative filtering systems, our system outperforms them in terms of the mean absolute error on the MovieLens dataset.

Keywords: artificial immune system, collaborative filtering, recommendation system, similarity

Procedia PDF Downloads 528
7126 Nanoenergetic Materials as Effective Heat Energy Sources for Enhanced Gas Generators

Authors: Sang Beom Kim, Kyung Ju Kim, Myung Hoon Cho, Ji Hoon Kim, Soo Hyung Kim

Abstract:

In this study, we systematically investigated the effect of nanoscale energetic materials in formulations of aluminum nanoparticles (Al NPs; heat source)/copper oxide nanoparticles (CuO NPs; oxidizer) on the combustion and gas-generating properties of sodium azide microparticles (NaN3 MPs; gas-generating agent) for potential applications in gas generators. The burn rate of the NaN3 MP/CuO NP composite powder was only ~0.3 m/s. However, the addition of Al NPs to the NaN3 MP/CuO NP matrix caused the rates to reach ~5.3 m/s, respectively. In addition, the N2 gas volume flow rate generated by the ignition of the NaN3 MP/CuO NP composite powder was only ~0.6 L/s, which was significantly increased to ~3.9 L/s by adding Al NPs to the NaN3 MP/CuO NP composite powder. This suggested that the highly reactive NPs, with the assistance of CuO NPs, were effective heat-generating sources enabling the complete thermal decomposition of NaN3 MPs upon ignition. Al NPs were highly effective in the gas generators because of the increased reactivity induced by the reduced particle size. Finally, we successfully demonstrated that a homemade airbag with a specific volume of ~140 mL could be rapidly and fully inflated by the thermal activation of nanoscale energetic material-added gas-generating agents (i.e., NaN3 MP/Al NP/CuO NP composites) within the standard time of ~50 ms for airbag inflation.

Keywords: nanoenergetic materials, aluminum nanoparticles, copper oxide nanoparticles, gas generators

Procedia PDF Downloads 365
7125 Equity Risk Premiums and Risk Free Rates in Modelling and Prediction of Financial Markets

Authors: Mohammad Ghavami, Reza S. Dilmaghani

Abstract:

This paper presents an adaptive framework for modelling financial markets using equity risk premiums, risk free rates and volatilities. The recorded economic factors are initially used to train four adaptive filters for a certain limited period of time in the past. Once the systems are trained, the adjusted coefficients are used for modelling and prediction of an important financial market index. Two different approaches based on least mean squares (LMS) and recursive least squares (RLS) algorithms are investigated. Performance analysis of each method in terms of the mean squared error (MSE) is presented and the results are discussed. Computer simulations carried out using recorded data show MSEs of 4% and 3.4% for the next month prediction using LMS and RLS adaptive algorithms, respectively. In terms of twelve months prediction, RLS method shows a better tendency estimation compared to the LMS algorithm.

Keywords: adaptive methods, LSE, MSE, prediction of financial Markets

Procedia PDF Downloads 329
7124 A Novel Image Steganography Scheme Based on Mandelbrot Fractal

Authors: Adnan H. M. Al-Helali, Hamza A. Ali

Abstract:

Growth of censorship and pervasive monitoring on the Internet, Steganography arises as a new means of achieving secret communication. Steganography is the art and science of embedding information within electronic media used by common applications and systems. Generally, hiding information of multimedia within images will change some of their properties that may introduce few degradation or unusual characteristics. This paper presents a new image steganography approach for hiding information of multimedia (images, text, and audio) using generated Mandelbrot Fractal image as a cover. The proposed technique has been extensively tested with different images. The results show that the method is a very secure means of hiding and retrieving steganographic information. Experimental results demonstrate that an effective improvement in the values of the Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Normalized Cross Correlation (NCC) and Image Fidelity (IF) over the previous techniques.

Keywords: fractal image, information hiding, Mandelbrot et fractal, steganography

Procedia PDF Downloads 534
7123 Quantitative Evaluation of Diabetic Foot Wound Healing Using Hydrogel Nanosilver Based Dressing vs. Traditional Dressing: A Prospective Randomized Control Study

Authors: Ehsan A. Yahia, Ayman E. El-Sharkawey, Magda M. Bayoumi

Abstract:

Background: Wound dressings perform a crucial role in cutaneous wound management due to their ability to protect wounds and promote dermal and epidermal tissue regeneration. Aim: To evaluate the effectiveness of using hydrogel/nano silver-based dressing vs. traditional dressing on diabetic foot wound healing. Methods: Sixty patients with type-2 diabetes hospitalized for diabetic foot wound treatment were recruited from selected Surgical departments. A prospective randomized control study was carried. Results: The results showed that the percentage of a reduction rate of the ulcer by the third week of the treatment in the hydrogel/nano silver-based dressing group was higher (15.11%) than in the traditional wound dressing group (33.44%). Moreover, the mean ulcer size "sq mm" in the hydrogel/nano silver-based dressing group recognized a faster healing rate (15.11±7.89) and considerably lesser in comparison to the traditional in the third week (21.65±8.4). Conclusion: The hydrogel/nanosilver-based dressing showed better results than traditional dressing in managing diabetic ulcer foot.

Keywords: diabetes, wound care, diabetic foot, wound dressing, hydrogel nanosilver

Procedia PDF Downloads 109
7122 TiO2 Nanowires as Efficient Heterogeneous Photocatalysts for Waste-Water Treatment

Authors: Gul Afreen, Sreedevi Upadhyayula, Mahendra K. Sunkara

Abstract:

One-dimensional (1D) nanostructures like nanowires, nanotubes, and nanorods find variety of practical application owing to their unique physico-chemical properties. In this work, TiO2 nanowires were synthesized by direct oxidation of titanium particles in a unique microwave plasma jet reactor. The prepared TiO2 nanowires manifested the flexible features, and were characterized by using X-ray diffraction, Brunauer-Emmett-Teller (BET) surface area analyzer, UV-Visible and FTIR spectrophotometers, Scanning electron microscope, and Transmission electron microscope. Further, the photodegradation efficiency of these nanowires were tested against toxic organic dye like methylene blue (MB) and the results were compared with the commercial TiO2. It was found that TiO2 nanowires exhibited superior photocatalytic performance (89%) as compared to commercial TiO2 (75%) after 60 min of reaction. This is attributed to the lower recombination rate and increased interfacial charge transfer in TiO2 nanowire. Pseudo-first order kinetic modelling performed with the experimental results revealed that the rate constant of photodegradation in case of TiO2 nanowire was 1.3 times higher than that of commercial TiO2. Superoxide radical (O2˙) was found to be the major contributor in the photodegradation mechanism. Based on the trapping experiments, a plausible mechanism of the photocatalytic reaction is discussed.

Keywords: heterogeneous catalysis, photodegradation, reactive oxygen species, TiO₂ nanowires

Procedia PDF Downloads 140
7121 Particle Filter Implementation of a Non-Linear Dynamic Fall Model

Authors: T. Kobayashi, K. Shiba, T. Kaburagi, Y. Kurihara

Abstract:

For the elderly living alone, falls can be a serious problem encountered in daily life. Some elderly people are unable to stand up without the assistance of a caregiver. They may become unconscious after a fall, which can lead to serious aftereffects such as hypothermia, dehydration, and sometimes even death. We treat the subject as an inverted pendulum and model its angle from the equilibrium position and its angular velocity. As the model is non-linear, we implement the filtering method with a particle filter which can estimate true states of the non-linear model. In order to evaluate the accuracy of the particle filter estimation results, we calculate the root mean square error (RMSE) between the estimated angle/angular velocity and the true values generated by the simulation. The experimental results give the highest accuracy RMSE of 0.0141 rad and 0.1311 rad/s for the angle and angular velocity, respectively.

Keywords: fall, microwave Doppler sensor, non-linear dynamics model, particle filter

Procedia PDF Downloads 207
7120 Challenges of Cryogenic Fluid Metering by Coriolis Flowmeter

Authors: Evgeniia Shavrina, Yan Zeng, Boo Cheong Khoo, Vinh-Tan Nguyen

Abstract:

The present paper is aimed at providing a review of error sources in cryogenic metering by Coriolis flowmeters (CFMs). Whereas these flowmeters allow accurate water metering, high uncertainty and low repeatability are commonly observed at cryogenic fluid metering, which is often necessary for effective renewable energy production and storage. The sources of these issues might be classified as general and cryogenic specific challenges. A conducted analysis of experimental and theoretical studies shows that material behaviour at cryogenic temperatures, composition variety, and multiphase presence are the most significant cryogenic challenges. At the same time, pipeline diameter limitation, ambient vibration impact, and drawbacks of the installation may be highlighted as the most important general challenges of cryogenic metering by CFM. Finally, the techniques, which mitigate the impact of these challenges are reviewed, and future development direction is indicated.

Keywords: Coriolis flowmeter, cryogenic, multicomponent flow, multiphase flow

Procedia PDF Downloads 145
7119 Quasi-Static Analysis of End Plate Beam-to-Column Connections

Authors: A. Al-Rifaie, Z. W. Guan, S. W. Jones

Abstract:

This paper presents a method for modelling and analysing end plate beam-to-column connections to obtain the quasi-static behaviour using non-linear dynamic explicit integration. In addition to its importance to study the static behaviour of a structural member, quasi-static behaviour is largely needed to be compared with the dynamic behaviour of such members in order to investigate the dynamic effect by proposing dynamic increase factors (DIFs). The beam-to-column bolted connections contain various contact surfaces at which the implicit procedure may have difficulties converging, resulting in a large number of iterations. Contrary, explicit procedure could deal effectively with complex contacts without converging problems. Hence, finite element modelling using ABAQUS/explicit is used in this study to address the dynamic effect may be produced using explicit procedure. Also, the effect of loading rate and mass scaling are discussed to investigate their effect on the time of analysis. The results show that the explicit procedure is valuable to model the end plate beam-to-column connections in terms of failure mode, load-displacement relationships. Also, it is concluded that loading rate and mass scaling should be carefully selected to avoid the dynamic effect in the solution.

Keywords: quasi-static, end plate, finite elements, connections

Procedia PDF Downloads 304
7118 3D Object Model Reconstruction Based on Polywogs Wavelet Network Parametrization

Authors: Mohamed Othmani, Yassine Khlifi

Abstract:

This paper presents a technique for compact three dimensional (3D) object model reconstruction using wavelet networks. It consists to transform an input surface vertices into signals,and uses wavelet network parameters for signal approximations. To prove this, we use a wavelet network architecture founded on several mother wavelet families. POLYnomials WindOwed with Gaussians (POLYWOG) wavelet families are used to maximize the probability to select the best wavelets which ensure the good generalization of the network. To achieve a better reconstruction, the network is trained several iterations to optimize the wavelet network parameters until the error criterion is small enough. Experimental results will shown that our proposed technique can effectively reconstruct an irregular 3D object models when using the optimized wavelet network parameters. We will prove that an accurateness reconstruction depends on the best choice of the mother wavelets.

Keywords: 3d object, optimization, parametrization, polywog wavelets, reconstruction, wavelet networks

Procedia PDF Downloads 279