Search results for: work overload
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13723

Search results for: work overload

11413 Improvement of Data Transfer over Simple Object Access Protocol (SOAP)

Authors: Khaled Ahmed Kadouh, Kamal Ali Albashiri

Abstract:

This paper presents a designed algorithm involves improvement of transferring data over Simple Object Access Protocol (SOAP). The aim of this work is to establish whether using SOAP in exchanging XML messages has any added advantages or not. The results showed that XML messages without SOAP take longer time and consume more memory, especially with binary data.

Keywords: JAX-WS, SMTP, SOAP, web service, XML

Procedia PDF Downloads 495
11412 Evaluation of the Biological Activity of New Antimicrobial and Biodegradable Textile Materials for Protective Equipment

Authors: Safa Ladhari, Alireza Saidi, Phuong Nguyen-Tri

Abstract:

During health crises, such as COVID-19, using disposable protective equipment (PEs) (masks, gowns, etc.) causes long-term problems, increasing the volume of hazardous waste that must be handled safely and expensively. Therefore, producing textiles for antimicrobial and reusable materials is highly desirable to decrease the use of disposable PEs that should be treated as hazardous waste. In addition, if these items are used regularly in the workplace or for daily activities by the public, they will most likely end up in household waste. Furthermore, they may pose a high risk of contagion to waste collection workers if contaminated. Therefore, to protect the whole population in times of sanitary crisis, it is necessary to equip these materials with tools that make them resilient to the challenges of carrying out daily activities without compromising public health and the environment and without depending on them external technologies and producers. In addition, the materials frequently used for EPs are plastics of petrochemical origin. The subject of the present work is replacing petroplastics with bioplastic since it offers better biodegradability. The chosen polymer is polyhydroxybutyrate (PHB), a family of polyhydroxyalkanoates synthesized by different bacteria. It has similar properties to conventional plastics. However, it is renewable, biocompatible, and has attractive barrier properties compared to other polyesters. These characteristics make it ideal for EP protection applications. The current research topic focuses on the preparation and rapid evaluation of the biological activity of nanotechnology-based antimicrobial agents to treat textile surfaces used for PE. This work will be carried out to provide antibacterial solutions that can be transferred to a workplace application in the fight against short-term biological risks. Three main objectives are proposed during this research topic: 1) the development of suitable methods for the deposition of antibacterial agents on the surface of textiles; 2) the development of a method for measuring the antibacterial activity of the prepared textiles and 3) the study of the biodegradability of the prepared textiles. The studied textile is a non-woven fabric based on a biodegradable polymer manufactured by the electrospinning method. Indeed, nanofibers are increasingly studied due to their unique characteristics, such as high surface-to-volume ratio, improved thermal, mechanical, and electrical properties, and confinement effects. The electrospun film will be surface modified by plasma treatment and then loaded with hybrid antibacterial silver and titanium dioxide nanoparticles by the dip-coating method. This work uses simple methods with emerging technologies to fabricate nanofibers with suitable size and morphology to be used as components for protective equipment. The antibacterial agents generally used are based on silver, zinc, copper, etc. However, to our knowledge, few researchers have used hybrid nanoparticles to ensure antibacterial activity with biodegradable polymers. Also, we will exploit visible light to improve the antibacterial effectiveness of the fabric, which differs from the traditional contact mode of killing bacteria and presents an innovation of active protective equipment. Finally, this work will allow for the innovation of new antibacterial textile materials through a simple and ecological method.

Keywords: protective equipment, antibacterial textile materials, biodegradable polymer, electrospinning, hybrid antibacterial nanoparticles

Procedia PDF Downloads 80
11411 Design of a Fuzzy Expert System for the Impact of Diabetes Mellitus on Cardiac and Renal Impediments

Authors: E. Rama Devi Jothilingam

Abstract:

Diabetes mellitus is now one of the most common non communicable diseases globally. India leads the world with largest number of diabetic subjects earning the title "diabetes capital of the world". In order to reduce the mortality rate, a fuzzy expert system is designed to predict the severity of cardiac and renal problems of diabetic patients using fuzzy logic. Since uncertainty is inherent in medicine, fuzzy logic is used in this research work to remove the inherent fuzziness of linguistic concepts and uncertain status in diabetes mellitus which is the prime cause for the cardiac arrest and renal failure. In this work, the controllable risk factors "blood sugar, insulin, ketones, lipids, obesity, blood pressure and protein/creatinine ratio" are considered as input parameters and the "the stages of cardiac" (SOC)" and the stages of renal" (SORD) are considered as the output parameters. The triangular membership functions are used to model the input and output parameters. The rule base is constructed for the proposed expert system based on the knowledge from the medical experts. Mamdani inference engine is used to infer the information based on the rule base to take major decision in diagnosis. Mean of maximum is used to get a non fuzzy control action that best represent possibility distribution of an inferred fuzzy control action. The proposed system also classifies the patients with high risk and low risk using fuzzy c means clustering techniques so that the patients with high risk are treated immediately. The system is validated with Matlab and is used as a tracking system with accuracy and robustness.

Keywords: Diabetes mellitus, fuzzy expert system, Mamdani, MATLAB

Procedia PDF Downloads 290
11410 Development of High-Efficiency Down-Conversion Fluoride Phosphors to Increase the Efficiency of Solar Panels

Authors: S. V. Kuznetsov, M. N. Mayakova, V. Yu. Proydakova, V. V. Pavlov, A. S. Nizamutdinov, O. A. Morozov, V. V. Voronov, P. P. Fedorov

Abstract:

Increase in the share of electricity received by conversion of solar energy results in the reduction of the industrial impact on the environment from the use of the hydrocarbon energy sources. One way to increase said share is to improve the efficiency of solar energy conversion in silicon-based solar panels. Such efficiency increase can be achieved by transferring energy from sunlight-insensitive areas of work of silicon solar panels to the area of their photoresistivity. To achieve this goal, a transition to new luminescent materials with the high quantum yield of luminescence is necessary. Improvement in the quantum yield can be achieved by quantum cutting, which allows obtaining a quantum yield of down conversion of more than 150% due to the splitting of high-energy photons of the UV spectral range into lower-energy photons of the visible and near infrared spectral ranges. The goal of present work is to test approach of excitation through sensibilization of 4f-4f fluorescence of Yb3+ by various RE ions absorbing in UV and Vis spectral ranges. One of promising materials for quantum cutting luminophores are fluorides. In our investigation we have developed synthesis of nano- and submicron powders of calcium fluoride and strontium doped with rare-earth elements (Yb: Ce, Yb: Pr, Yb: Eu) of controlled dimensions and shape by co-precipitation from water solution technique. We have used Ca(NO3)2*4H2O, Sr(NO3)2, HF, NH4F as precursors. After initial solutions of nitrates were prepared they have been mixed with fluorine containing solution by dropwise manner. According to XRD data, the synthesis resulted in single phase samples with fluorite structure. By means of SEM measurements, we have confirmed spherical morphology and have determined sizes of particles (50-100 nm after synthesis and 150-300 nm after calcination). Temperature of calcination appeared to be 600°C. We have investigated the spectral-kinetic characteristics of above mentioned compounds. Here the diffuse reflection and laser induced fluorescence spectra of Yb3+ ions excited at around 4f-4f and 4f-5d transitions of Pr3+, Eu3+ and Ce3+ ions in the synthesized powders are reported. The investigation of down conversion luminescence capability of synthesized compounds included measurements of fluorescence decays and quantum yield of 2F5/2-2F7/2 fluorescence of Yb3+ ions as function of Yb3+ and sensitizer contents. An optimal chemical composition of CaF2-YbF3- LnF3 (Ln=Ce, Eu, Pr), SrF2-YbF3-LnF3 (Ln=Ce, Eu, Pr) micro- and nano- powders according to criteria of maximal IR fluorescence yield is proposed. We suppose that investigated materials are prospective in solar panels improvement applications. Work was supported by Russian Science Foundation grant #17-73- 20352.

Keywords: solar cell, fluorides, down-conversion luminescence, maximum quantum yield

Procedia PDF Downloads 272
11409 Predictive Semi-Empirical NOx Model for Diesel Engine

Authors: Saurabh Sharma, Yong Sun, Bruce Vernham

Abstract:

Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model.  Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.

Keywords: diesel engine, machine learning, NOₓ emission, semi-empirical

Procedia PDF Downloads 114
11408 Illness Experience Without Illness: A Qualitative Study on the Lived Experience of Young Adults During the COVID-19 Pandemic

Authors: Gemma Postil, Claire Zanin, Michael Halpin, Caroline Ritter

Abstract:

Illness experience research typically focuses on people that are living with a medical condition; however, the broad consequences of the COVID-19 pandemic are impacting those without the virus itself, as many experienced extensive lockdowns, social isolation, and distress. Drawing on conceptual work in the illness experience literature, we argue that policy and social changes tied to COVID-19 produce biographical disruptions. In this sense, we argue that the COVID-19 pandemic produces illness experience without illness, as the pandemic comprehensively impacts health and biography. This paper draws on 30 in-depth interviews with young adults living in Prince Edward Island (PEI), which were conducted as part of a larger project to understand how young adults navigate compliance with the COVID-19 pandemic. We then inductively analyzed the interviews with a constructivist grounded theory approach. Specifically, we demonstrate that young adults living in PEI during the COVID-19 pandemic experienced biographical disruptions throughout the pandemic despite not contracting the virus. First, we detail how some participants experience biographical acceleration, with the pandemic accelerating relationships, home buying, and career planning. Second, we demonstrate biographical stagnation, wherein participants report being unable to pursue major life milestones. Lastly, we describe biographical regression, wherein participants feel they are losing ground during the pandemic and are actively falling behind their peers. These findings provide the novel application of illness experience concepts to the context of the COVID-19 pandemic, contribute to work on illness experience and ambiguity, and extend Bury’s conceptualization of biographical disruption. In conclusion, we demonstrate that young adults experienced the biographical disruption expected from having COVID-19 without having an illness, highlighting the depth to which the pandemic affected young adults.

Keywords: illness experience, lived experience, biographical disruption, COVID-19, young adults

Procedia PDF Downloads 161
11407 Distribution Frequency, Ecology, and Economic Utility of Coprophilous Mushrooms (Agaricales, Basidiomycota) in Punjab, India

Authors: Amandeep Kaur, N. S. Atri, Munruchi Kaur

Abstract:

Herbivorous dung is a special substrate for the growth of fungi. Fungi growing thereon are known as coprophilous. These fungi are amongst the most abundant taxa in the ecosystem, which regulate the decomposition of dung organic matter, nutrient dynamics and maintenance of ecological balance on the earth. The coprophilous fungi represent a diverse group of saprobes, including taxa from most major fungal groups belonging to Zygomycota, Ascomycota and Basidiomycota. The present work, however, has been focused on the basidiomycetous coprophilous mushrooms belonging to the order Agaricales. The research work includes the results of eco-taxonomic studies of coprophilous mushrooms in Punjab, India, on the basis of a survey of dung localities of the state. The mushrooms were collected growing as saprobes on dung of various domesticated and wild herbivorous animals in pastures, grasslands, zoos, and on dung heaps in villages, etc. The present study observed the frequency of distribution of coprophilous mushrooms in different taxonomic categories in different regions of the state in various seasons on different dung types along with their growing habit. The paper also discusses their economic utility as edible, inedible, poisonous, medicinal and hallucinogenic species. The study has shown that animal dung is a good niche for the growth of mushrooms. However, the natural habitats with dung deposits are getting destroyed because of different developmental activities. Livestock in agriculture-based societies like Punjab state in India should be managed in a manner that favors their grazing in the wild places and thereby the growth of coprophilous mushrooms so that a significant role in ecological balance on the earth is established.

Keywords: herbivorous dung, psychoactive, seasonal availability, taxo-ecology

Procedia PDF Downloads 97
11406 Understanding Feminization of Indian Agriculture and the Dynamics of Intrahousehold Bargaining Power at a Household Level

Authors: Arpit Sachan, Nilanshu Kumar

Abstract:

This paper tries to understand the nuances of feminisation of agriculture in the Indian context and how that is associated with better intrahousehold bargaining power for women. The economic survey of India indicates a constant increase in the share of the female workforce in Indian agriculture in the past few decades. This can be accounted for by many factors like the migration of male workers to urban areas and, therefore, the complete burden of agriculture shifting on the female counterparts. Therefore this study is an attempt to study that how this increase in the female workforce corresponds to a better decision-making ability for women in rural farm households. This paper is an attempt to carefully evaluate this aspect of the feminisation of Indian agriculture. The paper tries to study how various factors that improve the status of women in agriculture change with things like resource ownership. This paper uses both the macro-level and micro-level data to study the dynamics of the proportion of the workforce in agriculture across different states in India and how that has translated into better indicators for women in rural areas. The fall in India’s rank in the global gender wage gap index is alarming in such a context, and this creates a puzzle with increasing female workforce participation. The paper will consider if the condition of women improved over time with the increased share of employment or not? Using field survey data, this paper tries to understand if there exists any digression for some of the indicators both at the macro and micro level. The paper also tries to integrate the economic understanding of gender aspects of the workforce and the sociological stance prevailing in the existing literature. Therefore, this paper takes a mixed-method approach to better understand the role that social structure plays in the improved status of women within and across various households. Therefore, this paper will finally help us understanding if at all there is a feminisation of Indian agriculture or it's just exploitation of a different kind. This study intends to create a distinction between the gendered labour force in Indian agriculture and the complete democratization of Indian agriculture. The study is primarily focused on areas where the exodus of male migrants pushes women to work on agricultural farms. The question posits is whether it is the willingness of women to work in agriculture or is it urbanisation and development-induced conditions that make women work in agriculture as farm labourers? The motive is to understand if factors like resource ownership and the ability to autonomous decision-making are interlinked with an increased proportion of the female workforce or not? Based on this framework, we finally provide a brief comment on policy implications of government intervention in improving Indian agriculture and the gender aspects associated with it.

Keywords: feminisation, intrahousehold bargaining, farm households, migration, agriculture, decision-making

Procedia PDF Downloads 130
11405 Effect of Therapeutic Exercises with or without Positional Release Technique in Treatment of Chronic Mechanical Low Back Pain Patients a Randomized Controlled Trial

Authors: Ghada M. R. Koura, Mohamed N. Mohamed, Ahmed M. F. El Shiwi

Abstract:

Chronic mechanical Low back dysfunction (CMLBD) is the most common problem of the working-age population in modern industrial sociaty; it causes a substantial economic burden due to the wide use of medical services and absence from work. Aim of work: the aim of this study was to investigate the effect of positional release technique on patients with chronic mechanical low back pain. Materials and Methods: Thirty two patients from both sexes were diagnosed with CMLBP, aged 20 to 45 years and were divided randomly into two equal groups; sixteen patients each; group A (control group) received therapeutic exercises that include (Stretch and Strength exercises for back and abdominal muscles). Group B (experimental group) received therapeutic exercises with positional release technique; treatment was applied 3 days/week for 4 weeks. Pain was measured by Visual Analogue Scale, Lumbar range of motion was measured by Inclinometer and Functional disability was measured by Oswestry disability scale. Measurements were taken at two intervals pre-treatment and post-treatment. Results: Data obtained was analyzed via paired and unpaired t-Test. There were statistical differences between the 2 groups, where the experimental group showed greater improvement than control group. Conclusion: Positional release technique is considered as an effective treatment for reducing pain, functional disability and increasing lumbar range of motion in individuals with chronic mechanical low back pain.

Keywords: chronic mechanical low back pain, traditional physical therapy program, positional release technique, randomized controlled trial

Procedia PDF Downloads 597
11404 Dual Metal Organic Framework Derived N-Doped Fe3C Nanocages Decorated with Ultrathin ZnIn2S4 Nanosheets for Efficient Photocatalytic Hydrogen Generation

Authors: D. Amaranatha Reddy

Abstract:

Highly efficient and stable co-catalysts materials is of great important for boosting photo charge carrier’s separation, transportation efficiency, and accelerating the catalytic reactive sites of semiconductor photocatalysts. As a result, it is of decisive importance to fabricate low price noble metal free co-catalysts with high catalytic reactivity, but it remains very challenging. Considering this challenge here, dual metal organic frame work derived N-Doped Fe3C nanocages have been rationally designed and decorated with ultrathin ZnIn2S4 nanosheets for efficient photocatalytic hydrogen generation. The fabrication strategy precisely integrates co-catalyst nanocages with ultrathin two-dimensional (2D) semiconductor nanosheets by providing tightly interconnected nano-junctions and helps to suppress the charge carrier’s recombination rate. Furthermore, constructed highly porous hybrid structures expose ample active sites for catalytic reduction reactions and harvest visible light more effectively by light scattering. As a result, fabricated nanostructures exhibit superior solar driven hydrogen evolution rate (9600 µmol/g/h) with an apparent quantum efficiency of 3.6 %, which is relatively higher than the Pt noble metal co-catalyst systems and earlier reported ZnIn2S4 based nanohybrids. We believe that the present work promotes the application of sulfide based nanostructures in solar driven hydrogen production.

Keywords: photocatalysis, water splitting, hydrogen fuel production, solar-driven hydrogen

Procedia PDF Downloads 134
11403 An Industrial Steady State Sequence Disorder Model for Flow Controlled Multi-Input Single-Output Queues in Manufacturing Systems

Authors: Anthony John Walker, Glen Bright

Abstract:

The challenge faced by manufactures, when producing custom products, is that each product needs exact components. This can cause work-in-process instability due to component matching constraints imposed on assembly cells. Clearing type flow control policies have been used extensively in mediating server access between multiple arrival processes. Although the stability and performance of clearing policies has been well formulated and studied in the literature, the growth in arrival to departure sequence disorder for each arriving job, across a serving resource, is still an area for further analysis. In this paper, a closed form industrial model has been formulated that characterizes arrival-to-departure sequence disorder through stable manufacturing systems under clearing type flow control policy. Specifically addressed are the effects of sequence disorder imposed on a downstream assembly cell in terms of work-in-process instability induced through component matching constraints. Results from a simulated manufacturing system show that steady state average sequence disorder in parallel upstream processing cells can be balanced in order to decrease downstream assembly system instability. Simulation results also show that the closed form model accurately describes the growth and limiting behavior of average sequence disorder between parts arriving and departing from a manufacturing system flow controlled via clearing policy.

Keywords: assembly system constraint, custom products, discrete sequence disorder, flow control

Procedia PDF Downloads 178
11402 Spatial and Time Variability of Ambient Vibration H/V Frequency Peak

Authors: N. Benkaci, E. Oubaiche, J.-L. Chatelain, R. Bensalem, K. Abbes

Abstract:

The ambient vibration H/V technique is widely used nowadays in microzonation studies, because of its easy field handling and its low cost, compared to other geophysical methods. However, in presence of complex geology or lateral heterogeneity evidenced by more than one peak frequency in the H/V curve, it is difficult to interpret the results, especially when soil information is lacking. In this work, we focus on the construction site of the Baraki 40000=place stadium, located in the north-east side of the Mitidja basin (Algeria), to identify the seismic wave amplification zones. H/V curve analysis leads to the observation of spatial and time variability of the H/V frequency peaks. The spatial variability allows dividing the studied area into three main zones: (1) one with a predominant frequency around 1,5 Hz showing an important amplification level, (2) the second exhibits two peaks at 1,5 Hz and in the 4 Hz – 10 Hz range, and (3) the third zone is characterized by a plateau between 2 Hz and 3 Hz. These H/V curve categories reveal a consequent lateral heterogeneity dividing the stadium site roughly in the middle. Furthermore, a continuous ambient vibration recording during several weeks allows showing that the first peak at 1,5 Hz in the second zone, completely disappears between 2 am and 4 am, and reaching its maximum amplitude around 12 am. Consequently, the anthropogenic noise source generating these important variations could be the Algiers Rocade Sud highway, located in the maximum amplification azimuth direction of the H/V curves. This work points out that the H/V method is an important tool to perform nano-zonation studies prior to geotechnical and geophysical investigations, and that, in some cases, the H/V technique fails to reveal the resonance frequency in the absence of strong anthropogenic source.

Keywords: ambient vibrations, amplification, fundamental frequency, lateral heterogeneity, site effect

Procedia PDF Downloads 237
11401 A Qualitative Study Identifying the Complexities of Early Childhood Professionals' Use and Production of Data

Authors: Sara Bonetti

Abstract:

The use of quantitative data to support policies and justify investments has become imperative in many fields including the field of education. However, the topic of data literacy has only marginally touched the early care and education (ECE) field. In California, within the ECE workforce, there is a group of professionals working in policy and advocacy that use quantitative data regularly and whose educational and professional experiences have been neglected by existing research. This study aimed at analyzing these experiences in accessing, using, and producing quantitative data. This study utilized semi-structured interviews to capture the differences in educational and professional backgrounds, policy contexts, and power relations. The participants were three key professionals from county-level organizations and one working at a State Department to allow for a broader perspective at systems level. The study followed Núñez’s multilevel model of intersectionality. The key in Núñez’s model is the intersection of multiple levels of analysis and influence, from the individual to the system level, and the identification of institutional power dynamics that perpetuate the marginalization of certain groups within society. In a similar manner, this study looked at the dynamic interaction of different influences at individual, organizational, and system levels that might intersect and affect ECE professionals’ experiences with quantitative data. At the individual level, an important element identified was the participants’ educational background, as it was possible to observe a relationship between that and their positionality, both with respect to working with data and also with respect to their power within an organization and at the policy table. For example, those with a background in child development were aware of how their formal education failed to train them in the skills that are necessary to work in policy and advocacy, and especially to work with quantitative data, compared to those with a background in administration and/or business. At the organizational level, the interviews showed a connection between the participants’ position within the organization and their organization’s position with respect to others and their degree of access to quantitative data. This in turn affected their sense of empowerment and agency in dealing with data, such as shaping what data is collected and available. These differences reflected on the interviewees’ perceptions and expectations for the ECE workforce. For example, one of the interviewees pointed out that many ECE professionals happen to use data out of the necessity of the moment. This lack of intentionality is a cause for, and at the same time translates into missed training opportunities. Another interviewee pointed out issues related to the professionalism of the ECE workforce by remarking the inadequacy of ECE students’ training in working with data. In conclusion, Núñez’s model helped understand the different elements that affect ECE professionals’ experiences with quantitative data. In particular, what was clear is that these professionals are not being provided with the necessary support and that we are not being intentional in creating data literacy skills for them, despite what is asked of them and their work.

Keywords: data literacy, early childhood professionals, intersectionality, quantitative data

Procedia PDF Downloads 253
11400 Cost Overrun in Delivery of Public Projects in the Saudi Construction Industry: A Review

Authors: A. Aljohani, D. Moore, D. D. Ahiaga-Dagbui

Abstract:

Cost overruns are endemic in the delivery of construction projects. The problem is global. It occurs irrespective of type and size of the project, its location, procurement method or client. The size of overruns can be as high as 200% in some cases. Projects thus unfortunately often make the news headlines, not for their immense socio-economic contribution to society, but for being poorly procured. In Saudi Arabia, two-thirds of construction projects are publicly procured by the Saudi government, which has been invested Billions of dollars in infrastructure projects each year as part of an ambitious strategic development agenda to shift from mainly oil dependency to multi-source dependency. However, reports show that about 3,000 public projects face diverse issues related to time and cost overrun. As part of an on-going study to develop a framework for effective public procurement for the Saudi Arabian construction industry, this paper reports the initial findings of the causes of cost overruns in the context of the Gulf State. It also evaluates the interface between some of the front-end loading issues in public procurement in Saudi and their effects on project performance. A systematic review of the existing literature on construction cost overruns, with focus on the Saudi Arabian construction industry has been used. One of the initial findings is that a fixed-price contract is usually used by the client in an attempt to transfer all financial risks to the contractors. This has the unintended consequence of creating a turbulent environment for the delivery of the project which leads to project abandonment by contractors, poor quality of work and substantial rework. Further work is being undertaken to empirically verify the initial findings reported in this paper and their generalizability for the construction industry as a whole.

Keywords: cost overrun, public procurement, Saudi Arabia, construction projects

Procedia PDF Downloads 270
11399 Comparative Study of Conventional and Satellite Based Agriculture Information System

Authors: Rafia Hassan, Ali Rizwan, Sadaf Farhan, Bushra Sabir

Abstract:

The purpose of this study is to compare the conventional crop monitoring system with the satellite based crop monitoring system in Pakistan. This study is conducted for SUPARCO (Space and Upper Atmosphere Research Commission). The study focused on the wheat crop, as it is the main cash crop of Pakistan and province of Punjab. This study will answer the following: Which system is better in terms of cost, time and man power? The man power calculated for Punjab CRS is: 1,418 personnel and for SUPARCO: 26 personnel. The total cost calculated for SUPARCO is almost 13.35 million and CRS is 47.705 million. The man hours calculated for CRS (Crop Reporting Service) are 1,543,200 hrs (136 days) and man hours for SUPARCO are 8, 320hrs (40 days). It means that SUPARCO workers finish their work 96 days earlier than CRS workers. The results show that the satellite based crop monitoring system is efficient in terms of manpower, cost and time as compared to the conventional system, and also generates early crop forecasts and estimations. The research instruments used included: Interviews, physical visits, group discussions, questionnaires, study of reports and work flows. A total of 93 employees were selected using Yamane’s formula for data collection, which is done with the help questionnaires and interviews. Comparative graphing is used for the analysis of data to formulate the results of the research. The research findings also demonstrate that although conventional methods have a strong impact still in Pakistan (for crop monitoring) but it is the time to bring a change through technology, so that our agriculture will also be developed along modern lines.

Keywords: area frame, crop reporting service, CRS, sample frame, SRS/GIS, satellite remote sensing/ geographic information system

Procedia PDF Downloads 291
11398 A Study of Surface of Titanium Targets for Neutron Generators

Authors: Alexey Yu. Postnikov, Nikolay T. Kazakovskiy, Valery V. Mokrushin, Irina A. Tsareva, Andrey A. Potekhin, Valentina N. Golubeva, Yuliya V. Potekhina, Maxim V. Tsarev

Abstract:

The development of tritium and deuterium targets for neutron tubes and generators is a part of the activities in All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF). These items contain a metal substrate (for example, copper) with a titanium film with a few microns thickness deposited on it. Then these metal films are saturated with tritium, deuterium or their mixtures. The significant problem in neutron tubes and neutron generators is the characterization of substrate surface before a deposition of titanium film on it, and analysis of the deposited titanium film’s surface before hydrogenation and after a saturation of the film with hydrogen isotopes. The performance effectiveness of neutron tube and generator also depends on upon the quality parameters of the surface of the initial substrate, deposited metal film and hydrogenated target. The objective of our work is to study the target prototype samples, that have differ by various approaches to the preliminary chemical processing of a copper substrate, and to analyze the integrity of titanium film after its saturation with deuterium. The research results of copper substrate and the surface of deposited titanium film with the use of electron microscopy, X-ray spectral microanalysis and laser-spark methods of analyses are presented. The causes of surface defects appearance have been identified. The distribution of deuterium and some impurities (oxygen and nitrogen) along the surface and across the height of the hydrogenated film in the target has been established. This allows us to evaluate the composition homogeneity of the samples and consequently to estimate the quality of hydrogenated samples. As the result of this work the propositions on the advancement of production technology and characterization of target’s surface have been presented.

Keywords: tritium and deuterium targets, titanium film, laser-spark methods, electron microscopy

Procedia PDF Downloads 442
11397 High Pressure Thermophysical Properties of Complex Mixtures Relevant to Liquefied Natural Gas (LNG) Processing

Authors: Saif Al Ghafri, Thomas Hughes, Armand Karimi, Kumarini Seneviratne, Jordan Oakley, Michael Johns, Eric F. May

Abstract:

Knowledge of the thermophysical properties of complex mixtures at extreme conditions of pressure and temperature have always been essential to the Liquefied Natural Gas (LNG) industry’s evolution because of the tremendous technical challenges present at all stages in the supply chain from production to liquefaction to transport. Each stage is designed using predictions of the mixture’s properties, such as density, viscosity, surface tension, heat capacity and phase behaviour as a function of temperature, pressure, and composition. Unfortunately, currently available models lead to equipment over-designs of 15% or more. To achieve better designs that work more effectively and/or over a wider range of conditions, new fundamental property data are essential, both to resolve discrepancies in our current predictive capabilities and to extend them to the higher-pressure conditions characteristic of many new gas fields. Furthermore, innovative experimental techniques are required to measure different thermophysical properties at high pressures and over a wide range of temperatures, including near the mixture’s critical points where gas and liquid become indistinguishable and most existing predictive fluid property models used breakdown. In this work, we present a wide range of experimental measurements made for different binary and ternary mixtures relevant to LNG processing, with a particular focus on viscosity, surface tension, heat capacity, bubble-points and density. For this purpose, customized and specialized apparatus were designed and validated over the temperature range (200 to 423) K at pressures to 35 MPa. The mixtures studied were (CH4 + C3H8), (CH4 + C3H8 + CO2) and (CH4 + C3H8 + C7H16); in the last of these the heptane contents was up to 10 mol %. Viscosity was measured using a vibrating wire apparatus, while mixture densities were obtained by means of a high-pressure magnetic-suspension densimeter and an isochoric cell apparatus; the latter was also used to determine bubble-points. Surface tensions were measured using the capillary rise method in a visual cell, which also enabled the location of the mixture critical point to be determined from observations of critical opalescence. Mixture heat capacities were measured using a customised high-pressure differential scanning calorimeter (DSC). The combined standard relative uncertainties were less than 0.3% for density, 2% for viscosity, 3% for heat capacity and 3 % for surface tension. The extensive experimental data gathered in this work were compared with a variety of different advanced engineering models frequently used for predicting thermophysical properties of mixtures relevant to LNG processing. In many cases the discrepancies between the predictions of different engineering models for these mixtures was large, and the high quality data allowed erroneous but often widely-used models to be identified. The data enable the development of new or improved models, to be implemented in process simulation software, so that the fluid properties needed for equipment and process design can be predicted reliably. This in turn will enable reduced capital and operational expenditure by the LNG industry. The current work also aided the community of scientists working to advance theoretical descriptions of fluid properties by allowing to identify deficiencies in theoretical descriptions and calculations.

Keywords: LNG, thermophysical, viscosity, density, surface tension, heat capacity, bubble points, models

Procedia PDF Downloads 274
11396 Adsorption of Pb(II) with MOF [Co2(Btec)(Bipy)(DMF)2]N in Aqueous Solution

Authors: E. Gil, A. Zepeda, J. Rivera, C. Ben-Youssef, S. Rincón

Abstract:

Water pollution has become one of the most serious environmental problems. Multiple methods have been proposed for the removal of Pb(II) from contaminated water. Among these, adsorption processes have shown to be more efficient, cheaper and easier to handle with respect to other treatment methods. However, research for adsorbents with high adsorption capacities is still necessary. For this purpose, we proposed in this work the study of metal-organic Framework [Co2(btec)(bipy)(DMF)2]n (MOF-Co) as adsorbent material of Pb (II) in aqueous media. MOF-Co was synthesized by a simple method. Firstly 4, 4’ dipyridyl, 1,2,4,5 benzenetetracarboxylic acid, cobalt (II) and nitrate hexahydrate were first mixed each one in N,N dimethylformamide (DMF) and then, mixed in a reactor altogether. The obtained solution was heated at 363 K in a muffle during 68 h to complete the synthesis. It was washed and dried, obtaining MOF-Co as the final product. MOF-Co was characterized before and after the adsorption process by Fourier transforms infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS). The Pb(II) in aqueous media was detected by Absorption Atomic Spectroscopy (AA). In order to evaluate the adsorption process in the presence of Pb(II) in aqueous media, the experiments were realized in flask of 100 ml the work volume at 200 rpm, with different MOF-Co quantities (0.0125 and 0.025 g), pH (2-6), contact time (0.5-6 h) and temperature (298,308 and 318 K). The kinetic adsorption was represented by pseudo-second order model, which suggests that the adsorption took place through chemisorption or chemical adsorption. The best adsorption results were obtained at pH 5. Langmuir, Freundlich and BET equilibrium isotherms models were used to study the adsorption of Pb(II) with 0.0125 g of MOF-Co, in the presence of different concentration of Pb(II) (20-200 mg/L, 100 mL, pH 5) with 4 h of reaction. The correlation coefficients (R2) of the different models show that the Langmuir model is better than Freundlich and BET model with R2=0.97 and a maximum adsorption capacity of 833 mg/g. Therefore, the Langmuir model can be used to best describe the Pb(II) adsorption in monolayer behavior on the MOF-Co. This value is the highest when compared to other materials such as the graphene/activated carbon composite (217 mg/g), biomass fly ashes (96.8 mg/g), PVA/PAA gel (194.99 mg/g) and MOF with Ag12 nanoparticles (120 mg/g).

Keywords: adsorption, heavy metals, metal-organic frameworks, Pb(II)

Procedia PDF Downloads 214
11395 Towards Consensus: Mapping Humanitarian-Development Integration Concepts and Their Interrelationship over Time

Authors: Matthew J. B. Wilson

Abstract:

Disaster Risk Reduction relies heavily on the effective cooperation of both humanitarian and development actors, particularly in the wake of a disaster, implementing lasting recovery measures that better protect communities from disasters to come. This can be seen to fit within a broader discussion around integrating humanitarian and development work stretching back to the 1980s. Over time, a number of key concepts have been put forward, including Linking Relief, Rehabilitation, and Development (LRRD), Early Recovery (ER), ‘Build Back Better’ (BBB), and the most recent ‘Humanitarian-Development-Peace Nexus’ or ‘Triple Nexus’ (HDPN) to define these goals and relationship. While this discussion has evolved greatly over time, from a continuum to a more integrative synergistic relationship, there remains a lack of consensus around how to describe it, and as such, the reality of effectively closing this gap has yet to be seen. The objective of this research was twofold. First, to map these four identified concepts (LRRD, ER, BBB & HDPN) used in the literature since 1995 to understand the overall trends in how this relationship is discussed. Second, map articles reference a combination of these concepts to understand their interrelationship. A scoping review was conducted for each concept identified. Results were gathered from Google Scholar by firstly inputting specific boolean search phrases for each concept as they related specifically to disasters each year since 1995 to identify the total number of articles discussing each concept over time. A second search was then done by pairing concepts together within a boolean search phrase and inputting the results into a matrix to understand how many articles contained references to more than one of the concepts. This latter search was limited to articles published after 2017 to account for the more recent emergence of HDPN. It was found that ER and particularly BBB are referred to much more widely than LRRD and HDPN. ER increased particularly in the mid-2000’s coinciding with the formation of the ER cluster, and BBB, whilst emerging gradually in the mid-2000s due to its usage in the wake of the Boxing Day Tsunami, increased significantly from about 2015 after its prominent inclusion in Sendai Framework. HDPN has only just started to increase in the last 4-5 years. In regards to the relationship between concepts, it was found the vast majority of all concepts identified were referred to in isolation from each other. The strongest relationship was between LRRD and HDPN (8% of articles referring to both), whilst ER-BBB and ER-HDPN both were about 3%, LRRD-ER 2%, and BBB-HDPN 1% and BBB-LRRD 1%. This research identified a fundamental issue around the lack of consensus and even awareness of different approaches referred to within academic literature relating to integrating humanitarian and development work. More research into synthesizing and learning from a range of approaches could work towards better closing this gap.

Keywords: build back better, disaster risk reduction, early recovery, linking relief rehabilitation and development, humanitarian development integration, humanitarian-development (peace) nexus, recovery, triple nexus

Procedia PDF Downloads 80
11394 Solid Angle Approach to Quantify the Shape of Daughter Cavity in Drying Nano Colloidal Sessile Droplets

Authors: Rishabh Hans, Saksham Sharma

Abstract:

Drying of a sessile droplet imbibed with colloidal solution is a complex process in many aspects. Till now, most of the work revolves around; conditions for buckling onset, post-buckling effects, nature of change of droplet shape etc. In this work, we are determining the shape of daughter cavity (DC) formed during post-buckling onset, a less explored stage, and its relationship with experimental parameters. We have introduced solid angle as a special parameter that can quantify the shape of DC at any instant. It facilitates us to compare the shape while experimenting across different substrate types, droplet sizes and particle concentration. Furthermore, the angular location of ‘weak spot’ on the periphery of droplet, which marks the initiation of cavity growth, varies in different conditions. To solve this problem, we have evaluated the deflection angle of weak spots w.r.t. the vertical axis going through the middle of droplet. Subsequently, the solid angle subtended by DC is analyzed about that inclined axis. Finally, results of analysis allude that increasing colloidal concentration has inverse effect on the growth rate of cavity’s shape. Moreover, the cap radius of DC is observed lower for high PLR which makes the capillary pressure higher and thus tougher to expedite cavity formation relatively. This analysis can be helpful in further studies to relate the shape, deflection angle, growth rate of daughter cavity to the type of droplet crust formed in the end. Examining DC stage shall add another layer to nano-colloidal research which aims to influence many industrial applications like patterning, coatings, drug delivery, food processing etc.

Keywords: buckling of sessile droplets, daughter cavity, droplet evaporation, nanoporous shell formation, solid angle

Procedia PDF Downloads 270
11393 Genetic Algorithm to Construct and Enumerate 4×4 Pan-Magic Squares

Authors: Younis R. Elhaddad, Mohamed A. Alshaari

Abstract:

Since 2700 B.C the problem of constructing magic squares attracts many researchers. Magic squares one of most difficult challenges for mathematicians. In this work, we describe how to construct and enumerate Pan- magic squares using genetic algorithm, using new chromosome encoding technique. The results were promising within reasonable time.

Keywords: genetic algorithm, magic square, pan-magic square, computational intelligence

Procedia PDF Downloads 576
11392 Numerical Investigation of Entropy Signatures in Fluid Turbulence: Poisson Equation for Pressure Transformation from Navier-Stokes Equation

Authors: Samuel Ahamefula Mba

Abstract:

Fluid turbulence is a complex and nonlinear phenomenon that occurs in various natural and industrial processes. Understanding turbulence remains a challenging task due to its intricate nature. One approach to gain insights into turbulence is through the study of entropy, which quantifies the disorder or randomness of a system. This research presents a numerical investigation of entropy signatures in fluid turbulence. The work is to develop a numerical framework to describe and analyse fluid turbulence in terms of entropy. This decomposes the turbulent flow field into different scales, ranging from large energy-containing eddies to small dissipative structures, thus establishing a correlation between entropy and other turbulence statistics. This entropy-based framework provides a powerful tool for understanding the underlying mechanisms driving turbulence and its impact on various phenomena. This work necessitates the derivation of the Poisson equation for pressure transformation of Navier-Stokes equation and using Chebyshev-Finite Difference techniques to effectively resolve it. To carry out the mathematical analysis, consider bounded domains with smooth solutions and non-periodic boundary conditions. To address this, a hybrid computational approach combining direct numerical simulation (DNS) and Large Eddy Simulation with Wall Models (LES-WM) is utilized to perform extensive simulations of turbulent flows. The potential impact ranges from industrial process optimization and improved prediction of weather patterns.

Keywords: turbulence, Navier-Stokes equation, Poisson pressure equation, numerical investigation, Chebyshev-finite difference, hybrid computational approach, large Eddy simulation with wall models, direct numerical simulation

Procedia PDF Downloads 94
11391 The Effect of the Flow Pipe Diameter on the Rheological Behavior of a Polymeric Solution (CMC)

Authors: H. Abchiche, M. Mellal

Abstract:

The aim of this work is to study the parameters that influence the rheological behavior of a complex fluid (sodium Carboxyméthylcellulose solution), on a capillary rheometer. An installation has been made to be able to vary the diameter of trial conducts. The obtained results allowed us to deduce that: the diameter of trial conducts have a remarkable effect on the rheological responds.

Keywords: bingham’s fluid, CMC, cylindrical conduit, rheological behavior

Procedia PDF Downloads 332
11390 The Quasar 3C 47:Extreme Population B Jetted Source with Double-Peaked Profile

Authors: Shimeles Terefe Mengistue, Paola Marziani, Ascensióndel Olmo, Jaime Perea, Mirjana Pović

Abstract:

The theory that rotating accretion disks are responsible for the broad emission-line profiles in quasars is frequently put forth; however, the presence of accretion disk (AD) in active galactic nuclei (AGN) had limited and indirect observational support. In order to evaluate the extent to which the AD is a source of the broad Balmer lines and high ionization UV lines in radio-loud (RL) AGN, we focused on an extremely jetted RL quasar, 3C 47 that clearly shows a double peaked profile. This work presents its optical spectra and UV observations from the HST/FOS covering the rest-frame spectral range from 2000 to 7000 \AA. The fit of the low ionization lines, Hbeta, Halpha and MgII2800 show profiles that are in very good agreement with a relativistic Keplerian AD model. The profile of the prototypical high ionization lines can also be modeled by the contribution of the AD, with additional components due to outflows and emissions from the innermost part of the narrow line regions (NLRs). A prominent fit of the resulting double peaked profiles were found and very important disk parameters of the disk have been determined using the Hbeta, Halpha and MgII2800 lines: the inner and outer radii (both in units of G/mbh, where mbh is the supermassive black hole), an inclination to the line of sight, the emissivity index and the local broadening parameter. In addition, the accretion parameters, /mbh and /lledd are also determined. This work indicates that the line profile of 3C 47 shows the most convincing direct evidence for the presence of a rotating AD in AGN and the broad, double-peaked profiles originate from this AD that surrounds an /mbh.

Keywords: active galactic nuclei, quasars, emission lines, Double-peaked, supermassive black hole

Procedia PDF Downloads 75
11389 Inner Derivations of Low-Dimensional Diassociative Algebras

Authors: M. A. Fiidow, Ahmad M. Alenezi

Abstract:

In this work, we study the inner derivations of diassociative algebras in dimension two and three, an algorithmic approach is adopted for the computation of inner derivation, using some results from the derivation of finite dimensional diassociative algebras. Some basic properties of inner derivation of finite dimensional diassociative algebras are also provided.

Keywords: diassociative algebras, inner derivations, derivations, left and right operator

Procedia PDF Downloads 270
11388 Health and Nutrition-Related Stress in Working Women: Faisalabad Perspective

Authors: Sabah Yasin, Anum Obaid

Abstract:

Abstract—Working women in Pakistan should not be neglected, as women make up to half of the population, and are highly educated and diversified in their skills and capabilities. With a shift in global economic and social demands the obligations of a women have altered significantly, impacted by the dual pressures of career and personal life. Despite global efforts to improve economic empowerment and health of women, through Sustainable Development Goals, they suffer from social, economic, psychological and physiological challenges. A sound understanding of working women’s nutrition and health-related stress is a prompt necessity, in areas like Faisalabad, thus leading to a public health issue. The current qualitative study is grounded under the paradigm of in-depth interviews with working women, currently working full time in Faisalabad. Participants collected through snowball sampling were women ages 30-40. This study explores the perceptions and experiences as well as barriers and factors effecting the overall wellbeing of working women, regarding nutrition and health-related stress. Findings of the current study disclosed that the nutritional and health well-being of working women in Faisalabad suffers from the impact of various stressors, like long working hours, excessive workload, low income, poor work place culture, unavailability of healthy food choices at work, lack of time, lack of self-care, unattended nutritional deficiencies and overburdened share of responsibilities. Hence, these findings highlight the need for effective strategies and support systems that will address the unique stressors faced by working women and also by educating them in changing their attitudes and understanding psychosocial barriers that impede their ability to maintain nutrition and overall well-being.

Keywords: health triangle, lifestyle behaviors, nutrition-related, professional life, stress, working women

Procedia PDF Downloads 18
11387 TutorBot+: Automatic Programming Assistant with Positive Feedback based on LLMs

Authors: Claudia Martínez-Araneda, Mariella Gutiérrez, Pedro Gómez, Diego Maldonado, Alejandra Segura, Christian Vidal-Castro

Abstract:

The purpose of this document is to showcase the preliminary work in developing an EduChatbot-type tool and measuring the effects of its use aimed at providing effective feedback to students in programming courses. This bot, hereinafter referred to as tutorBot+, was constructed based on chatGPT and is tasked with assisting and delivering timely positive feedback to students in the field of computer science at the Universidad Católica de Concepción. The proposed working method consists of four stages: (1) Immersion in the domain of Large Language Models (LLMs), (2) Development of the tutorBot+ prototype and integration, (3) Experiment design, and (4) Intervention. The first stage involves a literature review on the use of artificial intelligence in education and the evaluation of intelligent tutors, as well as research on types of feedback for learning and the domain of chatGPT. The second stage encompasses the development of tutorBot+, and the final stage involves a quasi-experimental study with students from the Programming and Database labs, where the learning outcome involves the development of computational thinking skills, enabling the use and measurement of the tool's effects. The preliminary results of this work are promising, as a functional chatBot prototype has been developed in both conversational and non-conversational versions integrated into an open-source online judge and programming contest platform system. There is also an exploration of the possibility of generating a custom model based on a pre-trained one tailored to the domain of programming. This includes the integration of the created tool and the design of the experiment to measure its utility.

Keywords: assessment, chatGPT, learning strategies, LLMs, timely feedback

Procedia PDF Downloads 68
11386 Sexually Dimorphic Effects of Chronic Exercise and Myocytic Androgen Receptor Overexpression on Body Composition in Sprague dawley Rats

Authors: Sabrina Barsky, Ashley Monks

Abstract:

In humans, exercise improves symptoms of various pathological states, although exercise adaptations seem to differ in response to sex. Skeletal muscle anabolism is thought to be regulated by androgen receptor (AR) through poorly specified mechanisms. Interactions of AR and exercise on muscle phenotype remain inconclusive in males, and undetermined in females. We hypothesized that sex differences in exercise adaptations are regulated by the androgenic system and the type of exercise performed. Here we examined interactions between a muscle-specific AR overexpression transgene (HSA-AR) and forced aerobic exercise paradigm on muscle and adipose exercise adaptation in male and female rats. We used dual-energy X-ray absorptiometry (DXA) to examine body composition adaptations post 9-week exercise protocol. We replicated the effects of HSA-AR on body composition, with males only having increased % lean mass and reduced % fat mass (P<0.05). Aerobic exercise improved lean body phenotype significantly, with lesser indices of total and % fat mass (P<0.01) in both sexes. Sex-specific effects of exercise included decreased total body mass (P<0.01) in males and increased lean mass % (P<0.001) in females. Surprisingly, neither AR manipulation nor exercise affected bone parameters in either sex. This varied response in total mass and lean mass according to exercise presents a sexually dimorphic response to exercise. Neither sex showed an interaction between HSA-AR and forced aerobic exercise on body composition. Future work is proposed to examine the effects of exercise type (aerobic versus resistance) and the role of gonadal androgens in sexually dimorphic exercise-mediated mitochondrial adaptations. This work implicates the development of sex-specific exercise therapies.

Keywords: androgen receptor, forced exercise, muscle physiology, sexual dimorphism

Procedia PDF Downloads 125
11385 A Prediction of Cutting Forces Using Extended Kienzle Force Model Incorporating Tool Flank Wear Progression

Authors: Wu Peng, Anders Liljerehn, Martin Magnevall

Abstract:

In metal cutting, tool wear gradually changes the micro geometry of the cutting edge. Today there is a significant gap in understanding the impact these geometrical changes have on the cutting forces which governs tool deflection and heat generation in the cutting zone. Accurate models and understanding of the interaction between the work piece and cutting tool leads to improved accuracy in simulation of the cutting process. These simulations are useful in several application areas, e.g., optimization of insert geometry and machine tool monitoring. This study aims to develop an extended Kienzle force model to account for the effect of rake angle variations and tool flank wear have on the cutting forces. In this paper, the starting point sets from cutting force measurements using orthogonal turning tests of pre-machined flanches with well-defined width, using triangular coated inserts to assure orthogonal condition. The cutting forces have been measured by dynamometer with a set of three different rake angles, and wear progression have been monitored during machining by an optical measuring collaborative robot. The method utilizes the measured cutting forces with the inserts flank wear progression to extend the mechanistic cutting forces model with flank wear as an input parameter. The adapted cutting forces model is validated in a turning process with commercial cutting tools. This adapted cutting forces model shows the significant capability of prediction of cutting forces accounting for tools flank wear and different-rake-angle cutting tool inserts. The result of this study suggests that the nonlinear effect of tools flank wear and interaction between the work piece and the cutting tool can be considered by the developed cutting forces model.

Keywords: cutting force, kienzle model, predictive model, tool flank wear

Procedia PDF Downloads 108
11384 Next Generation of Tunnel Field Effect Transistor: NCTFET

Authors: Naima Guenifi, Shiromani Balmukund Rahi, Amina Bechka

Abstract:

Tunnel FET is one of the most suitable alternatives FET devices for conventional CMOS technology for low-power electronics and applications. Due to its lower subthreshold swing (SS) value, it is a strong follower of low power applications. It is a quantum FET device that follows the band to band (B2B) tunneling transport phenomena of charge carriers. Due to band to band tunneling, tunnel FET is suffering from a lower switching current than conventional metal-oxide-semiconductor field-effect transistor (MOSFET). For improvement of device features and limitations, the newly invented negative capacitance concept of ferroelectric material is implemented in conventional Tunnel FET structure popularly known as NC TFET. The present research work has implemented the idea of high-k gate dielectric added with ferroelectric material on double gate Tunnel FET for implementation of negative capacitance. It has been observed that the idea of negative capacitance further improves device features like SS value. It helps to reduce power dissipation and switching energy. An extensive investigation for circularity uses for digital, analog/RF and linearity features of double gate NCTFET have been adopted here for research work. Several essential designs paraments for analog/RF and linearity parameters like transconductance(gm), transconductance generation factor (gm/IDS), its high-order derivatives (gm2, gm3), cut-off frequency (fT), gain-bandwidth product (GBW), transconductance generation factor (gm/IDS) has been investigated for low power RF applications. The VIP₂, VIP₃, IMD₃, IIP₃, distortion characteristics (HD2, HD3), 1-dB, the compression point, delay and power delay product performance have also been thoroughly studied.

Keywords: analog/digital, ferroelectric, linearity, negative capacitance, Tunnel FET, transconductance

Procedia PDF Downloads 195