Search results for: sustainable energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12087

Search results for: sustainable energy

9777 Power Generating Embedment beneath Vehicle Traffic Asphalt Roads

Authors: Ahmed Khalil

Abstract:

The discoveries in material sciences create an impulse in renewable energy transmission. Application techniques become more accessible by applied sciences. Variety of materials, application methods, and performance analyzing techniques can convert daily life functions to energy sources. These functions not only include natural sources like sun, wind, or water but also comprise the motion of tools used by human beings. In line with this, vehicles' motion, speed and weights come to the scene as energy sources together with piezoelectric nano-generators beneath the roads. Numerous application examples are put forward with repeated average performance, versus the differentiating challenges depending on geography and project conditions. Such holistic approach provides way for feed backs on research and improvement process of nano-generators beneath asphalt roads. This paper introduces the specific application methods of piezoelectric nano-generator beneath asphalt roads of Ahmadi Township in Kuwait.

Keywords: nano-generator pavements, piezoelectric, renewable energy, transducer

Procedia PDF Downloads 118
9776 Optimization of Wind Off-Grid System for Remote Area: Egyptian Application

Authors: Marwa M. Ibrahim

Abstract:

The objective of this research is to study the technical and economic performance of wind/diesel/battery (W/D/B) off-grid system supplying a small remote gathering of four families using the HOMER software package. The second objective is to study the effect of wind energy system on the cost of generated electricity considering the cost of reducing CO₂ emissions as external benefit of wind turbines, no pollutant emission through the operational phase. The system consists of a small wind turbine, battery storage, and diesel generator. The electrical energy is to cater to the basic needs for which the daily load pattern is estimated at 8 kW peak. Net Present Cost (NPC) and Cost of Energy (COE) are used as economic criteria, while the measure of performance is % of power shortage. Technical and economic parameters are defined to estimate the feasibility of the system under study. Optimum system configurations are estimated for the selected site in Egypt. Using HOMER software, the simulation results shows that W/D/B systems are economical for the assumed community site as the price of generated electricity is about 0.285 $/kWh, without taking external benefits into considerations and 0.221 if CO₂ emissions taken into consideration W/D/B systems are more economical than alone diesel system as the COE is 0.432 $/kWh for diesel alone.

Keywords: renewable energy, hybrid energy system, on-off grid system, simulation, optimization and environmental impacts

Procedia PDF Downloads 109
9775 Energy Saving Potential with Improved Concrete in Ice Rink Floor Designs

Authors: Ehsan B. Haghighi, Pavel Makhnatch, Jörgen Rogstam

Abstract:

The ice rink floor is the largest heat exchanger in an ice rink. The important part of the floor consists of concrete, and the thermophysical properties of this concrete have strong influence on the energy usage of the ice rink. The thermal conductivity of concrete can be increased by using iron ore as ballast. In this study the Transient Plane Source (TPS) method showed an increase up to 58.2% of thermal conductivity comparing the improved concrete to standard concrete. Moreover, two alternative ice rink floor designs are suggested to incorporate the improved concrete. A 2D simulation was developed to investigate the temperature distribution in the conventional and the suggested designs. The results show that the suggested designs reduce the temperature difference between the ice surface and the brine by 1-4 ˚C, when comparing with convectional designs at equal heat flux. This primarily leads to an increased coefficient of performance (COP) in the primary refrigeration cycle and secondly to a decrease in the secondary refrigerant pumping power. The suggested designs have great potential to reduce the energy usage of ice rinks. Depending on the load scenario in the ice rink, the saving potential lies in the range of 3-10% of the refrigeration system energy usage. This calculation is based on steady state conditions and the potential with improved dynamic behavior is expected to increase the potential saving.

Keywords: Concrete, iron ore, ice rink, energy saving

Procedia PDF Downloads 345
9774 Power Energy Management For A Grid-Connected PV System Using Rule-Base Fuzzy Logic

Authors: Nousheen Hashmi, Shoab Ahmad Khan

Abstract:

Active collaboration among the green energy sources and the load demand leads to serious issues related to power quality and stability. The growing number of green energy resources and Distributed-Generators need newer strategies to be incorporated for their operations to keep the power energy stability among green energy resources and micro-grid/Utility Grid. This paper presents a novel technique for energy power management in Grid-Connected Photovoltaic with energy storage system under set of constraints including weather conditions, Load Shedding Hours, Peak pricing Hours by using rule-based fuzzy smart grid controller to schedule power coming from multiple Power sources (photovoltaic, grid, battery) under the above set of constraints. The technique fuzzifies all the inputs and establishes fuzzify rule set from fuzzy outputs before defuzzification. Simulations are run for 24 hours period and rule base power scheduler is developed. The proposed fuzzy controller control strategy is able to sense the continuous fluctuations in Photovoltaic power generation, Load Demands, Grid (load Shedding patterns) and Battery State of Charge in order to make correct and quick decisions.The suggested Fuzzy Rule-based scheduler can operate well with vague inputs thus doesn’t not require any exact numerical model and can handle nonlinearity. This technique provides a framework for the extension to handle multiple special cases for optimized working of the system.

Keywords: photovoltaic, power, fuzzy logic, distributed generators, state of charge, load shedding, membership functions

Procedia PDF Downloads 483
9773 Development of Dye Sensitized Solar Window by Physical Parameters Optimization

Authors: Tahsin Shameem, Chowdhury Sadman Jahan, Mohammad Alam

Abstract:

Interest about Net Zero Energy Buildings have gained traction in recent years following the need to sustain energy consumption with generations on site and to reduce dependence on grid supplied energy from large plants using fossil fuel. With this end in view, building integrated photovoltaics are being studied attempting to utilize all exterior facades of a building to generate power. In this paper, we have looked at the physical parameters defining a dye sensitized solar cell (DSSC) and discussed their impact on energy harvest. Following our discussion and experimental data obtained from literature, we have attempted to optimize these physical parameters accordingly so as to allow maximum light absorption for a given active layer thickness. We then modified a planer DSSC design with our optimized properties to allow adequate light transmission which demonstrated a high fill factor and an External Quantum Efficiency (EQE) of greater than 9% by computer aided design and simulation. In conclusion, a DSSC based solar window with such high output values even after such high light transmission through it definitely flags a promising future for this technology and our work elicits the need for further study and practical experimentation.

Keywords: net zero energy building, integrated photovoltaics, dye sensitized solar cell, fill factor, External Quantum Efficiency

Procedia PDF Downloads 144
9772 Power Generation through Water Vapour: An Approach of Using Sea/River/Lake Water as Renewable Energy Source

Authors: Riad

Abstract:

As present world needs more and more energy in a low cost way, it needs to find out the optimal way of power generation. In the sense of low cost, renewable energy is one of the greatest sources of power generation. Water vapour of sea/river/lake can be used for power generation by using the greenhouse effect in a large flat type water chamber floating on the water surface. The water chamber will always be kept half filled. When water evaporates by sunlight, the high pressured gaseous water will be stored in the chamber. By passing through a pipe and by using aerodynamics it can be used for power generation. The water level of the chamber is controlled by some means. As a large amount of water evaporates, an estimation can be highlighted, approximately 3 to 4 thousand gallons of water evaporates from per acre of surface (this amount will be more by greenhouse effect). This large amount of gaseous water can be utilized for power generation by passing through a pipe. This method can be a source of power generation.

Keywords: renewable energy, greenhouse effect, water chamber, water vapour

Procedia PDF Downloads 359
9771 An Integrated Approach of Islamic Social Financing for Achieving Sustainable Development Goals (SDGS) Through Crowdfunding: A Model for Sharing Economy for Community Development in Bangladesh

Authors: Md. Abu Yousuf

Abstract:

Islamic social financing (ISF) refers to the fair distribution of wealth and financial dealings and prevents economic exploitation at all levels. ISF instruments include Islamic institutions Zakat (obligatory charity), Sadaqah (voluntary charity) and Waqf (endowment) based on philanthropy such and Qard-al Hasan (beautiful loan), micro takaful (insurance) and social investments through Sukuk (bonds) based on cooperation. ISF contributes to socio-economic development, end poverty, protects environmental sustainability, promotes education, equality, social justice and above all, establishes social well-being since the birth of Islam. ISF tools are instrumental towards achieving sustainable development goals (SDGs) set by United Nations (UN). The present study will explore the scope of ISF for community development in Bangladesh and examine the challenges in implementing ISF tools and will provide the most practical model of ISF. The study will adopt a mixed-method (MM) design in the process of data collection and analysis. The researcher will consider all issues related to ethics, reliability, validity and feasibility while conducting the study.

Keywords: Islamic social financing, sustainable development goals, poverty eradication, zakat, waqf, sadaqah, Islamic microfinance

Procedia PDF Downloads 193
9770 Development of Cathode for Hybrid Zinc Ion Supercapacitor Using Secondary Marigold Floral Waste for Green Energy Application

Authors: Syali Pradhan, Neetu Jha

Abstract:

The Marigold flower is used in religious places for offering and decoration purpose every day. The flowers are discarded near trees or in aquatic bodies. This floral waste can be used for extracting dyes or oils. Still the secondary waste remains after processing which need to be addressed. This research aims to provide green and clean power using secondary floral waste available after processing. The carbonization of floral waste produce carbon material with high surface area and enhance active site for more reaction. The Hybrid supercapacitors are more stable, offer improved operating temperature and use less toxic material compared to battery. They provide enhanced energy density compared to supercapacitors. Hence, hybrid supercapacitor designed using waste material would be more practicable for future energy application. Here, we present the utilization of carbonized floral waste as supercapacitor electrode material. This material after carbonization gets graphitized and shows high surface area, optimum porosity along with high conductivity. Hence, this material has been tested as cathode electrode material for high performance zinc storage hybrid supercapacitor. High energy storage along with high stability has been obtained using this cathodic waste material as electrode.

Keywords: marigold, flower waste, energy storage, cathode, supercapacitor

Procedia PDF Downloads 79
9769 Enhancing Seawater Desalination Efficiency with Combined Reverse Osmosis and Vibratory Shear-Enhanced Processing for Higher Conversion Rates and Reduced Energy Consumption

Authors: Reda Askouri, Mohamed Moussetad, Rhma Adhiri

Abstract:

Reverse osmosis (RO) is one of the most widely used techniques for seawater desalination. However, the conversion rate of this method is generally limited to 35-45% due to the high-pressure capacity of the membranes. Additionally, the specific energy consumption (SEC) for seawater desalination is high, necessitating energy recovery systems to minimise energy consumption. This study aims to enhance the performance of seawater desalination by combining RO with a vibratory shear-enhanced processing (VSEP) technique. The RO unit in this study comprises two stages, each powered by a hydraulic turbocharger that increases the pressure in both stages. The concentrate from the second stage is then directly processed by VSEP technology. The results demonstrate that the permeate water obtained exhibits high quality and that the conversion rate is significantly increased, reaching high percentages with low SEC. Furthermore, the high concentration of total solids in the concentrate allows for potential exploitation within the environmental protection framework. By valorising the concentrated waste, it’s possible to reduce the environmental impact while increasing the overall efficiency of the desalination process.

Keywords: specific energy consumption, vibratory shear enhanced process, environmental challenge, water recovery

Procedia PDF Downloads 19
9768 Impact of Climate Change on Forest Ecosystem Services: In situ Biodiversity Conservation and Sustainable Management of Forest Resources in Tropical Forests

Authors: Rajendra Kumar Pandey

Abstract:

Forest genetic resources not only represent regional biodiversity but also have immense value as the wealth for securing livelihood of poor people. These are vulnerable to ecological due to depletion/deforestation and /or impact of climate change. These resources of various plant categories are vulnerable on the floor of natural tropical forests, and leading to the threat on the growth and development of future forests. More than 170 species, including NTFPs, are in critical condition for their survival in natural tropical forests of Central India. Forest degradation, commensurate with biodiversity loss, is now pervasive, disproportionately affecting the rural poor who directly depend on forests for their subsistence. Looking ahead the interaction between forest and water, soil, precipitation, climate change, etc. and its impact on biodiversity of tropical forests, it is inevitable to develop co-operation policies and programmes to address new emerging realities. Forests ecosystem also known as the 'wealth of poor' providing goods and ecosystem services on a sustainable basis, are now recognized as a stepping stone to move poor people beyond subsistence. Poverty alleviation is the prime objective of the Millennium Development Goals (MDGs). However, environmental sustainability including other MDGs, is essential to ensure successful elimination of poverty and well being of human society. Loss and degradation of ecosystem are the most serious threats to achieving development goals worldwide. Millennium Ecosystem Assessment (MEA, 2005) was an attempt to identify provisioning and regulating cultural and supporting ecosystem services to provide livelihood security of human beings. Climate change may have a substantial impact on ecological structure and function of forests, provisioning, regulations and management of resources which can affect sustainable flow of ecosystem services. To overcome these limitations, policy guidelines with respect to planning and consistent research strategy need to be framed for conservation and sustainable development of forest genetic resources.

Keywords: climate change, forest ecosystem services, sustainable forest management, biodiversity conservation

Procedia PDF Downloads 301
9767 Experimental Evaluation of 10 Ecotypes of Toxic and Non-Toxic Jatropha curcas as Raw Material to Produce Biodiesel in Morelos State, Mexico

Authors: Guadalupe Pérez, Jorge Islas, Mirna Guevara, Raúl Suárez

Abstract:

Jatropha curcas is a perennial oleaginous plant that is currently considered an energy crop with high potential as an environmentally sustainable biofuel. During the last decades, research in biofuels has grown in tropical and subtropical regions in Latin America. However, as far we know, there are no reports on the growth and yield patterns of Jatropha curcas under the specific agro climatic scenarios of the State of Morelos, Mexico. This study presents the results of 52 months monitoring of 10 toxic and non-toxic ecotypes of Jatropha curcas (E1M, E2M, E3M, E4M, E5M, E6O, E7O, E8O, E9C, E10C) in an experimental plantation with minimum watering and fertilization resources. The main objective is to identify the ecotypes with the highest potential as biodiesel raw material in the select region, by developing experimental information. Specifically, we monitored biophysical and growth parameters, including plant survival and seed production (at the end of month 52), to study the performance of each ecotype and to establish differences among the variables of morphological growth, net seed oil content, and toxicity. To analyze the morphological growth, a statistical approach to the biophysical parameters was used; the net seed oil content -80 to 192 kg/ha- was estimated with the first harvest; and the toxicity was evaluated by examining the phorbol ester concentration (µg/L) in the oil extracted from the seeds. The comparison and selection of ecotypes was performed through a methodology developed based on the normalization of results. We identified four outstanding ecotypes (E1M, E2M, E3M, and E4M) that can be used to establish Jatropha curcas as energy crops in the state of Morelos for feasible agro-industrial production of biodiesel and other products related to the use of biomass.

Keywords: biodiesel production, Jatropha curcas, seed oil content, toxic and non-toxic ecotypes

Procedia PDF Downloads 137
9766 Smart City Solutions for Enhancing the Cultural and Historic Value of Urban Heritage Sites

Authors: Farnoosh Faal

Abstract:

The trend among smart cities is to incorporate technological advancements to better manage and protect their cultural heritage sites. This study investigates how smart city solutions can improve the cultural and historical significance of urban heritage sites and assesses present practices and potential for the future. The paper delves into the literature to examine how smart city technologies can be utilized to increase knowledge and respect for cultural heritage, as well as promote sustainable tourism and economic growth. The article reviews various instances of smart city initiatives across different regions of the world, pinpointing innovative tactics and best practices in improving the cultural and historical worth of urban heritage sites. Additionally, it analyzes the difficulties and limitations associated with implementing these solutions, including community involvement, privacy concerns, and data management issues. The conclusions drawn from this paper propose that smart city solutions offer a substantial opportunity to augment the cultural and historical value of urban heritage sites. By effectively integrating technology into heritage management, there can be greater comprehension and admiration for cultural heritage, enhanced visitor experience, and support for sustainable tourism. However, to fully exploit the potential of smart city solutions in this context, it is crucial to prioritize community engagement and participation, as well as ensure that data management practices are transparent, responsible, and respectful of privacy. In summary, this paper offers guidance and advice to policymakers, urban planners, and heritage management professionals who want to increase the cultural and historical significance of urban heritage sites through the application of smart city solutions. It emphasizes the significance of creating comprehensive and cooperative strategies, as well as ensuring that efforts to preserve heritage are sustainable, fair, and efficient.

Keywords: smart city, Urban heritage, sustainable tourism, heritage preservation

Procedia PDF Downloads 97
9765 Comprehensive Analysis and Optimization of Alkaline Water Electrolysis for Green Hydrogen Production: Experimental Validation, Simulation Study, and Cost Analysis

Authors: Umair Ahmed, Muhammad Bin Irfan

Abstract:

This study focuses on designing and optimization of an alkaline water electrolyser for the production of green hydrogen. The aim is to enhance the durability and efficiency of this technology while simultaneously reducing the cost associated with the production of green hydrogen. The experimental results obtained from the alkaline water electrolyser are compared with simulated results using Aspen Plus software, allowing a comprehensive analysis and evaluation. To achieve the aforementioned goals, several design and operational parameters are investigated. The electrode material, electrolyte concentration, and operating conditions are carefully selected to maximize the efficiency and durability of the electrolyser. Additionally, cost-effective materials and manufacturing techniques are explored to decrease the overall production cost of green hydrogen. The experimental setup includes a carefully designed alkaline water electrolyser, where various performance parameters (such as hydrogen production rate, current density, and voltage) are measured. These experimental results are then compared with simulated data obtained using Aspen Plus software. The simulation model is developed based on fundamental principles and validated against the experimental data. The comparison between experimental and simulated results provides valuable insight into the performance of an alkaline water electrolyser. It helps to identify the areas where improvements can be made, both in terms of design and operation, to enhance the durability and efficiency of the system. Furthermore, the simulation results allow cost analysis providing an estimate of the overall production cost of green hydrogen. This study aims to develop a comprehensive understanding of alkaline water electrolysis technology. The findings of this research can contribute to the development of more efficient and durable electrolyser technology while reducing the cost associated with this technology. Ultimately, these advancements can pave the way for a more sustainable and economically viable hydrogen economy.

Keywords: sustainable development, green energy, green hydrogen, electrolysis technology

Procedia PDF Downloads 95
9764 Locating the Role of Informal Urbanism in Building Sustainable Cities: Insights from Ghana

Authors: Gideon Abagna Azunre

Abstract:

Informal urbanism is perhaps the most ubiquitous urban phenomenon in sub-Saharan Africa (SSA) and Ghana specifically. Estimates suggest that about two-fifths of urban dwellers (37.9%) in Ghana live in informal settlements, while two-thirds of the working labour force are within the informal economy. This makes Ghana invariably an ‘informal country.’ Informal urbanism involves economic and housing activities that are – in law or in practice – not covered (or insufficiently covered) by formal regulations. Many urban folks rely on informal urbanism as a survival strategy due to limited formal waged employment opportunities or rising home prices in the open market. In an era of globalizing neoliberalism, this struggle to survive in cities resonates with several people globally. For years now, there have been intense debates on the utility of informal urbanism – both its economic and housing dimensions – in developing sustainable cities. While some scholars believe that informal urbanism is beneficial to the sustainable city development agenda, others argue that it generates unbearable negative consequences and it symbolizes lawlessness and squalor. Consequently, the main aim of this research was to dig below the surface of the narratives to locate the role of informal urbanism in the quest for sustainable cities. The research geographically focused on Ghana and its burgeoning informal sector. Also, both primary and secondary data were utilized for the analysis; Secondary data entailed a synthesis of the fragmented literature on informal urbanism in Ghana, while primary data entailed interviews with informal stakeholders (such as informal settlement dwellers), city authorities, and planners. These two data sets were weaved together to discover the nexus between informal urbanism and the tripartite dimensions of sustainable cities – economic, social, and environmental. The results from the research showed a two-pronged relationship between informal urbanism and the three dimensions of sustainable city development. In other words, informal urbanism was identified to both positively and negatively affect the drive for sustainable cities. On the one hand, it provides employment (particularly to women), supplies households’ basic needs (shelter, health, water, and waste management), and enhances civic engagement. However, on the other hand, it perpetuates social and gender inequalities, insecurity, congestion, and pollution. The research revealed that a ‘black and white’ interpretation and policy approach is incapable of capturing the complexities of informal urbanism. Therefore, trying to eradicate or remove it from the urbanscape because it exhibits some negative consequences means cities will lose their positive contributions. The inverse also holds true. A careful balancing act is necessary to maximize the benefits and minimize the costs. Overall, the research presented a de-colonial theorization of informal urbanism and thus followed post-colonial scholars’ clarion call to African cities to embrace the paradox of informality and find ways to integrate it into the city-building process.

Keywords: informal urbanism, sustainable city development, economic sustainability, social sustainability, environmental sustainability, Ghana

Procedia PDF Downloads 110
9763 The Use of Water Hyacinth for Bioenergy Electric Generation: For the case of Tana Water Hyacinth

Authors: Seada Hussen Adem, Frie Ayalew Yimam

Abstract:

Due to its high biomass output and potential to produce renewable energy, water hyacinth, a rapidly expanding aquatic weed, has gained recognition as a prospective bioenergy feedstock. Through a variety of conversion processes, such as anaerobic digestion, combustion, and gasification, this study suggests using water hyacinth to generate energy. The suggested strategy helps to reduce the annoyance brought on by the excessive growth of water hyacinth in Tana water bodies in addition to offering an alternate source of energy. The study emphasizes the value of environmentally friendly methods for managing Tana water resources as well as the potential of water hyacinth as a source of bioenergy.

Keywords: anaerobic digestion, bioenergy, combustion, gasification, water hyacinth

Procedia PDF Downloads 71
9762 High Temperature and High Pressure Purification of Hydrogen from Syngas Using Metal Organic Framework Adsorbent

Authors: Samira Rostom, Robert Symonds, Robin W. Hughes

Abstract:

Hydrogen is considered as one of the most important clean and renewable energy carriers for a sustainable energy future. However, its efficient and cost-effective purification remains challenging. This paper presents the potential of using metal–organic frameworks (MOFs) in combination with pressure swing adsorption (PSA) technology for syngas based H2 purification. PSA process analysis is done considering high pressure and elevated temperature process conditions, it reduces the demand for off-gas recycle to the fuel reactor and simultaneously permits higher desorption pressure, thereby reducing the parasitic load on the hydrogen compressor. The elevated pressure and temperature adsorption we present here is beneficial to minimizing overall process heating and cooling demand compared to existing processes. Here, we report the comparative performance of zeolite-5A, Cu-BTC, and the mix of zeolite-5A/Cu-BTC for H2 purification from syngas typical of those exiting water-gas-shift reactors. The MOFs were synthesized hydrothermally and then mixed systematically at different weight ratios to find the optimum composition based on the adsorption performance. The formation of different compounds were characterized by XRD, N2 adsorption and desorption, SEM, FT-IR, TG, and water vapor adsorption technologies. Single-component adsorption isotherms of CO2, CO, CH4, N2, and H2 over single materials and composites were measured at elevated pressures and different temperatures to determine their equilibrium adsorption capacity. The examination of the stability and regeneration performance of metal–organic frameworks was carried out using a gravimetric system at temperature ranges of 25-150℃ for a pressure range of 0-30 bar. The studies of adsorption/desorption on the MOFs showed selective adsorption of CO2, CH4, CO, and N2 over H2. Overall, the findings of this study suggest that the Ni-MOF-74/Cu-BTC composites are promising candidates for industrial H2 purification processes.

Keywords: MOF, H2 purification, high T, PSA

Procedia PDF Downloads 107
9761 Enabling Socio Cultural Sustainability of the "Thousand and One Churches" Archaeological Site

Authors: E. Erdogan, M. Ulusoy

Abstract:

In terms of tourism, the concept of sustainability can be defined as preserving and developing natural, historical, cultural, social, and aesthetic values and enabling their permanency. Sustainable tourism aims to preserve natural, historical, cultural, and social resources, also by supporting economic progress protecting economic development and environmental values that emerge as a consequence of tourism activities. Cultural tourism feeds on sustainable cultural treasures inherently and is the most effective touristic activity. Traditional configurations and structural characteristics play an important role in generating cultural tourism in a region. Sustainable cultural tourism is related to trips upon people who embark with the aim of visiting culturally rich regions, learning about and observing fast-disappearing lifestyles and collecting cultural values as memories. With its huge tourism potential, Karadağ is the most significant cultural asset of the Karaman province, possessing unique riches in terms of cultural world history. Host to one of the most important Byzantine cities in Anatolia, Karadağ is like an open-air museum with its unparalleled architectural structures. There is a village named Madenşehir in the plain at the outskirts of Karadağ, near to which are located the “Thousand and One Churches” ruins. The 80-household house is located near the ruins in an area that been declared a 1st degree historic preservation district. stones gathered from local churches were used in the construction of these households. A ministry has assigned a new residential site near the boundaries of the 2nd degree preservation district, and the decision has been made to move the occupants to this area. The most important issue here is to enable locals’ sociocultural and socioeconomic sustainability. It is also important to build these structures in a manner compatible with the historical visual look, ecological system and environmental awareness. Therefore this new site will be planned as touristic area in terms of sustainable cultural tourism and in these new plans, shall fulfill functions oriented toward both tourists and locals. It is very important that this change be sustainable and also support cultural tourism.

Keywords: cultural tourism, new village settlement, socio cultural sustainability, “thousand and one churches” site

Procedia PDF Downloads 402
9760 Sustainable Solutions for Enhancing Efficiency, Safety, and Quality of Construction Value Chain Services Integration

Authors: Lo Kar Yin

Abstract:

In view of the increasing speed and quantity of the housing supply, building, and civil engineering infrastructure works triggered by the pandemic across the globe, contractors, professional services providers (PSP), including consultants (e.g., architect, project manager, civil/geotechnical/structural engineer, building services engineer, quantity surveyor/cost manager, etc.) and suppliers have faced tremendous challenges of the fierce market, limited manpower, and resources under contract prices fluctuation and competitive fee and price. With qualitative analysis, this paper is to review the available information from the industry stakeholders with a view to finding solutions for enhancing efficiency, safety, and quality of construction value chain services for public and private organizations/companies’ sustainable growth, not limited to checking the deliverables and data transfer from multi-disciplinary parties. Technology, contracts, and people are the key requirements for shaping the construction industry. With the integration of a modern engineering contract (e.g., NEC) collaborative approach, practical workflows are designed to address loopholes together with different levels of people employment/retention and technology adoption to achieve the best value for money.

Keywords: efficiency, safety, quality, technology, contract, people, sustainable solutions, construction, services, integration

Procedia PDF Downloads 140
9759 Batteryless DCM Boost Converter for Kinetic Energy Harvesting Applications

Authors: Andrés Gomez-Casseres, Rubén Contreras

Abstract:

In this paper, a bidirectional boost converter operated in Discontinuous Conduction Mode (DCM) is presented as a suitable power conditioning circuit for tuning of kinetic energy harvesters without the need of a battery. A nonlinear control scheme, composed by two linear controllers, is used to control the average value of the input current, enabling the synthesization of complex loads. The converter, along with the control system, is validated through SPICE simulations using the LTspice tool. The converter model and the controller transfer functions are derived. From the simulation results, it was found that the input current distortion increases with the introduced phase shift and that, such distortion, is almost entirely present at the zero-crossing point of the input voltage.

Keywords: average current control, boost converter, electrical tuning, energy harvesting

Procedia PDF Downloads 765
9758 Third Places for Social Sustainability: A Planning Framework Based on Local and International Comparisons

Authors: Z. Goosen, E. J. Cilliers

Abstract:

Social sustainability, as an independent perspective of sustainable development, has gained some acknowledgement, becoming an important aspect in sustainable urban planning internationally. However, limited research aiming at promoting social sustainability within urban areas exists within the South African context. This is mainly due to the different perspectives of sustainable development (e.g., Environmental, Economic, and Social) not being equally prioritized by policy makers and supported by implementation strategies, guidelines, and planning frameworks. The enhancement of social sustainability within urban areas relies on urban dweller satisfaction and the quality of urban life. Inclusive cities with high-quality public spaces are proposed within this research through implementing the third place theory. Third places are introduced as any place other than our homes (first place) and work (second place) and have become an integrated part of sustainable urban planning. As Third Places consist of every place 'in between', the approach has taken on a large role of the everyday life of city residents, and the importance of planning for such places can only be measured through identifying and highlighting the social sustainability benefits thereof. The aim of this research paper is to introduce third place planning within the urban area to ultimately enhance social sustainability. Selected background planning approaches influencing the planning of third places will briefly be touched on, as the focus will be placed on the social sustainability benefits provided through third place planning within an urban setting. The study will commence by defining and introducing the concept of third places within urban areas as well as a discussion on social sustainability, acting as one of the three perspectives of sustainable development. This will gain the researcher an improved understanding on social sustainability in order for the study to flow into an integrated discussion of the benefits Third places provide in terms of social sustainability and the impact it has on improved quality of life within urban areas. Finally, a visual case study comparison of local and international examples of third places identified will be illustrated. These international case studies will contribute towards the conclusion of this study where a local gap analysis will be formulated, based on local third place evidence and international best practices in order to formulate a strategic planning framework on improving social sustainability through third place planning within the local South African context.

Keywords: planning benefits, social sustainability, third places, urban area

Procedia PDF Downloads 278
9757 The Application of Maintenance Strategy in Energy Power Plant: A Case Study

Authors: Steven Vusmuzi Mashego, Opeyeolu Timothy Laseinde

Abstract:

This paper presents a case study on applying maintenance strategies observed in a turbo-generator at a coal power plant. Turbo generators are one of the primary and critical components in energy generation. It is essential to apply correct maintenance strategies and apply operational procedures accordingly. The maintenance strategies are implemented to ensure the high reliability of the equipment. The study was carried out at a coal power station which will transit to a cleaner energy source in the nearest future. The study is relevant as lessons learned in this system will support plans and operational models implemented when cleaner energy sources replace coal-powered turbines. This paper first outlines different maintenance strategies executed on the turbo-generator modules. Secondly, the impacts of human factors on a coal power station are discussed, and the findings prompted recommendations for future actions.

Keywords: maintenance strategies, turbo generator, operational error, human factor, electricity generation

Procedia PDF Downloads 118
9756 Phosphorus Recovery Optimization in Microbial Fuel Cell

Authors: Abdullah Almatouq

Abstract:

Understanding the impact of key operational variables on concurrent energy generation and phosphorus recovery in microbial fuel cell is required to improve the process and reduce the operational cost. In this study, full factorial design (FFD) and central composite designs (CCD) were employed to identify the effect of influent COD concentration and cathode aeration flow rate on energy generation and phosphorus (P) recovery and to optimise MFC power density and P recovery. Results showed that influent chemical oxygen demand (COD) concentration and cathode aeration flow rate had a significant effect on power density, coulombic efficiency, phosphorus precipitation efficiency and phosphorus precipitation rate at the cathode. P precipitation was negatively affected by the generated current during the batch duration. The generated energy was reduced due to struvite being precipitated on the cathode surface, which might obstruct the mass transfer of ions and oxygen. Response surface mathematical model was used to predict the optimum operating conditions that resulted in a maximum power density and phosphorus precipitation efficiency of 184 mW/m² and 84%, and this corresponds to COD= 1700 mg/L and aeration flow rate=210 mL/min. The findings highlight the importance of the operational conditions of energy generation and phosphorus recovery.

Keywords: energy, microbial fuel cell, phosphorus, struvite

Procedia PDF Downloads 161
9755 Time and Kinematics of Moving Bodies

Authors: Muhammad Omer Farooq Saeed

Abstract:

The purpose of the proposal is to find out what time actually is! And to understand the natural phenomenon of the behavior of time and light corresponding to the motion of the bodies at relatively high speeds. The utmost concern of the paper is to deal with the possible demerits in the equations of relativity, thereby providing some valuable extensions in those equations and concepts. The idea used develops the most basic conception of the relative motion of the body with respect to space and a real understanding of time and the variation of energy of the body in different frames of reference. The results show the development of a completely new understanding of time, relative motion and energy, along with some extensions in the equations of special relativity most importantly the time dilation and the mass-energy relationship that will explain all frames of a body, all in one go. The proposal also raises serious questions on the validity of the “Principle of Equivalence” on which the General Relativity is based, most importantly a serious case of the bending light that eventually goes against its own governing concepts of space-time being proposed in the theory. The results also predict the existence of a completely new field that explains the fact just how and why bodies acquire energy in space-time. This field explains the production of gravitational waves based on time. All in all, this proposal challenges the formulas and conceptions of Special and General Relativity, respectively.

Keywords: time, relative motion, energy, speed, frame of reference, photon, curvature, space-time, time –differentials

Procedia PDF Downloads 76
9754 Copper Selenide Nanobelts: An Electrocatalyst for Methanol Electro-Oxidation Reaction

Authors: Nabi Ullah

Abstract:

The energy crisis of the current society has attracted research attention for alternative energy sources. Methanol oxidation is the source of energy but needs efficient electrocatalysts like Pt. However, their practical ability is hindered due to cost and poisoning effects. In this regard, an efficient catalyst is required for methanol oxidation. Herein, high temperature, pressure, and diethylenetryamine (DETA) as reaction medium/structure directing agent during the solvothermal method are used for nanobelt Cu₃Se₂/Cu₁.₈Se (mostly hexagonal appearance) formation. The electrocatalyst shows optimized methanol electrooxidation reaction (MOR) response in 1 M KOH and 0.5 M methanol at a scan rate of 50 mV/s and delivers a current density of 7.12 mA/mg at a potential of 0.65 V (vs Ag/AgCl). The catalyst exhibits high electrochemical active surface area (ECSA) (0.088 mF/cm²) and low Rct with good stability for 3600 s, which favors its high MOR performance. This high response is due to its 2D hexagonal nanobelt morphology, which provides a large surface area for reaction. The space among nanobelts reduces diffusion kinetics, and the rough/irregular edge increases the reaction site to improve the methanol oxidation reaction overall.

Keywords: energy application, electrocatalysis, MOR, nanobelt

Procedia PDF Downloads 72
9753 Initial Experiences of the First Version of Slovene Sustainable Building Indicators That are Based on Level(s)

Authors: Sabina Jordan, Marjana Šijanec Zavrl, Miha Tomšič, Friderik Knez

Abstract:

To determine the possibilities for the implementation of sustainable building indicators in Slovenia, testing of the first version of the indicators, developed in the CARE4CLIMATE project and based on the EU Level(s) framework, was carried out in 2022. Invited and interested stakeholders of the construction process were provided with video content and instructions on the Slovenian e-platform of sustainable building indicators. In addition, workshops and lectures with individual subjects were also performed. The final phase of the training and testing procedure included a questionnaire, which was used to obtain information about the participants' opinions regarding the indicators. The analysis of the results of the testing, which was focused on level 2, confirmed the key preliminary finding of the development group, namely that currently, due to the lack of certain knowledge, data, and tools, all indicators for this level are not yet feasible in practice. The research also highlighted the greater need for training and specialization of experts in this field. At the same time, it showed that the testing of the first version itself was a big challenge: only 30 experts fully participated and filled out the online questionnaire. This number seems alarmingly low at first glance, but compared to level(s) testing in the EU member states, it is much more than 50 times higher. However, for the further execution of the indicators in Slovenia, it will therefore be necessary to invest a lot of effort and engagement. It is likely that state support will also be needed, for example, in the form of financial mechanisms or incentives and/or legislative background.

Keywords: sustainability, building, indicator, implementation, testing, questionnaire

Procedia PDF Downloads 96
9752 Sustainable Living Where the Immaterial Matters

Authors: Maria Hadjisoteriou, Yiorgos Hadjichristou

Abstract:

This paper aims to explore and provoke a debate, through the work of the design studio, “living where the immaterial matters” of the architecture department of the University of Nicosia, on the role that the “immaterial matter” can play in enhancing innovative sustainable architecture and viewing the cities as sustainable organisms that always grow and alter. The blurring, juxtaposing binary of immaterial and matter, as the theoretical backbone of the Unit is counterbalanced by the practicalities of the contested sites of the last divided capital Nicosia with its ambiguous green line and the ghost city of Famagusta in the island of Cyprus. Jonathan Hill argues that the ‘immaterial is as important to architecture as the material concluding that ‘Immaterial–Material’ weaves the two together, so that they are in conjunction not opposition’. This understanding of the relationship of the immaterial vs material set the premises and the departing point of our argument, and talks about new recipes for creating hybrid public space that can lead to the unpredictability of a complex and interactive, sustainable city. We hierarchized the human experience as a priority. We distinguish the notion of space and place referring to Heidegger’s ‘building dwelling thinking’: ‘a distinction between space and place, where spaces gain authority not from ‘space’ appreciated mathematically but ‘place’ appreciated through human experience’. Following the above, architecture and the city are seen as one organism. The notions of boundaries, porous borders, fluidity, mobility, and spaces of flows are the lenses of the investigation of the unit’s methodology, leading to the notion of a new hybrid urban environment, where the main constituent elements are in a flux relationship. The material and the immaterial flows of the town are seen interrelated and interwoven with the material buildings and their immaterial contents, yielding to new sustainable human built environments. The above premises consequently led to choices of controversial sites. Indisputably a provoking site was the ghost town of Famagusta where the time froze back in 1974. Inspired by the fact that the nature took over the a literally dormant, decaying city, a sustainable rebirthing was seen as an opportunity where both nature and built environment, material and immaterial are interwoven in a new emergent urban environment. Similarly, we saw the dividing ‘green line’ of Nicosia completely failing to prevent the trespassing of images, sounds and whispers, smells and symbols that define the two prevailing cultures and becoming a porous creative entity which tends to start reuniting instead of separating , generating sustainable cultures and built environments. The authors would like to contribute to the debate by introducing a question about a new recipe of cooking the built environment. Can we talk about a new ‘urban recipe’: ‘cooking architecture and city’ to deliver an ever changing urban sustainable organism, whose identity will mainly depend on the interrelationship of the immaterial and material constituents?

Keywords: blurring zones, porous borders, spaces of flow, urban recipe

Procedia PDF Downloads 424
9751 Optimizing Electric Vehicle Charging Networks with Dynamic Pricing and Demand Elasticity

Authors: Chiao-Yi Chen, Dung-Ying Lin

Abstract:

With the growing awareness of environmental protection and the implementation of government carbon reduction policies, the number of electric vehicles (EVs) has rapidly increased, leading to a surge in charging demand and imposing significant challenges on the existing power grid’s capacity. Traditional urban power grid planning has not adequately accounted for the additional load generated by EV charging, which often strains the infrastructure. This study aims to optimize grid operation and load management by dynamically adjusting EV charging prices based on real-time electricity supply and demand, leveraging consumer demand elasticity to enhance system efficiency. This study uniquely addresses the intricate interplay between urban traffic patterns and power grid dynamics in the context of electric vehicle (EV) adoption. By integrating Hsinchu City's road network with the IEEE 33-bus system, the research creates a comprehensive model that captures both the spatial and temporal aspects of EV charging demand. This approach allows for a nuanced analysis of how traffic flow directly influences the load distribution across the power grid. The strategic placement of charging stations at key nodes within the IEEE 33-bus system, informed by actual road traffic data, enables a realistic simulation of the dynamic relationship between vehicle movement and energy consumption. This integration of transportation and energy systems provides a holistic view of the challenges and opportunities in urban EV infrastructure planning, highlighting the critical need for solutions that can adapt to the ever-changing interplay between traffic patterns and grid capacity. The proposed dynamic pricing strategy effectively reduces peak charging loads, enhances the operational efficiency of charging stations, and maximizes operator profits, all while ensuring grid stability. These findings provide practical insights and a valuable framework for optimizing EV charging infrastructure and policies in future smart cities, contributing to more resilient and sustainable urban energy systems.

Keywords: dynamic pricing, demand elasticity, EV charging, grid load balancing, optimization

Procedia PDF Downloads 28
9750 Public Participation as a Social Inclusion Tool in the Urban Planning Process: A Case Study of Abuja, Nigeria

Authors: Nwachi Prosper Louis, Cynthia Ogonna Ikesee

Abstract:

The urban planning system of cities varies by country, but in general, it is an instrument for establishing long-term sustainable frameworks and plans for social, institutional and economic development. There is limited knowledge, development, and implementation of effective and sustainable urban planning structures and plans that encourage social inclusion in most communities. This has led to social, economic and environmental deficiencies resulting in community isolation and segregation in class, ethnicity, and race. Encouraging public participation in the urban planning process is one of the instruments that cities can utilise to achieve better social inclusion outcomes. This paper explores how public participation can be used as a social inclusion tool in the urban planning process to achieve better outcomes in Abuja urban planning system. The purpose of this study is to investigate the effectiveness of this approach. Also, a conceptual model was developed which evaluates the relationship between public participation and social inclusion outcomes in the urban planning process. It was seen that every community has its peculiar way of life and challenges, and an understanding of these social societal needs is paramount in the urban planning process. Therefore, the involvement of the public in identifying their needs, selecting priorities and identifying strategies offer better chances for developing solutions that are sustainable, feasible and implementable.

Keywords: public participation, social inclusion, urban planning, urban planning process

Procedia PDF Downloads 209
9749 Toughness of a Silt-Based Construction Material Reinforced with Fibers

Authors: Y. Shamas, S. Imanzadeh, A. Jarno, S. Taibi

Abstract:

Silt-based construction material is acknowledged since forever and lately received the researchers’ attention more than before as being an ecological and economical alternative for typical cement-based concrete. Silt-based material is known for its worldwide availability, cheapness, and various applications. Some rules should be defined to obtain a standardized method for the use of raw earth as a modern construction material; but first, its mechanical properties should be precisely studied to better understand its behavior in order to find new aspects in making it a better competitor for the cement concrete that is high energy-demanding in terms of gray energy. Some researches were performed on the raw earth material to enhance its characteristics as strength and ductility for their importance and their wide use for various materials. Yet, many other mechanical properties can be used to study the mechanical behavior of raw earth materials such as Young’smodulus and toughness. Studies concerning the toughness of material were rarely conducted previously except for metals despite its significant role associated to the energy absorbed by the material under loading before fracturing. The purpose of this paper is to restate different toughness definitions used in the literature and propose a new definition.

Keywords: silt-based material, raw earth concrete, stress-strain curve, energy, toughness

Procedia PDF Downloads 228
9748 Financial Analysis of Feasibility for a Heat Utilization System Using Rice Straw Pellets: Heating Energy Demand and the Collection and Storage Method in Nanporo, Japan

Authors: K.Ishii, T. Furuichi, A. Fujiyama, S. Hariya

Abstract:

Rice straw pellets are a promising fuel as a renewable energy source. Financial analysis is needed to make a utilization system using rise straw pellets financially feasible, considering all regional conditions including stakeholders related to the collection and storage, production, transportation and heat utilization. We conducted the financial analysis of feasibility for a heat utilization system using rice straw pellets which has been developed for the first time in Nanporo, Hokkaido, Japan. Especially, we attempted to clarify the effect of factors required for the system to be financial feasibility, such as the heating energy demand and collection and storage method of rice straw. The financial feasibility was found to improve when increasing the heating energy demand and collecting wheat straw in August separately from collection of rice straw in November because the costs of storing rice straw and producing pellets were reduced. However, the system remained financially unfeasible. This study proposed a contractor program funded by a subsidy from Nanporo local government where a contracted company, instead of farmers, collects and transports rice straw in order to ensure the financial feasibility of the system, contributing to job creation in the region.

Keywords: rice straw, pellets, heating energy demand, collection, storage

Procedia PDF Downloads 405